
`

i

The Islamic University Gaza

Higher Education Deanship

Faculty of Engineering

Department of Computer

Engineering

Master of Computer Engineering

 غزة – الإسلامية الجامعة

 العليا الدراسات عمادة

 الهندسة كلية

 قسم هندسة الحاسوب

 ماجستير هندسة الحاسوب

.ينورتكللاا عارتقلاا ةمظنأ يفاستخدام حلول التشفير المثلي

Using homomorphic cryptographic solutions on E-voting Systems.

Submitted by:

Eng. Ahmed Abu Aziz

Supervised by:

 Dr. Hasan Qunoo

A Thesis Submitted in Partial Fulfillment of Requirements for the Degree of Master in

Computer Engineering.

م 3102-هـ 6341

`

ii

DEDICATION

This thesis is dedicated to:

The sake of Allah, my Creator and my Master;

My great teacher and messenger, Mohammed (May Allah bless and grant him), who taught

us the purpose of life;

My homeland Palestine;

The great martyrs and prisoners, the symbol of sacrifice;

The Islamic University; my second magnificent home;

My great parents, who never stop giving of themselves in countless ways;

My dearest wife, who leads me through the valley of darkness with light of hope and support,

My beloved brothers;

My beloved kids: Osama, and Waseem, whom I can't force myself to stop loving.

To all my family, the symbol of love and giving;

My friends who encourage and support me;

All the people in my life who touch my heart;

I dedicate this research.

`

iii

ACKNOWLEDGEMENT

I would like to express my special appreciation and thanks to my advisor Dr. Hasan

Qunoo, you have been a tremendous mentor for me. I would like to thank you for encouraging

my research and for allowing me to grow as a researcher. I would especially like to thank Dr.

Aiman A. Samra for encouraging me and helping to complete this research, he always offered

his advices to improve my work. I would also like to thank my committee members, Dr.

Aiman A. Samra and Dr. Abd Al Hameed Zoghbr for serving as my committee members

even in hardship. I also want to thank you for letting my defense be an enjoyable moment,

and for your brilliant comments and suggestions, thanks to you.

A special thanks to my family. Words cannot express how grateful I am to my mother and

my father for all of the sacrifices that you’ve made on my behalf. Your prayer for me was

what sustained me thus far. I would also like to thank all of my brothers and friends who

supported me, and supported me to achieve my goal. At the end, I would like to express

appreciation to my dear wife, who spent sleepless nights with and was always my support in

the moments when there was no one to answer my queries.

`

iv

 ملخص الدراسة

في هذا البحث تم استخدام حلول التشفير المثلي ظهر التشفير المثلي كحل جديد في أنظمة التصويت الالكتروني،

في أنظمة لتطبيقلبهدف اختبار ودراسة أداء وقابلية التشفير المثلي التام التام لتصميم وتنفيذ نظام تصويت الكتروني،

العديد من أنظمة التصويت الالكتروني التي تعتمد التشفير المثلي مبنية على التشفير المثلي حقيقية.تصويت الكتروني

 في هذا البحث تم استخدام التشفير المثلي التام لتوفير كلا العمليتين الجمع والضرب، مما سهل انشاء الجمعي أو الضربي.

هم خصائص أنظمة أنظام التصويت المصمم بناء على التشفير المثلي التام حقق وقد معرفة غير التفاعلي.الاثبات الصفر ال

التصويت عبر الانترنت الأمنية مثل: الأهلية والخصوصية والدقة والتحقق والانصاف والحرية وعدم الاجبار وحرية

ة أهم خصائص نظام التصويت عبر الانترنت المطبق هو إمكانيالنزاع والمتانة والتوسع وقابلية التطبيق. بالإضافة الى أحد

 ، مع الحفاظ على الخصائص الأمنية.تطبيقه عبر تقنية السحاب

تمت كتابة الكود ،BGV، استنادا الى مخطط التشفير المثلي التام HELibتم التنفيذ باستخدام مكتبة التشفير المثلي التام

وخادم التصويت والمصوتين. تم استخدام حققالمصمم الى ثلاثة أقسام: خادم الت. ينقسم النظام ++Cباستخدام لغة

خصائص الجمع والضرب للتشفير المثلي التام للتحقق من صحة بنية الصوت كإثبات صفري المعرفة غير تفاعلي

NIZKP، طبيق لمنفذ قابل للتأظهرت النتائج أن نظام التصويت عبر ا مشفرة. حيث بطريقة التصويتولحساب ناتج عملية

 .مليون ناخب 32يصل الى على عدد كبير من الناخبين

`

v

ABSTRACT

Homomorphic Cryptography raised as a new solution used in electronic voting

systems. In this thesis, Fully Homomorphic used to design and implement an e-voting

system, for the purpose of examination and studying the applicability in real systems and

performance of fully homomorphic encryption in e-voting systems. Most of homomorphic

cryptography e-voting systems based on additive or multiplicative homomorphic encryption.

In this thesis, fully homomorphic encryption used to provide both operations additive and

multiplication, which ease the demonstration of none interactive zero knowledge proof

NIZKP. The implemented e-voting systems achieved most of the important security issues

of the internet-voting systems such as, eligibility, privacy, accuracy, verifiability, fairness,

receipt-freeness, incoercibility, dispute-freeness, robustness, scalability and practicality. One

of the most important properties of the implemented internet voting system its applicability

to work on cloud infrastructure, while preserving its security characteristics.

The implementation is done using homomorphic encryption library HELib, which based on

BGV fully homomorphic encryption scheme, written in C++ language. The implemented

voting systems divided into three parts: Authentication Server, Voting Server and Voters.

Addition and multiplication properties of fully homomorphic encryption used to verify the

correctness of vote structure as a NIZKP, and for calculating the results of the voting process

in an encrypted way. The results show that the implemented internet voting system is secure

and applicable for a large number of voters up to 10 million voter.

`

vi

List of Contents

DEDICATION .. ii

ACKNOWLEDGEMENT...iii

الدراسة ملخص .. iv

ABSTRACT ... v

LIST OF ABBREVIATIONS .. 10x

LIST OF FIGURES ... xi

LIST OF TABLES .. xii

1. CHAPTER 1: INTRODUCTION.. 1

1.1 E-voting solutions .. 1

1.2 Conventional Cryptography ... 1

1.3 Homomorphic Cryptography ... 2

1.4 Problem Statement ... 2

1.5 Research Aim ... 3

1.6 Research Importance .. 3

1.7 Research Structure ... 3

2. CHAPTER 2: LITERATURE REVIEW ... 5

2.1 Homomorphic cryptography. ... 5

2.2 Homomorphic encryption schemes .. 7

2.2.1 Additive Homomorphic Encryption scheme: ... 7

`

vii

2.2.1.1 Paillier scheme .. 7

2.2.2 Multiplicative Homomorphic Encryption scheme ... 7

2.2.2.1 RSA scheme .. 7

2.2.3 Fully homomorphic encryption scheme ... 8

2.2.3.1 Gentry’s Scheme ... 8

2.2.3.2 Implementation of Gentry’s blueprint - Smart-Vercauteren 9

2.2.3.3 Gentry-Halevi Scheme .. 10

2.2.3.4 Improvements on Gentry’s scheme ... 10

2.2.3.5 DGHV fully homomorphic scheme over the integers................................. 12

2.2.3.6 Learning With Error LWR- FHE .. 13

2.2.3.7 Brakerski-Gentry-Vaikuntanathan BGV scheme .. 14

2.2.3.7.1 Encryption Scheme .. 14

2.2.3.7.2 Key Switching (Dimension Reduction). .. 15

2.2.3.8 Gentry-Sahai-Waters scheme ... 17

2.2.3.9 NTRU based FHE .. 17

2.3 Application of homomorphic Encryption .. 18

2.3.1 E-voting systems .. 18

2.3.1.1 I-voting Systems Models .. 19

3.1.1 Zero Knowledge proofs: ... 19

3.1.2 Non Interactive Zero-knowledge Proofs: ... 20

2.3.2 Cloud services .. 21

`

viii

2.3.3 Protection of mobile agents .. 22

2.3.4 Making encrypted queries to search engines .. 22

2.3.5 Searching over encrypted data.. 23

2.3.6 Multiparty Computation (MPC) ... 23

2.3.7 Secret sharing scheme .. 23

2.3.8 Threshold schemes ... 24

2.3.9 Zero-knowledge proofs .. 24

2.3.10 Watermarking and fingerprinting schemes ... 24

2.3.11 Commitment schemes .. 25

2.3.12 Lottery protocols .. 25

2.3.13 Mix-nets .. 25

2.3.14 Data aggregation in wireless sensor networks .. 26

2.4 Implementations of Homomorphic Encryption schemas 26

2.4.1 Homomorphic Encryption Library HELib ... 27

2.4.2 Scarab library.. 29

2.5 Summery .. 29

3. Chapter 3: Research Methodology. ... 31

3.1 The basic tool “HELib” .. 31

3.2 Implementation .. 32

3.3 Testing .. 32

3.4 Scope .. 33

`

ix

4. CHAPTER 4: Proposed E-Voting System .. 34

4.1 The proposed E-Voting system .. 34

4.2 Security analysis... 40

5 CHAPTER 5: Design and Implementation .. 43

5.1 Protocol Implementation: ... 43

5.2 System Structure .. 43

5.3 Security Properties ... 49

5.3.1 Communication channels security .. 49

5.3.2 Hosting environment security... 50

6 CHAPTER 6: RESULTS AND ANALYSIS .. 51

6.1 Traffic analysis: .. 51

6.2 Performance analysis ... 52

6.3 Stored data analysis .. 59

6.4 General analysis ... 60

7 CHAPTER 7: CONCLUSIONS AND FUTURE WORK 62

7.1 Conclusions .. 62

7.2 Future work .. 63

1 ANNEX 1: Implementation of F.H.E .. 64

Bibliography .. 70

`

x

LIST OF ABBREVIATIONS

FHE Fully Homomorphic Encryption

HE Homomorphic Encryption

SHE Somewhat Homomorphic Encryption

LFHE Leveled Fully Homomorphic Encryption

LWE Learning With Error

RLWE Ring Learning With Error

SIMD Single Instruction Multiple Data

BGV Brakerski Gentry Vaikuntanathan scheme

HELib Homomorphic Encryption Library

MPC Multiparty Computaion

WSN Wireless Sensor Network

ZKP Zero Knowledge Proof

NIZKP None Interactive Zero Knowledge Proof

AS Authentication Server

VS Voting Server

BB Bulletin Board

V Voter

`

xi

LIST OF FIGURES

Figure 2.1Homomorphic Encryption Evaluation.. 6

Figure 4.1 Voters Registration Process .. 35

Figure 4.2 Voter Authentication with Authentication Server & Voting Server 36

Figure 4.3Vote Structure Example ... 37

Figure 4.4 Masking process example ... 38

Figure 4.5Vote Encryption & Validation with NIZKP... 39

Figure 4.6 Votes tally & results decryption .. 40

Figure 5.1 System Structure ... 43

Figure 6.1 PublicKey size and Secretkey size for different p values 54

Figure 6.2 Vote and Mask sizes for different p values ... 54

Figure 6.3 Vote encryption, mask calculation - decryption and result decryption for

different p values .. 56

Figure 6.4 Votes generation time, and Vote tally time for different number of votes 58

Figure 6.5 Final result cipher decryption time .. 58

Figure 6.6 Total size of votes for different number of votes .. 59

file:///F:/Master%20Of%20Computer%20Engineering/Encryption/Thesis%20Work/MyWork%20-%20Modefied.docx%23_Toc416841506
file:///F:/Master%20Of%20Computer%20Engineering/Encryption/Thesis%20Work/MyWork%20-%20Modefied.docx%23_Toc416841508
file:///F:/Master%20Of%20Computer%20Engineering/Encryption/Thesis%20Work/MyWork%20-%20Modefied.docx%23_Toc416841511
file:///F:/Master%20Of%20Computer%20Engineering/Encryption/Thesis%20Work/MyWork%20-%20Modefied.docx%23_Toc416841512

`

xii

LIST OF TABLES

Table 5.1 Key Generation Parameters .. 45

Table 5.2 PublicKey, SecretKey and Context sizes; p=997. .. 46

Table 6.1 Traffic tracing and protection function ... 51

Table 6.2, Results of testing reflection of p on key size , vote and mask size.................. 52

Table 6.3 Vote encryption, mask calculation - decryption and result decryption for

different p values .. 55

Table 6.4 Voting performance analysis for vary number of voter 57

`

1

1. CHAPTER 1: INTRODUCTION

Voting is a fundamental decision making instrument in any consensus-based society and

democracy depends on the proper administration of popular elections. In any election, there

exists a set of requirements among which any voters should be confident that their intents

was correctly captured and no modification done to them votes. In addition, all eligible votes

were correctly tallied. On the other side, the voting system should ensure that each vote done

in the wright way and voter coercion is unlikely. These conflicting requirements presents a

significant challenge. The changing from the traditional paper based voting methods used in

many countries into electronic election systems, removes such challenge. The challenge

transferred to build secure voting systems that able to run in real life situations and preserve

privacy and anonymity for voters, and have verifiability properties to prove a correct tally of

votes.

1.1 E-voting solutions

Many countries have begun to use modern technology into their voting procedures.

Some solutions presented as Electronic voting systems (e-voting) as a secure method to

perform secure elections. e-voting refers to the use of computers or computerized voting

equipment to cast votes in election [1]. e-voting is an interdisciplinary subject and should

studied from different domains, such as software engineering, cryptography, network

security, politics, low, economics and social science. Mostly e-voting is known as a

challenging topic in cryptography, because the need to achieved privacy, anonymity and vote

encryption. Many e-voting systems proposed among the last decade, a lot of them based of

complicated encryption schemes and other based on mix net model, blind signature model

and homomorphic encryption model. Homomorphic Cryptography raised as a new solution

used in electronic voting systems. E-voting systems tries to resolve many security issues such

as eligibility, privacy, accuracy, verifiability, fairness, receipt-freeness, incoercibility,

dispute-freeness, robustness, scalability and practicality.

1.2 Conventional Cryptography

Cryptographic solutions provide methods of storing or transferring data in a secure way,

the amount of data generated is growing in a huge way, while cloud services is suitable

`

2

solution for storing such huge amount of data. Since cloud technologies is one of the most

cost-saving and scalable solution for processing and saving large data, the need to process

encrypted data stored in the cloud become more insistent.

Cryptographic techniques can separate into two general forms, Symmetric and Asymmetric

encryption:

In symmetric encryption a common secret key defined between sender and receiver, the same

key is used for encryption ὉάȟὯ and decryption ὈὧȟὯ process, where ά is the message

and ὧ is the generated ciphertext after encryption. The original message could retrieved after

decrypting cipher using the secret key.

In asymmetric encryption, private and public keys generated, user can share his public key

to the public, any sender can use the public key to encrypt a message ὉάȟὴὯȟ then the

receiver can decrypt using his private key ὈὧȟίὯ. All public key cryptography depends on

numeric theory and modular operations, this provides a powerful property called

homomorphism, and thus preserves group operations performed on ciphertexts, add, multiply

or both can made on two ciphertext to calculate the result, which will be the same result if

this operation performed on plaintext.

1.3 Homomorphic Cryptography

Homomorphism property preserves new secure method to perform a group of operations on

ciphertexts in untrusted third party without knowledge of any secret information. The ability

to perform simple computation on ciphertexts leads to a lot of applications and security

protocols, but the complicated structure of homomorphic cryptosystems limits applicability

in some protocols that need fast computation, and it still applicable to some protocols concern

in security section 2.1 and section 2.2 describes in details the homomorphic encryption.

1.4 Problem Statement

Study the applicability of using fully homomorphic encryption in e-voting systems based on

cloud infrastructure through designing an efficient and practical e-voting system depends on

fully homomorphic encryption.

`

3

1.5 Research Aim

This research aims to study the efficiency and applicability of using fully homomorphic

encryption in e-voting systems and their effectiveness to be built in untrusted platforms such

as cloud infrastructure. The thesis also studies, performance, security and privacy issues of

e-voting system.

1.6 Research Importance

The importance of this research that it discusses the practical applications of homomorphic

encryption. It also studies the applications that could be implemented using fully

homomorphic encryption and how much it is corresponding the infrastructure and the

properties, security issues and performance of cloud environment.

In this topic, an open question raised “Can Homomorphic encryption be efficient enough to

be practical?” Our thesis addresses this open problem. The proposed protocol clarifies a

method of using fully homomorphic encryption to develop a practical voting system and

implements a new non-interactive zero knowledge proof method.

1.7 Research Structure

Chapter 2 introduce the homographic encryption, then presents a literature review of

previous fully homomorphic encryption schemas, properties, underlying principles and

limitations. It also presents a survey of the most possible applications of homomorphic

encryption. It gives a brief explanation of what is fully homomorphic encryption, how we

can use it, and what practical implementations done using FHE. This chapter also focus on

e-voting systems and give a brief explanation of the previous voting systems.

Chapter 3 presents the research methodology, the scope, implementation tools and testing

methods.

Chapter 4 presents the implemented e-voting system using fully homomorphic encryption,

and discuss a designed method of non-interactive zero knowledge proofs. It also describes

the presentation method used and NIZKP.

`

4

Chapter 5 presents the structure of the implemented voting system, and describes the

programming properties of each part of the system.

Chapter 6 presents analysis and results of the implemented voting system, it shows traffic

analysis, performance analysis and stored data analysis.

Chapter 7 in the final chapter a conclusion and the future developments described.

`

5

2. CHAPTER 2: LITERATURE REVIEW

This research study an old problem in cryptography called a privacy homomorphism. It was

introduced by Rivest, Adleman and Dertouzous [3] after the invention of RSA [2] which is a

multiplicative homomorphic encryption schema.

2.1 Homomorphic cryptography.

If the RSA public key pk = (N,e), then encryption of message x is given by Ὁά

ά άέὨ ὔ , then the homomorphism property is БὉά Бά άέὨ ὔ in other

words:

Ὁά ȢὉά ά ά άέὨ ὔ άά άέὨ ὔ ὉάȢά (1)

This property led Rives et al. [3] to think about what if we have a schema that is fully

homomorphic: a schema Ⱡ have an efficient Evaluate‐ algorithm that can evaluate any

circuit ὅ contains any operation not just multiplication, for any public key pk, where:

╬░ ἏἶἫἺὁἸἼ‐ὴὯȟά Gives:

╬ ╔○╪■◊╪◄▄‐ὴὯȟὅȟ╬ȟȣȟ╬◄ , (2)

A vailed encryption of ὅάȟȣȢȟά under pk. This can arbitrarily compute on encrypted

data, so there many applications could be applied using this theory, such as query, calculate

and write to data without decryption, any operation could be applied while it could be

expressed efficiently as a circuit ὅ.

Suppose we have two values ά υ , ά ω, we want to do an arithmetic operation

multiplication in an untrusted party without revealing any value of άȟά result ὶ.

Encryption done on άȟά using homomorphic encryption schema ‐, with generated public

key pk.

 Ὁ υ ψσ

 Ὁ ω 57

`

6

pk

cm

f

ὶ f(m)

Which indicate for ὧȟὧ respectively, the circuit ὅ need to do in this example is

multiplication operation. ὧȟὧ sent to the untrusted third party to be evaluated through

ἏἾἩἴἽἩἼἭ‐ function which input ὅȟὧȟὧ ὥὲὨ ὴὯ.

ὶ ὧ zὧ ψσzυχ τχσρ

The result sent back after calculation and decryption done using generated private key pk.

Ὀ = Ὀ τχσρ 45

Decryption must give the same result of the operation if done in clear, this powerful property

can work for more complicated circuits, along with other operations based on addition and

multiplication.

Figure 2.1 shows the general evaluation process, while the delegator is any user want to use

the resources of third party evaluator without revealing any information about message m

and result r. Evaluator could be cloud server, public processing infrastructure or even any

untrusted PC

Figure 2.1Homomorphic Encryption Evaluation.

pk

sk

Delegator Evaluator

Generate Keys

Encrypt

Decrypt

Evaluate

`

7

The function f represents an arithmetic circuit or a Boolean circuit the scheme called circuit-

based, if function f defined as a mathematical function, the scheme called non-circuit based.

Next section discusses in more details homomorphic encryption properties, definitions and

lists many of famous fully homomorphic encryption schemas.

2.2 Homomorphic encryption schemes

2.2.1 Additive Homomorphic Encryption scheme:

2.2.1.1 Paillier scheme

Paillier crypto system invented by Pascal Paillier in 1999 [4], that relies on the Decisional

Composite Residuosity Assumption. It is a probabilistic asymmetric algorithm for public key

cryptography, which computation considered difficult. This cryptosystem based on modular

operations, with the property of homomorphism over additive.

Note that if we have two ciphertexts Ὁάȟὶ and Ὁάȟὶ which are encryptions of

ά , ά respectively, then:

ὈὉάȟὶȢὉάȟὶ άέὨ ὲ ά ά άέὨ ὲ (3)

So, the product of two ciphertexts will decrypt to the sum of their corresponding plaintexts,

given encryption of ά , ά we get the encryption of ά +ά without having to know the

secret key. Paillier cryptosystem used widely in voting systems applications due to additive

property.

2.2.2 Multiplicative Homomorphic Encryption scheme

2.2.2.1 RSA scheme

 RSA is one of the most practical and popular cryptosystems for asymmetric encryption,

it was introduced by Rivest, Shamir and Adleman in 1978 [3]. It is one of the first

homomorphic cryptosystems, and the most widely used public key cryptosystem. This

cryptosystem is based on the practical difficulty of factoring the product of two large prime

`

8

numbers, which used to provide both secrecy and digital signatures and key exchange

protocols.

RSA has a multiplicative homomorphic property, which means a multiplication operation

can done on encrypted messages without revealing their underlying information. If the RSA

public key is modulus n and exponent e, then the encryption of a message m given by Ὁά

ά άέὨ ὲ. The homomorphic property then is:

Ὁά ȢὉά ά ά άέὨ ὲ άά άέὨ ὲ ὉάȢά (4)

So, decryption of result using secret key gives the result of multiplication of messages.

2.2.3 Fully homomorphic encryption scheme

2.2.3.1 Gentry’s Scheme

Gentry described the first Fully Homomorphic Encryption scheme in 2009 [5] [6], which

considered as a breakthrough. It solved an old problem of homomorphic cryptosystems,

which provide addition and multiplication on ciphertexts.

 Gentry derived a new method for solving this problem, by building a fully homomorphic

scheme form “somewhat homomorphic scheme”, instead of directly creating a fully

homomorphic scheme. Somewhat schema was only able to evaluate low degree polynomials

on the encrypted data, it can perform a limited number of addition and multiplication

operations on ciphertexts. Next he needs to “squash” the decryption procedure so that it can

be expressed as a low-degree polynomial in the bits of the ciphertext and the secret key (a

circuit of small depth). This squashing needed because every ciphertext has a noise

component and any homomorphic operation applied to ciphertexts increases the noise in the

resulting ciphertext. Once this noise reaches a certain threshold the resulting ciphertext does

not decrypt correctly anymore; this limits the degree of the polynomial that can be applied to

ciphertexts [7].

Gentry applied a breakthrough idea by evaluating the decryption of polynomial not on the

bits of ciphertext and secret key directly as in regular, but he performs it homomorphically

on the encryption of those ciphertexts and secret key. Instead of recovering the plaintext, it

`

9

gets an encryption of bits for ciphertext, but with less noise if the polynomial degree small

enough in the ciphertext and this becomes the ciphertext for the original plaintext. This

process called “ciphertext refresh” procedure.

The refresh process on a ciphertext make the refreshed ciphertext applicable for the

homomorphic operation (addition or multiplication), while it’s not possible for the original

ciphertext due the noise threshold. Using this procedure the number of permissible

homomorphic operations becomes unlimited and we get a fully homomorphic encryption

scheme.

Finally, he applied a “bootstrapping” transformation to obtain fully homomorphic scheme.

The crucial point in this process is to obtain a scheme that can evaluate polynomials of high-

enough degree, and at the same time has decryption procedure that can be expressed as a

polynomial of low-enough degree. Once the degree of polynomials that can be evaluated by

the scheme exceeds the degree of the decryption polynomial (times two), the scheme is called

“bootstrappable” and it can then be converted into a fully homomorphic scheme [8].

2.2.3.2 Implementation of Gentry’s blueprint - Smart-Vercauteren

The first attempt to implement Gentry’s scheme was made in 2010 by Smart and Vercauteren

[9], they used a variant based on principal ideal lattices and requiring that the determinant of

the lattice be a prime number. Such lattices can be represented implicitly by just two integers

(regardless of their dimension), and moreover Smart and Vercauteren described a decryption

method where the secret key is represented by a single integer.

Smart and Vercauteren were able to implement the underlying somewhat homomorphic

scheme. But they were not able to support large enough parameters to make Gentry’s

squashing technique go through, because that required a lattice dimension of at least n = 227,

whereas due to the prime determinant requirement they could not generate keys for

dimensions n > 2048, which is essential for security purposes. As a result they could not

obtain a bootstrappable scheme or a fully homomorphic scheme.

`

10

2.2.3.3 Gentry-Halevi Scheme

Gentry and Halevi described the first implementation of Gentry’s scheme [8]. They follow

the same direction as Smart and Vercauteren. They make some optimizations to implement

the bootstrapping functionality, which not implemented by Smart and Vercauteren. The main

optimization is a key-generation method, for the underlying somewhat homomorphic

encryption, that does not require full polynomial inversion. They eliminate the requirement

that the determinant is a prime.

Additionally, they present many clever optimizations that reduce the asymptotic complexity

and practically reducing the time from many hours/days to a few seconds/minutes. The

authors of [8] report that for an optimized implementation on a high-end workstation, key

generation takes 2.2 hours, encryption takes 3 minutes, and ciphertext refresh takes 30

minutes.

2.2.3.4 Improvements on Gentry’s scheme

2.2.3.4.1 Stehle-Steinfeld optimizations

Stehle and Steinfeld described two improvements [10] on Gentry's fully homomorphic

scheme based on ideal lattices and its analysis. They provide a more aggressive analysis of

one of the hardness assumptions (the one related to the Sparse Subset Sum Problem) and

introduced a probabilistic decryption algorithm that can be implemented with an algebraic

circuit of low multiplicative degree. Combined, these improvements lead to a faster fully

homomorphic scheme. These improvements also apply to the fully homomorphic schemes

of Smart and Vercauteren [9] and van Dijk et al [11].

2.2.3.4.2 SIMD Gentry optimization

In [9] Smart and Vercauteren presented a variant of Gentry’s fully homomorphic scheme and

mentioned that the scheme could support SIMD style operations. SIMD means simple

instruction mutable data. While Gentry’s original schema [5] was just able to perform

encryption and decryption on a plaintext of one bit length.

`

11

 Gentry and Halevi [8] addressed the slowness of key generation process of the Smart–

Vercauteren system [9], but their key gen eration method excluded the SIMD style operation

offered by Smart and Vercauteren.

 In [12] Smart and Vercauteren show how to select parameters to enable such SIMD

operations, to implement Gentry and Halevi scheme. Moreover, how to obtain a somewhat

homomorphic scheme supporting SIMD operations. This somewhat homomorphic scheme

can be made fully homomorphic in a naive way by recrypting all data elements separately.

This result a substantial speed-up. This make performance 2.4 times faster than the standard

FHE scheme and the ciphertext size reduced by a factor 1/72.

2.2.3.4.3 Gentry-Halevi without squashing

Gentry and Halevi describe in [13] a new approach to construct a fully homomorphic scheme

encryption without the need to squash process. Previous schemes follows Gentry’s blueprints

in first constructing somewhat homomorphic encryption scheme, and next squash the

decryption circuit until it is simple enough to be handled within the homomorphic capacity

of the somewhat homomorphic encryption scheme. Finally perform bootstrapping to get fully

homomorphic encryption scheme.

Gentry and Halevi show in their approach constructing of fully homomorphic encryption

schema as a hybrid of somewhat homomorphic encryption scheme and multiplicatively

homomorphic encryption scheme. This construction eliminate the need for squashing step.

But it still using bootstrapping step to get fully homomorphic encryption scheme.

The main technique is to express the decryption function of somewhat schemes as a depth-3

(ВБВ) arithmetic circuit of a particular form. When evaluating this circuit

homomorphically scheme temporarily switch to a multiplicatively homomorphic encryption

scheme to handle the multiplication part. Due to the special form of the circuit, the switch to

the multiplicative scheme can be done without having to evaluate anything

homomorphically. Then the result translated back to the somewhat scheme by

homomorphically evaluating the decryption function of the multiplicative scheme. The

`

12

somewhat homomorphic scheme only needs to be capable of evaluating the multiplicative

scheme's decryption function, not its own decryption function. This avoids the circularity that

necessitated squashing in the original blueprint.

2.2.3.4.4 Gentry-Halevi-Smart scheme

 Gentry, Halevi and Smart [14] solved the bottleneck in the bootstrapping process, which

need to evaluate homomorphically the reduction of one integer modulo another. This is

typically done by emulating a binary modular reduction circuit, using bit operations on the

binary representation of integers. Gentry, Halevi and Smart present a simpler approach that

bypasses the homomorphic modular-reduction bottleneck to some extent. The method is

easier to describe and implement and is likely to be faster in practice. The scheme reduced

the size of the public key, and work with SIMD homomorphic computations.

2.2.3.5 DGHV fully homomorphic scheme over the integers

DGHV fully homomorphic scheme over the integers described in [11] a fully homomorphic

scheme, that constructed from very simple somewhat homomorphic encryption scheme using

only elementary modular arithmetic. The somewhat homomorphic scheme merely uses

addition and multiplication over the integers rather than working with ideal lattices over a

polynomial ring.

As in Gentry’s scheme the authors first describe a somewhat homomorphic scheme

supporting a limited number of additions and multiplications over encrypted bits. Then they

apply Gentry’s “squash decryption” technique to get a bootstrappable scheme and then

Gentry’s “ciphertext refresh” procedure to get a fully homomorphic scheme.

The main appeal of the scheme (compared to the original Gentry's scheme) is its conceptual

simplicity. However, the public-key was έ‗ in which is too large for any practical system.

The major achievement of DGVH over the original Gentry scheme, was that the plaintext

consisted of integers rather than single bits leading a better blueprint improve upon [15].

`

13

2.2.3.5.1 DGHV shorter public key

Coron et al, [16] reduced the public key size to έ‗ by encrypting with a quadratic form

in the public key elements, instead of a linear form. They proved that the scheme remains

semantically secure, based on a stronger variant of the approximate-GCD problem, already

considered by van Dijk et al.

Coron et al, described also the first implementation of the resulting fully homomorphic

scheme. Borrowing some optimizations from the Gentry-Halevi [8] implementation of

Gentry’s scheme, obtained roughly the same level of efficiency. This shows that fully

homomorphic encryption can be implemented using simple arithmetic operations.

2.2.3.6 Learning With Error LWR- FHE

Gentry’s blueprint suffers from many problems, which first all schemes based on squashing

decryption, squashing use “sparse subset sum assumption” in decryption circuit. Also the

large size of keys and ciphertext, the evaluation time per gate, time of encryption and

decryption. All these reasons make a bottleneck in practical deployment of FHE.

A new series works address these concerns. Brakerski and Vaikuntanathan [17] show that

(leveled) FHE can be based on the hardness of the much more standard “learning with error”

(LWE) problem. LEW show that it is hard to solve various short vector problems on arbitrary

(not ideal) lattices in the worst case.

 In effect, Brakerski and Vaikuntanathan show how to obtain a direct construction of a

bootstrappable encryption scheme without having to squash the decryption circuit and thus,

without relying on the non-standard sparse subset sum assumption. This construction

improves the previous works in firstly showing how somewhat homomorphic can based on

LWE using a new re- linearization technique. While all the previous work relied on

complexity assumptions related to ideals in various rings. Second, the show to avoid the

“squashing paradigm” used in all previous works, by introducing a new dimension-modulus

reduction technique, which shortens the ciphertexts and reduces the decryption complexity

of our scheme, without introducing additional assumptions [18].

`

14

The scheme has very short ciphertexts and therefore used to construct an asymptotically

efficient LWE-based single-server private information retrieval (PIR) protocol.

2.2.3.7 Brakerski-Gentry-Vaikuntanathan BGV scheme

Brakerski, Gentry and Vaikuntanathan in [2] [19] presented a new FHE scheme based on

previous work of Brakerski and Vaikuntanathan in [17]. This scheme based on LWE

problem and Ring LWE. They constructed a new way of leveled fully homomorphic

encryption schemes (capable of evaluating arbitrary polynomial-size circuits), without

Gentry’s bootstrapping procedure. Instead of recryption, this new scheme uses other light

weighted methods to refresh the ciphertexts to limit the growth of the noise so that the scheme

can evaluate much deeper circuits. The recryption process will serve as an optimization to

deal with over complicated circuits instead of a necessary for most circuits.

 The most significant development of BGV compared to BV [17] is the use of well-known

security assumptions based on RLWE, where the introduces RLWE over standard LWE

introduce a more efficient fully homomorphic scheme. Also, a fully homomorphic encryption

without the need for bootstrapping achieved using modulus switching.

2.2.3.7.1 Encryption Scheme

The general encryption of BGV scheme that can be instantiated to both LWE and RLWE.

We will describe RLWE which used by HELib. The RLWE-based public key encryption

scheme as follows. Most of the description and equations taken from [19] [20].

In general, homomorphic encryption scheme is a tuple (HE.KeyGen, HE.Enc, HE.Dec,

HE.Eval) of probabilistic polynomial time algorithms. In BGV, the message space of the

scheme will always be some ring Ὑ and our computational model will be arithmetic circuits

over this ring (i.e. addition and multiplication gates).

1. HE.KeyGen takes the security parameter (and possibly other parameters of the scheme)

and produces a secret key sk and a public key pk.

2. HE.Enc takes the public key pk a message m and produces a ciphertext c, which is the

encryption of m.

`

15

3. HE.Dec takes the secret key sk and a ciphertext c and produces a message m.

4. HE.Eval takes the public key pk, an arithmetic circuit f over Ὑ , and ciphertexts ὧ, ... ,ὧЉ

where Љ is the number of inputs to f, and outputs a ciphertext ὧ.

Given the security parameter ‗ and an additional parameter ‘, first choose a ‘-bit modulus

q. Where q an odd positive modulus ή ή‗. For RLWE scheme, chose the degree Ὠ

Ὠ‗ȟ‘ȟÁ ȰÎÏÉÓÅȱ ÄÉÓÔÒÉÂÕÔÉÏÎ … …‗ȟ‘ ȟÌÅÔ ÔÈÅ ȰÄÉÍÅÎÓÉÏÎȱ ὲ σÌÏÇήȢ Let

Ὑ ᴚ ὼȾὪὼ with Ὢὼ a polynomial of degree d. Ὢὼ ὼ ρ and Ὠ Ὠ‗ is a

power of 2. To get the secret key, first draw ▼’uniformly from …. The secret key is then

 ▼ ρȟ▼ ᶰὙȢ (5)

To get the public key, first generate vectors ═ Ὑ , ὩN … , then set ὦ ═▼ ςὩ.

Set public key ὃ ὦȿ ═ ɴὙ . Note that ὃȢί ςὩ. (6)

Suppose άᶰπȟρ Is the bit we wanting to encrypt. To encrypt, we do the following:

1- Select a random ὶɴ Ὑ and expand the message ά άȟπ ɴὙ .

2- Output ά ὃὶ ɴ Ὑ . (7)

According to 2,7%ȟȟ where … is a uniform distribution over Ὑ , we can use this scheme

a polynomial number of times with negligible probability that an adversary can guess ▼.

To decrypt, do the following:

1- Compute ὦ ộ╬ȟ▼Ớ . (8)

2- Output ά ὦ . (9)

2.2.3.7.2 Key Switching (Dimension Reduction).

This technique used by [17] to reduce the dimension of ciphertext after homomorphic

operation done. In BGV it can be used to not only reduce the dimension of the ciphertext, but

more generally, can be used to transform a ciphertext ὧ that is decryptable under one secret

key vector s1 to a different ciphertext ὧ that encrypts the same message, but is now

decryptable under a second secret key vector ί. The vectors ὧ, ί may not necessarily be of

`

16

lower degree or dimension than ὧ , ί . Because of this generality, it’s called key switching

procedure. It consist of two basic operations as follows:

¶ ὄὭὸὈὩὧέάὴὼɴ Ὑȟή decomposes ὼ into its bit representation ό ɴὙȟ then

Ὑ
Ȣ

. We do this by first writing ὼ В ςȢό with all ό ɴ Ὑ then

output ό όȟόȟȢȢȢ ό ᶰὙ
Ȣ . (10)

¶ ὖέύὩὶέὪςὼɴ Ὑȟή expands ὼ into ό ɴ ὙȢ that has copies of x

multiplied by power of 2 . The output is ὼȟςȟὼȟȢȢȢȟς ὼ ɴὙ
Ȣ

. (11)

Lemma 2.1 ộὄὭὸὈὩὧέάὴ╬ȟή ỚȟὖέύὩὶέὪςίȟή ộ╬ȟίỚάέὨ ή Ȣ Detailed proof

described in [19] .

The key switching technique can be defined by the following two operations.

ὛύὭὸὧὬὑὩώὋὩὲί ɴὙ ȟίὙ :

1- Generate a public key A as previously described, but with secret key ί and parameter

ὲ ὲȢÌÏÇή. (12)

2- Set ὄ ὖέύὩὶίέὪςίȿὕ, that is the matrix with the first column containing

ὖέύὩὶίέὪςί and augmenting some columns with all elements zero until it

matches the size of A.

3- Set ╒ ═ ║, and output † O ╒. (13)

4- ὛύὭὸὧὬὑὩώ† Oȟὧ : Output ὧ ὄὭὸὈὩὧέάὴὧ Ȣ╒. (14)

The following lemma proves that key switching works.

 Lemma 2.2 Let ί, ί, q, A, B,C be as in ὛύὭὸὧὬὑὩώὋὩὲίȟί , and let ὃȢί ςὩ ɴὙ .

Let ὧ ɴὙ and ὧᴺὛύὭὸὧὬὑὩώ† Oȟὧ . Then we have.

ộὧȟίỚ ςộὄὭὸὈὩὧέάὴὧȟὩỚ ộὧȟίỚ άέὨ ή. (15)

This lemma implies that key switching only produces an error ς᷆ộὄὭὸὈὩὧέάὴὧȟὩ Ớ᷆

which is small because ὄὭὸὈὩὧέάὴὧ only has coefficients 0 or 1 in the inner product.

The performance of the BGV [19] scheme is as follows (RLWE case):

`

17

• Secret key: The secret key is 2 ring elements, which require ςὨ ὰέὫ ή bits.

• Single ciphertext: The ciphertext also consists of 2 ring elements, which require

ςὨ ὰέὫ ή bits.

• Public key: The public key ὃ ɴ Ὑ consists of ςὲ ring elements, which require

ςÄÎ ÌÏÇ Ñ bits.

2.2.3.8 Gentry-Sahai-Waters scheme

Gentry, Sahai and Waters described in [21] a comparatively simple fully homomorphic

encryption (FHE) scheme based on the learning with errors (LWE) problem. In previous

LWE-based FHE schemes, multiplication is a complicated and expensive step involving

"relinearization". This scheme proposed a new technique for building FHE schemes that

called the "approximate eigenvector" method. Homomorphic addition and multiplication

considered as just matrix addition and multiplication. This makes the scheme both

asymptotically faster and easier to understand.

In previous schemes, the homomorphic evaluator needs to obtain the user's "evaluation key",

which consists of a chain of encrypted secret keys. This scheme has no evaluation key. The

evaluator can do homomorphic operations without knowing the user's public key at all,

except for some basic parameters. They construct the first identity-based FHE scheme. Using

similar techniques.

2.2.3.9 NTRU based FHE

Lopez-Alt, Tromer and Vaikuntanathan in [22] construct a multikey FHE scheme based on

NTRU, a very efficient public-key encryption scheme proposed in the 1990s. It was

previously not known how to make NTRU fully homomorphic even for a single party. They

viewed the construction of (multikey) FHE from NTRU encryption as a main contribution of

independent interest. Although the transformation to a fully homomorphic system

deteriorates the efficiency of NTRU somewhat.

`

18

2.3 Application of homomorphic Encryption

H.E has many security applications, this large scope of theoretical and practical applications

of H.E gives the wide interest of information security researchers and soon it will be one of

the big interest of information technology manufacturers specially cloud services vendors

and providers. In this section, we will list some of the main applications of homomorphic

schemas and summarize the idea behind them

2.3.1 E-voting systems

E-voting systems have a large space of research in cryptography literature, which many

secure ballot election schemas has been offered, homomorphic encryption raised as one of

those solutions for election schemas, which provide security, trust and scalability.

In such schema, a user simply sends a valid encrypted vote to the server, while the server can

compute this vote while it encrypted, this property made election systems more simple and

secure [32] [33].

Electronic voting solutions or e-voting systems used by many countries around the world.

Internet voting systems used for general elections by countries like Switzerland, Estonia

Norway, France, Germany, Spain, Paraguay, Netherlands and the United Kingdom. These

countries used special cryptosystems to preserve security for the election process [47] [48].

Electronic voting (e-voting) can be mainly classified into two different systems: machine

based systems and Internet voting (i-voting) systems. Machine based e-voting means that

both casting a vote and tallying the votes are performed using dedicated electronic devices.

I-voting is a voting method that transmits casted votes via public Internet. Development of

i-voting systems have been attractive for many researchers and developers, because it uses

the wide spread of mobiles, smart phones and personal computers. Providers can construct

secure systems with new technologies like cloud via the public internet. I-voting systems still

have many security and privacy concerns and there a lot of research in this field.

`

19

Counting process in i-voting systems can classified into two main methods, mix-nets model,

blind signature model and homomorphic model.

2.3.1.1 I-voting Systems Models

 Mix-nets model: In the mix-nets a several linked servers called mixes, each mix

randomizes input messages and outputs the permutation of them, such that the input and

output messages are not linkable to each other, it provides anonymity for a group of voters.

Several schemes based on mix-nets are proposed in [49] [50] [51] [52].

The blind signatures model: In blind signature schemes the voter first obtains a

token, which is a message blindly signed by the administrator or the authority and known

only to the voter himself. Later the voter sends his vote anonymously, with this token as proof

of eligibility. Even if later the (un-blinded) signature is made public, it is impossible to

connect the signature to the signing process, i.e. to the voter. Schemes based on blind

signatures usually use anonymous channels in order to send the un-blinded signature and the

encryption of the ballot to a voting authority, assuring the anonymity of the sender [49] [53]

[54] [55].

Homomorphic Model: In homomorphic model the tally process depends on

encryption of a vote using homomorphic encryption scheme, where add or multiplication

process performs homomorphically on encrypted votes to get the results. The voter needs to

make proof of his valid vote; this proof must be zero knowledge proof. Schemes based on

homomorphic encryptions possess property of verifiability, while preserving privacy. As

shown earlier in chapter 2 the property of homomorphism is performed on addition and

multiplication (ṥȟṧ) which also described in 2.2.1and 2.2.2. Many homomorphic voting

systems derived from the theory of ElGamal cryptosystem [56] which additive homomorpthe

homomorphic voting system of homomoa multiplicative homomorphic Paillier

cryptosystemorphic Paillier cryptosystem [4] are proposed in [57] [58] [33].

3.1.1 Zero Knowledge proofs:

Zero knowledge proofs can be used to demonstrate the truth of a statement without revealing

anything else. Which one party (the prover P) can prove to another party (the verifier V) that

`

20

a given statement is true, without conveying any information apart from the fact that the

statement is indeed true. In ZKP, the prover proves that he/she knows a secret without

revealing it [59].This statement assumed as a secret, the interactions are designed that they

cannot lead to revealing or guessing the secret. After exchanging messages, the verifier only

knows that the prover does or does not have the secret, nothing more. The result is a yes/no

situation, just a single bit of information.

Zero-knowledge proofs needs interactive communication between Prover and Verifier,

where input from Verifier needed. The prover must respond with usually in the form of a

challenge or challenges such that the responses from the prover will convince the verifier if

and only if the statement is true. This type is called Interactive Zero- knowledge proofs.

 A zero-knowledge proof must satisfy three properties:

 Completeness: The prover can convince the verifier if the prover knows a witness

testifying to the truth of the statement.

 Soundness: A malicious prover cannot convince anybody if the statement is false, except

with some small probability.

Zero-knowledge: A malicious verifier learns nothing except that the statement is true. This

is formalized by showing that every cheating verifier has some simulator that, given only the

statement to be proved (and no access to the prover), can produce a transcript that "looks

like" an interaction between the honest prover and the cheating verifier [60].

3.1.2 Non Interactive Zero-knowledge Proofs:

Non-interactive zero-knowledge (NIZK) proof systems [61] yield proofs that can convince

others about the truth of a statement without revealing anything but this truth. It has been

shown under standard cryptographic assumptions that NIZK proofs of membership exist for

all languages in NP. NIZKP does not need the interactive communications between the

prover and verifier. We will consider statements of the form x ɴ L, where L can be an arbitrary

language in NP. We require that the NIZK proof be complete, sound, and zero-knowledge.

`

21

In NIZKP model the prover and the verifier are in possession of a reference string sampled

from a distribution D by a trusted setup „ᴺὛὩὸόὴρ . To prove statement ώ ɴ ὒ with

witness w, the prover computes “ N ὖὶέὺὩ „ȟώȟύ and sends the proof “ to the verifier.

The verifier accepts if ὠὩὶὭὪώ „ȟώȟ“ ὃὧὧὩὴὸ, and rejects others.

Gentry [5] proposed a fully homomorphic encryption scheme and demonstrated that fully

homomorphic encryption can be used to construct NIZK proofs whose size depends only on

the size of the witness and on the security parameter, but not on the size of the circuit used

to verify the witness. Gentry proposed to encrypt every bit of the witness using a fully

homomorphic encryption scheme. Using the operations of the fully homomorphic encryption

scheme, it is possible to evaluate the circuit on the plaintexts to get a ciphertext that contains

the output. Using an NIZK proof the prover then constructs a proof for the public key being

valid, the encrypted inputs being valid ciphertexts and the output ciphertext being an

encryption of 1. Since the proof contains |w| ciphertexts and |w| proofs of their correctness,

the total complexity is |w|. poly(k) [62].

2.3.2 Cloud services

The most trending application of fully homomorphic encryption is cloud services. One of the

major problems in Cloud Computing is the fact that the customer cannot technically validate

the security and confidentiality of a remote resource. Current cloud solutions did not preserve

the optimal privacy for users. Some solutions depend on data encryption, but still

unsupported with privacy on processing level.

FHE provide the solutions for processing data while still encrypted, and execute an encrypted

program as shown [42]. Which the program execution performed in binary, an encryption of

a circuit can be done by encoding a bit in a cipher text’s property of having an even or odd

remainder modulo a secret prime key. This can be easily reduced to a boolean algebra by

mapping 0-bits to even integers and 1-bits to odd integers. An XOR-operations will be

represented by the integer addition, while the integer multiplication represents a boolean

AND-operation. This allows to simulate chains of boolean operations by means of simple

`

22

integer arithmetics. A formulation of processor components and memory operations done, to

determine each circuit for each part or operation. This process, like virtualization of process

in an encrypted way, which provide execution of program in secret.

This model can be used in many cases like, delegation of computation to a remote resource,

remote Search with encrypted search functions, Mobile Code and Multi-Party Computation.

Another type of secret program execution described in [43], which describes a method of

formulating programming function such if statement, loops and function calls in encrypted

forms using FHE and use it in program structure.

2.3.3 Protection of mobile agents

It is one of the most famous applications that is applicable by using homomorphic

cryptography. Since all conventional computer architectures are based on binary strings, and

only requires the addition and multiplication operations, such fully homomorphic encryption

schema would offer the possibility to encrypt a whole program so that it is still executable

[25]. The protection of mobile agents could be based on two ways: (a) computing with

encrypted functions such as making encrypted queries to search engine. (b) computing with

encrypted data, while the data is being encrypted in advanced then sent to server to be

computed without decrypting data with the use of homomorphic properties, finally the

computed results sent back to user, then he can decrypt it and review the results.

2.3.4 Making encrypted queries to search engines

F.H.E could be used to query a search engine, without revealing what is being searched for.

[5] Alice want to use this property of F.H.E, she generates ciphers (╬ȟȣȟ╬◄ of here query

(□ ȟȣȟ□◄) under pk, using fully homomorphic encryption schema with ᴇ circuit express

the server’s search function. The server sets ╬ Evaluate (pk, ᴇ , ╬ȟȣȟ╬◄). The server sends

these cipher texts to Alice. We know, by the correctness requirement, that Decrypt (sk, c) =

ᴇ□ ȟȣȟ□◄.These latter values constitute precisely the answer to Alice's query, which she

recovers through decryption.

`

23

2.3.5 Searching over encrypted data

 Alice as many of users want to use the cloud to store her data, because of the benefits of its

processing power and large storage size, but she does not trust the cloud. She needs her data

to be stored securely in an encrypted way, because otherwise the server could read or leak

her private data. In this case Alice needs to encrypt here data using F.H.E schema, store it on

the cloud, when she wants to perform a search query, which will represent as a circuit ᴇ.

As discussed before the result of evaluation process c, represents the data manipulated with

functionᴇ, decryption gives the right answer of here query without the server learn anything

of query or data being processed.

2.3.6 Multiparty Computation (MPC)

Which is a central problem in theoretical cryptography, in these problem n parties, holding a

private input □ ȟȣȢȟ□▪, which to compute a given function █□ ȟȣȢȟ□▪ . This problem

belongs to the area of computing with encrypted data [26]. One of famous approaches in this

field is F.H.E introduced by Gentry [27], which all parties encrypt their input first under the

F.H.E schema, then they evaluate the desired function on the cipher texts using the

homomorphic properties, and finally they perform a distributed decryption on the final cipher

texts to get the results.

MCP concept was used to perform a secure dynamic programming protocol that utilizes

homomorphic encryption. Which can compute optimization problem on servers receives

encrypted inputs from mutable agents. Servers should not know anything about the data being

processed, the result will sent to agents to be decrypted [28].

2.3.7 Secret sharing scheme

In secret sharing schemas, there is m parties have “sub-secret”, and there exist a “super-

secret” which is the composition of the sub-secret under specified function such as the sum

of or the multiplication of sub-secrets, each party want to determine the super-secret without

revealing his sub-secret [29].

`

24

If the secrets of each party are (▼ȟ▼ȟ▼), so each party encrypts his secret ╬ȟȟ ╔▼ȟȟ ,

then users can share their secrets encrypted with homomorphic schema, so if suppose the

function is the sum, so the super-secret is ╢ ╓╬ ╬ ╬ .

In other words the sum of shares of the secrets are the shares of the sum of the secrets.

╔▼ ╔▼ ╔▼ ╔▼ ▼ ▼ . (16)

2.3.8 Threshold schemes

Threshold schemes allow any t out of l individuals to recompute a secret (key). In other words

A key pair is generated jointly between multiple parties, and whereas the public key is used

for encryption as in ordinary asymmetric cryptosystems, the private key will only exist as a

shared secret throughout its lifetime. Multiparty Computation and secret sharing are types of

threshold schemas.

2.3.9 Zero-knowledge proofs

Zero-knowledge proofs could be used to demonstrate the truth of a statement without

revealing anything else, by which one party (the prover) can prove to another party

(the verifier) that a given statement is true, without conveying any additional information

apart from the fact that the statement is indeed true. In such case a user wants to log in a host,

he has to prove his identity by logging his username and password, which the user need to

be private and not leaked during the protocol operation. An example of using homomorphic

cryptographic properties in zero-knowledge proofs in [30] and [31].

2.3.10 Watermarking and fingerprinting schemes

Watermarking schemas provide a solution for saving copyrights, illegal redistribution of

copies and violation of ownership, it enables the owner to embed some information on the

contents and to extract it, this information indicates to the owner copyrights. A fingerprinting

scheme embeds the information related to a buyer and enables a merchant to trace the buyer

from the redistributed copy [34].

Homomorphic properties enable the merchant to add or multiply encrypted watermark to the

encrypted message, then he can prove his ownership of digital data. In fingerprinting, a buyer

`

25

encrypts his identity, then sends to the merchant using zero-knowledge proofs. The merchant

embeds encrypted identity to encrypted digital data and returns it to the buyer.

The buyer decrypts it and gets fingerprinted digital data without disclosing his identity to the

merchant [35].

2.3.11 Commitment schemes

Commitment schemes are of great importance in cryptography fundamentals, it allows to

party to choose a value and commit to his choice while keeping it secret, and then he can

reveal this value later. It’s designed so that the party cannot change his mind and cannot

change the committed value.

Commitment schemas have various applications such as secure coin flipping, zero-

knowledge proofs and secure computation. Homomorphic property was used efficiently to

implement some commitment schemas [36].

2.3.12 Lottery protocols

Usually in cryptographic lottery, which have to compute a random number in order to

indicate the winning, ticket from all participants. In such homomorphic lottery schemas, a

random number chosen by the players, then each number encrypted with the homomorphic

cryptosystem of the lottery. Nobody except the lottery can learn the chosen numbers. Using

homomorphic property, the encryption of the sum of the random numbers. Then the

combination of this and a threshold decryption scheme leads to the winning ticket of the

lottery without the ability to compute the winner during the purchase time [37].

2.3.13 Mix-nets

Mix-nets are protocols that provide anonymity for senders by collecting encrypted messages

from several users. It uses a set of servers to establish private communication channels that

hard to trace. One type of mix network accepts as input a collection of ciphertexts, and

outputs the corresponding plaintexts in a randomly permuted order. In such a scenario,

privacy is achieved by requiring that the permutation that matches inputs to outputs is kept

secret to anyone except the mix-net. A desirable property to build such mix-nets are re-

`

26

encrypted, which is achieved by using homomorphic encryption. In a re- encryption mixnet,

the inputs are submitted encrypted under the public-key of the mixnet. Each mix server

processes the batch of input ciphertexts sequentially. The First server takes the set of input

ciphertexts, re-encrypts them, and outputs the re-encrypted ciphertexts in a random order.

Each server in turn takes the set of ciphertexts output by the previous server, and re-encrypts

and mixes them. The set of ciphertexts produced by the last server may be decrypted by a

quorum of mix servers to yield plaintext outputs [38].

2.3.14 Data aggregation in wireless sensor networks

 Wireless Sensor Networks (WSN) consist of less expensive and low power sensor nodes that

are capable of computation, storage and communication. These sensor nodes have low

computation power and storage space. The purpose of deploying a sensor node is to monitor

an area of interest with respect to some physical quantity. Information gathered by the sensor

nodes is reported to the base station.

 Data aggregation in wireless sensor networks (WSN) helps eliminate information

redundancy and increase the lifetime of the network. It is a technique combines partial results

at the intermediate nodes in route to the base station, thereby reducing the communication

overhead and optimizing the bandwidth utilization in the wireless links [39] [40].

 When homomorphic encryption is used for data aggregation, end-to-end encryption is

achieved and aggregation function like average or minimum/maximum can be computed on

the encrypted data. It’s applied to protect the privacy of input data while computing an

arbitrary aggregation function in a wireless sensor network [41].

2.4 Implementations of Homomorphic Encryption schemas

In the last section, we reviewed the most important theoretical applications of Homomorphic

Encryption, all these applications still discussed in researches with experimental

implementations.

In this section, we will discuss the implemented schemas practically and try to explain how

it work by examples.

`

27

2.4.1 Homomorphic Encryption Library HELib

HElib is a software library that implements homomorphic encryption (HE). Available as an

implementation of the Brakerski-Gentry-Vaikuntanathan (BGV) scheme [2], along with

many optimizations to run homomorphic evaluation runs faster, focusing mostly on effective

use of the Smart-Vercauteren [12] ciphertext packing techniques and the Gentry-Halevi-

Smart [44] optimizations.

At its present state, it is fairly low-level provides low-level routines (set, add, multiply, shift,

etc.). This library is written in C++ and uses the NTL mathematical library (version 6.1.0 or

higher). It is distributed under the terms of the GNU General Public License (GPL) [1]. Shai

Halevi and Victor Shoup developed this library. More details in annex 1.

Figure 3.1 A block diagram of the Homomorphic-Encryption library

Figure 3.1 shows the structure of HELib library for method and functions.

HELib [45] consists of four layers: in the bottom layer the modules for implementing

mathematical structures and various other utilities. The second layer implements the Double-

CRT representation of polynomials. The third layer implements the cryptosystem itself (with

t!ƭƎŜōǊŀ

{ǘǊǳŎǘǳǊŜ ƻŦ ½Ƴϝ

t!ƭƎŜōǊŀaƻŘ

ǇƭŀƛƴǘŜȄǘπǎƭƻǘ ŀƭƎŜōǊŀ

NumbTh
miscellaneous

utilities

/aƻŘǳƭǳǎ

ǇƻƭȅƴƻƳƛŀƭǎ ƳƻŘ Ǉ a
ŀ
ǘ
Ƙ

DoubleCRT
polynomial arithmetic

FHE
KeyGen/Enc/Dec

Ctxt
Ciphertext operations

/
Ǌ
ȅ
Ǉ
ǘ
ƻ

EncryptedArray

Routing plaintext slots

LƴŘŜȄ{ŜǘκLƴŘŜȄaŀǇ

LƴŘŜȄƛƴƎ ǳǘƛƭƛǘƛŜǎ
C
I
9
Ŏ
ƻ
ƴ
ǘ
Ŝ
Ȅ
ǘ

Ǉ
ŀ
Ǌ
ŀ
Ƴ
Ŝ
ǘ
Ŝ
Ǌ
ǎ

ōƭǳŜǎǘŜƛƴ

CC¢κLCC¢

ǘƛƳƛƴƎ

KeySwitching
Matrices for key-switching

`

28

the “native” plaintext space of binary polynomials). The top layer provides interfaces for

using the cryptosystem to operate on arrays of plaintext values. The bottom two layers

identified as the “math layers”. The top two layers identified as the “crypto layers”. Figure

3.1 A block diagram of the Homomorphic-Encryption library. Roughly, the modules

NumbTh, timing , bluestein , PAlgebra , PAlgebraMod , Cmodulus ,

IndexSet and IndexMap belong to the bottom layer, FHEcontext , SingleCRT

and DoubleCRT belong to the second layer, FHE, Ctxt and KeySwitching are in

the third layer, and EncryptedArray is in the top layer.

Implantation of HELib variant original BGV [19] in some issues, where its defined over

polynomial rings of the form ᴚὢȾɮ ὢ , where ά is a parameter and ɮ ὢ is

the ά’th cyclotomic polynomial. The “native” plaintext space in this scheme is usually the

ring Ⱦς namely binary polynomials modulo ɮ ὢ . HELib uses the Smart-

Vercauteren CRT-based encoding technique to “pack” a vector of bits in a binary polynomial,

so that polynomial arithmetic in translates to entry-wise arithmetic on the packed bits.

The ciphertext space in this scheme consists of vectors over Ⱦή , where ή is an odd

modulus that evolves with the homomorphic evaluation.

Secret keys are polynomials ‭ with “small” coefficients, and we view as the second

element of the 2-vector ίᴆ ρȟ . A level-i ciphertext ὧᴆ ὧ ȟὧ encrypts a plaintext

polynomial άᶰ with respect to ίᴆ ρȟ if we have the equality over , ộὧᴆȟίᴆỚ ḳ

άάέὨ ς, moreover the polynomial ὧ Ȣὧ is small, all its coefficients are

considerably smaller than ή. Roughly, that polynomial is considered the “noise” in the

ciphertext, and its coefficients grow as homomorphic operations are performed.

The basic operations done in this scheme are key-generation, encryption, and decryption, the

homomorphic evaluation routines for addition, multiplication and automorphism (and also

addition-of-constant and multiplication-by-constant), and the “ciphertext maintenance"

operations of key-switching and modulus-switching. More details of how HELib work

described in the report [45] founded in the documentation HELib source code.

`

29

Halevi and Shoup the Creators of HELib described in [46] some of the algorithms and

optimization techniques that are used in HElib for data movement and simple linear algebra

over HELib “platform”.

2.4.2 Scarab library

It’s an open source implementation of a fully homomorphic encryption scheme using large

integers, based on Gentry [1], and N. Smart and F. Vercauteren [10] for the integer-based

approach used in this implementation.

 The software requires other libraries:

1. GMP: GNU Multiple Precision Arithmetic Library.

2. FLINT: Fast Library for Number Theory version 1.6.

3. MPIR: Multiple Precision Integers and Rationals.

4. MPFR: Multiple-precision floating-point computations with correct rounding.

The libraries are implemented using C language, and supporting Linux only, the installation

requires installing the provided libraries before installation of “libScarab”.

2.5 Summery

The mentioned schemes separated into three major types of homomorphic encryption. First,

additive homomorphic encryption schemes such as Paillier scheme. Second, multiplicative

homomorphic schemes such as RSA and ElGamal scheme, which is a widely used public key

scheme. Some applications developed on additive and multiplicative homomorphic schemes

such as multiplicative homomorphic e-voting system [23]. The limitation to a single

operation resulted the reduction of the efficiency and effectiveness of these schemas,

especially for bigger and more complex applications. This led to looking forward to schemas

that supports both operations, which provides in the third type of homomorphic encryption

called Fully Homomorphic Encryption which first show was by Gentry in 2009 [5].

Gentry’s construction consists of several steps: He first constructed a “somewhat

homomorphic” scheme that supports evaluating low-degree polynomials on the encrypted

data, next he needed to “squash” the decryption procedure so that it can be expressed as a

`

30

low-degree polynomial which is supported by the scheme, and finally he applied a

“bootstrapping” transformation to obtain a fully homomorphic scheme [8].

A lot of developments and schemas based on Gentry’s blueprints, most of these schemas

suffer from the squashing process. Although these earlier schemes have achieved full

homomorphism, the performance of these schemes becomes the bottleneck. To address this

problem, some To address this problem, some newer FHE schemes were proposed in recent

years. In [19] Brakerski, Gentry, and Vaikuntanathan proposed a new FHE scheme (BGV)

based on LWE problems. Instead of recryption, this new scheme uses other light weighted

methods to refresh the ciphertexts. These methods can limit the growth of the noise so that

the scheme can evaluate much deeper circuits. The recryption process will serve as an

optimization to deal with over complicated circuits instead of a necessary for most circuits;

this scheme based on leveled terminology where the depth of circuit defined early [24].

An implementation of BGV scheme was founded by IBM research team in 2013, called

“HELib” which described as the first well-structured and fully documented implementation

library of FHE. HELib has a lot of optimization variant of the original BGV, these

optimizations advance the performance and usability issues.

In this thesis, HELib chosen as a basic platform to express the properties of FHE, and make

the implementation of the proposed voting system based on FHE. HELib provide many

classes and methods to examine performance and timing, which ease results examination.

The research focuses on election and e-voting systems as a case study, in this work NIZKP

also discussed as an application on Fully Homomorphic Encryption. Also cloud services used

as infrastructure of the system.

`

31

3. Chapter 3: Research Methodology.

In this research, a proof of concept methodology followed to present that using fully

homomorphic encryption is applicable in such e-voting systems. Many e-voting protocols

were implemented; some of them uses homomorphic encryption through additive or

multiplicative homomorphic property. Our contribution is to design and implement e-voting

system based on fully homomorphic encryption and can work in cloud infrastructure.

To prove that using fully homomorphic encryption on e-voting system can give applicable

performance and security, we designed and implemented e-voting system based on fully

homomorphic encryption.

This research tried to prove that the implemented e-voting system met the security properties

required in such e-voting systems such as eligibility, privacy, accuracy, verifiability, fairness,

receipt-freeness, incoercibility, dispute-freeness, robustness, scalability and practicality.

3.1 The basic tool “HELib”

The implementation deployed using the HELib library [1], which implements homomorphic

encryption (HE), currently available is an implementation of the Brakerski-Gentry-

Vaikuntanathan (BGV) scheme [2].

HELib considered as the first applicable implementation library of homomorphic encryption,

that well-structured and documented. It attracted the attention of many researchers. HELib is

an open source C++ library focusing on effective use of ciphertext packing and the GHS

optimizations. It includes an implementation of the BGV scheme itself with all its basic

homomorphic operation, and some higher-level procedures implementing the GHS data-

movement procedures and simple linear algebra. The operation done on a vector of plaintext

values, the plaintext arrays in HELib often hold a few hundred plaintext slots (sometimes

even a few thousand). It also support Single instruction multiple data processing, which

increase the performance of the library.

 HELib focuses on two factors time and noise, These correspond roughly to size and depth

of the corresponding SIMD circuits, but the correspondence is not quite one-to-one since

different operations have different time and noise behavior. Since multiplication operation

`

32

have much higher noise than addition operation. Many optimization done in HElib to reduce

the time and noise of the original BGV scheme [63]. HELib described in details in

section 2.4.1 and annex 1.1.

HELib used to generate public-private keys, used to demonstrate a circuit have multiplication

and addition operation to perform proof operation, and finally used to count results through

addition operation.

3.2 Implementation

An implementation of the enhanced system done using C++ language in Ubuntu Linux 12,

because help build on C++ and run only on Linux. The implementation divided into three

parts, the first called Authentication Server program, second called Voting Server program

and the third called Voting program. Each part of the system has a different role, the

authentication server responsible for public-private key generation and this provided by

HELib. It's also holding authentication credentials such as user passwords and secret keys for

voting server, also generated random secret, its basic functionality decrypting ciphers. It was

considered as a trusted party.

The voting server program is responsible for performing homomorphic operations on

encrypted cipher which in this case the encrypted votes. It does not do any decryption process

and considered as an interested party, because it's hosted in cloud infrastructure and the cloud

provider can disclose some data from the hosted machines.

The voter program responsible for making authentication with authentication server and

voting server, formatting the vote according the voter input and encrypt the vote. The voter

program considered as untrusted and its turn to trust after authentication.

All communication channels considered as untrusted, and all traffic transferred between

system parts were encrypted and integrity checked.

3.3 Testing

The testing and result analysis based on testing performance and measuring resulted ciphers

size and processing time, this done by the provided class from HELib “timing”. The class

`

33

can measure the time of generating public-private key, encryption time, decryption time and

homomorphic operation time. From these results, we measured the performance of the

system according to the number of processed votes and the produced size of each vote. We

designed number of experiment to do that, where the number of vote calculated was variable

for each experiment. Also p value which indicate the number of users of the systems

measured. The p value affect the public-private keys and the size of the vote and mask.

3.4 Scope

The scope of this research was related to the maximum number of users could participate in

election process, this number is tied to the maximum value of p produce acceptable public

key size and processing time for mask and vote tallying. In our experiment, we measured the

performance for 10 million voter, which able to be applied in about of 70% of countries all

over the world. In addition, it is applicable to applied to in our country Palestine, and many

other countries.

The experiments tested up to 40 thousands votes generated randomly and stored locally in

one machine, encrypted, masked, homomorphicaly checked and tallied.

`

34

4. CHAPTER 4: Proposed E-Voting System

This chapter describe in details the proposed system

4.1 The proposed E-Voting system

Our protocol based on using cloud services as an infrastructure for components of the system,

cloud provides high performance-processing capabilities and can deal with huge numbers of

communications done by voter that they want to make voting in a short period.

Cloud considered untrusted platform for such sensitive process, but homomorphic encryption

solves some of the security issues related to tallying and proving votes, which need the

biggest part of processing, we needed a part of our system to secure for containing private

keys, and voter identification information’s. Our system consists of:

a) Authentication Server (AS): responsible for authentication, verifying the correctness

of the vote, and valid encrypted with the public key.

b) Voting Server (VS): responsible for masking the vote and tallying.

c) Bulletin Board (BB): responsible for display the checksum of vote for public and

other public information.

Protocol Steps

1) Registration: Voter need to have Identification information to be able access and

authenticated by the system, he need make registration process personally to have his

secret key, which is required with other information like his national ID number, and

this information provided by authority office and delivered using the secure method

as shown in figure 4-1.

Voter (V)

ựựự Authority Office (AO)

V AO

`

35

Figure 4.1 Voters Registration Process

2) Authentication: When the voting process starts, the voter needs to connect to the

Authentication Server to authenticate his identity using his international ID number

and secret key. This connection to server done via SSL protocol to preserve privacy,

authenticity and verifiability. Once the voter authenticated, a new Random Secret

Key (RSK) generated in AS, this new RSK encrypted with AS secret key Ὁ ὙὛὑ.

The resulted cipher sent to both Voter and Voting Server. V and VS can reveal RSK

by decrypting the received cipher using Public Key of Authentication Server ὙὛὑ

Ὀ Ὁ ὙὛὑ.

Another method to do that, once a voter authenticated, a new Random Secret Key

(RSK) generated in AS, this new RSK encrypted with voter password, and sent him.

Also RSK encrypted with predefined key between VS and AS, and sent to VS.

User allowed to communicate with Voting server using the random secret key generated by

AS to be authentication secret of session between voter and VS.

The User can send Hello message to VS with encrypting M using RSK, Ὁ ὓ and using

Hash-based message authentication code HMAC [63], which used to verify both the data

integrity and the authentication of a message. VS also can send response message using the

same way. The HMAC will be used for the rest of communications with RSK as the secret

key.

Voter (V) Authority Office (AO)

Identity Info

Verification & Registration

Secret Key (SK)

`

36

To prevent attacker form identifying any unencrypted messages sent between VS, AS and V,

a symmetric encryption used with salting communication messages to prevent cipher

duplication. The key for the symmetric encryption is the RSK generated from AS, then

HMAC used along with encrypted messages.

 ὠ
ȟ
ựự ὃὛ

 ὠ ựὃὛ , ὠὛ ựὃὛ

 ὠ ự ὠὛ

Figure 4.2 Voter Authentication with Authentication Server & Voting Server

3) Voting Process: suppose that the voter wants to vote for some candidates ὔ , where

i is the number of candidates. Vote ὺ represented by {0, 1} for each candidate, where

if V is voting for ὅ for Yes the ὺ= 1, if No ὺ= 0. Additional digit d is considered

as verification of the correct tallying of votes with value of 1, where ὺ

{ὺȟȣȢȢȟὺȟὨ} as shown in Figure 4.3Vote Structure Example.

Voter Voting Server

Login using ID, SK

Via SSL

Authentication Process

Ὁ ὙὛὑ

ὙὛὑὈ Ὁ ὙὛὑ ὙὛὑὈ Ὁ ὙὛὑ

Random Secret Key (RSK) Random Secret Key (RSK)

Authentication with AS

Hello message from V Ὁ ὓ

HMAC Protected HMAC Verification

HMAC Protected

Ὁ ὓ Rsponse message from VS

HMAC Verification

Authentication Server

`

37

a. Vote Encryption: ὺ encrypted by public key ὴὯ of VS Ὁ ὺ ὧȢ V need to

calculate checksum of ὧ = Ὄ , which is used to verify that ὧ is tallied without

any modification, and it arrived correctly to VS, in this stage HMAC used to

preserve integrity.

 ὠᴼ ὠὛ

ὠ ựự ὠὛ

Encrypted cipher sent to VS, which calculateὌὧ, and store both Ὄȟὧ and

then send Ὄ to the Bulletin Board, ὠ can check for Ὄ in BB. If the values are

identical, ὧ arrived correctly.

 ὠὛO ὄὄ.

b. Vote Verification: at this stage we present a None Interactive Zero Knowledge

proof method which the voter wants to prove that he used a valid ὴὯ and valid

voting where no additional number added to some ὺ and restricted to Ὥ

number of candidates, so that the vote is well formatted. The verifier is our

system with his both separated parts AS and VS.

VS process ὧ to make it masked, so that AS can’t identify the original vote

and still able to verify the correctness of valid encryption and formatting.

Mask function calculated for ὧ,

╜ ╬ ╧╞╡ □ ╬ ╧╞╡ □ (17)

Where ά π ȟȣȟπ , ά ρ ȟȣȟρ . ὓ is sent to AS, a

decryption of masked vote is being done Ὀ ὓ Ὗ, so the result must be

ὅ ὅ ὅ ὅ ὅ Ὠ

1 1 1 1 0 0 v

Figure 4.3Vote Structure Example

`

38

1 for each Ὥ,Ὗ ρȢ If it’s not, a reject flag sent to VS, V told that he tried

to enter invalid ὧ, and ὧȟὌ deleted for that V.

For each valid ὧ, AS count 1 valid voting, the number of valid ὧ in VS must

be identical with number in AS.

Figure 4.4 Masking process example

 As shown in Figure 4.4 Masking process example, the addition process

done in decimal form not in binary form, the intruder may try to add some core

to a specified candidate, in such case the vote slot will increase by the value

entered by intruder, it will calculated in the final results. This easy to cover

after tallying process because the summation of result of each result must be

equal to the number of voters. No one can identify the vote that have the

additional score before the tallying process. Here come the NIAZKP role, to

identify any invalid vote, without decrypt the vote and before the tally process.

This process can handled using FHE easily as described early. It just need to

two parties to make this operation away from the voter to preserve the

correctness of masking process.

XOR

+

ὓ ὧ ὢὕὙ ά ὧ ὢὕὙ ά

ὅ ὅ ὅ ὅ ὅ Ὠ

1 1 1 1 0 0 v

0 0 0 0 0 0 ά

ὅ ὅ ὅ ὅ ὅ Ὠ

1 1 1 1 0 0 v

1 1 1 1 1 1 ά

1 1 1 1 0 0 ὶ

0 0 0 0 1 1 ὶ

1 1 1 1 1 1M

`

39

4) Tally process: after the specified period form authorities finished, the tallying

process starts, let the number of valid votes is j, so Вὧ ὅ, which is the final result

of the voting process

ὠὛ O ὃὛ

Decryption of results processed, Ὀ ὅ Ὑ, where Ὑ ὶȟȣȢȟὶȟὮ. (18)

a. Ὑȟὅ ὥὲὨ ίὯ put in the BB, so regulatory institutions can verify the tally

process.

Authentication Server Voting Server Voter

Voter choose his ballot v

ὧ Ὁ ὺ Ὄ ὧ
Encrypted Vote

HMAC

Masking Process ὓ
Masked Vote

Validation Ὀ ὓ Validation Result

Ὄ Accept Vote
Acceptance Message

End of connection

Figure 4.5Vote Encryption & Validation with NIZKP

`

40

Figure 4.6 Votes tally & results decryption

4.2 Security analysis

Any voting system must be able to deal with some security issues related to preserve privacy

of voting and accuracy of results.

4.2.1 Eligibility: Only persons who meet certain pre-determined criteria are allowed to cast

permitted number of votes. To achieve this, authority needs to verify the eligibility of

voters and record their casted votes, in registration process voter need to introduce all

information’s to be considered eligible.

4.2.2 Privacy: No one except voters can know their votes. To achieve this, any traceability

between voters and their votes must be removed during the whole election. In our

protocol no one can connect the user to his vote.

4.2.3 Accuracy: In the elections, voters expect that their votes are correctly captured and

that all eligible voters are correctly tallied. As we introduced, the tally process is

verified by the digit d added to each vote, the number of valid votes in AS and V.

Another verification done by NIZKP which satisfy accuracy and verifiability.

Authentication Server Voting Server Authority Office (AO)

End of ballot duration
End Message

Start tally process

ὧ ὅ ὅ
Final Results

Ὀ ὅ Ὑ

Decrypt Results

Ὑ ὶȟȣȢȟὶȟὮ

Results for each candidate

`

41

4.2.4 Verifiability: Verifiability is the ability to determine whether only and all valid votes

are counted in final tally or not i.e. to determine the accuracy of the election. Accuracy

of the election can be verified in two ways, one is the individual verifiability where

only voters can verify their own votes in the tally which done by our NIZKP method.

Therefore the accuracy of the election consists of N voters is ensured when there are

less than or equal to N votes and all N voters verify their votes. The other is universal

verifiability, which enables any third party to verify the accuracy of the election which

accomplished by putting all R,C,sk on BB for any third party to check tally process.

4.2.5 Fairness: In order to conduct the impartial election, anyone should not be able to

compute the partial tally before the end of the election which may influence the

remaining voters and may affect the voting result, and this accomplished by

separating AS nd VS. so sk is stored in AS which cannot calculate any results until it

receive C form AV.

4.2.6 Receipt-freeness: Receipt-freeness disables anyone including voters themselves to

link voters to their votes, in order to protect voters from being coerced to follow

intentions of other entities. To achieve receipt-freeness, the voting system didn’t

leave any information about the votes of voters. Also, votes should not include any

information peculiar to the voters. Receipt-freeness shares the same notion with

privacy. Our protocol is Receipt-free.

4.2.7 Incoercibility: Incoercibility protects voters against coercers who can communicate

with the voters actively. In our protocol, we allow V to Revote which a method to

overcome incoercibility. If V exposed from some incoercible person, he can revote

again by authenticate to AS, then send revote to VS with his previous H, new vote

should be replaced with old vote and new H added to BB.

4.2.8 Dispute-freeness: Even if dishonest voters are involved in elections, disputes among

entities should be solved without involving irrelevant entities. The notion of universal

verifiability is similar to dispute-freeness but it is limited to the voting and tallying

stages. Dispute-freeness accomplished by a mutable verification method before

`

42

considering the vote is valid, and validation using digit and counting the number of

valid votes in AS and VS.

4.2.9 Robustness: Any entity should not be able to disrupt the voting, i.e. the voting system

must be able to detect dishonest entities and to complete the voting process without

the help of detecting dishonest entities, which is satisfied in our protocol, while any

illegible voter does not allowed to communicate with VS, and no invalid vote stored.

4.2.10 Scalability: A scheme has to be extended easily to suffice computation,

communication and storage requirements of large-scale elections. Our system is

scalable due to cloud based infrastructure where huge processing and communication

can be done.

4.2.11 Practicality: A scheme should not have assumptions and requirements that are

difficult to implement. Our scheme is very practical because it doesn’t need any

special equipment, its just need to rent some cloud servers and put your system on it

for a specific period of time, it’s also cost effective.

`

43

5 CHAPTER 5: Design and Implementation

5.1 Protocol Implementation:

The proposed protocol in 4 implemented using HELib library described in 2.4.1, the

implementation done by C++ on Ubuntu 12. Installation method and example of HELib

described in Annex 1.1.

5.2 System Structure

 Our implemented software consists three main programs:

1) Authentication Server program

2) Voting Server program

3) Voter Program

Figure 5.1 System Structure

All three programs can communicate with each other; all informations sent between

programs encrypted in different ways, depending on the type of message.

Voter Program

Voting Server

Program

Authentication Server

Program

`

44

5.2.1 Assumptions

The assumptions upon which we have built and the design this system are as follows:

1. Authentication server (AS) considered as a trusted party which fully controlled by

authorities. AS contains sensitive data like users and passwords database, private keys

and functions that generate RSK. AS should monitored and logged and controlled by

the highest authorities of the Central Election Commission. Although this monitoring

process does not reveal any information about votes or leaks partial results of the

election process. Which this server does not contain any votes.

2. Voting Server (VS) considered as untrusted party of the system, it’s hosted in some

cloud service, and these cloud services considered as untrusted platform, where in

some cased the vendor can access to the hosted services and serves and may reveal

some sensitive data. Due to this issue, the FHE provided to solve security issues of

untrusted platforms. VS could not reveal any data about users, votes and partial

results. Where authentication with users done based on RSK provided by AS, and all

votes and results are encrypted using FHE schema, and VS does not contain secret

key for that scheme. All data are processed in encrypted form, which prevent any

untrusted party form revealing any sensitive data.

3. Voter (V) consider as untrusted party, until it authenticate AS. The voter must provide

secret credentials, which authenticate his identity. Then he transfer to the second level

of trust, where he can authenticate VS using RSK provided by AS. A voter can

encrypt his vote locally using the provided program, vote validated to check of correct

encryption using a correct public key, and well defined vote according the condition

provided by the Central Election Commission. The voter cannot prove his vote to

anybody, and prevent coercion.

4. The communication between AS and VS considered as secured connection based on

VPN services, or any other secure connection services. Although all messages

transferred between AS and VS are encrypted and integrity checked.

5. The communication between Votes and system considered as untrusted anonymous

connections, and all messages between Voters and system are encrypted and integrity

checked.

`

45

5.2.2 Authentication Server Program

Authentication program responsible for:

1) Key generation:

In the key generation process, public key and private key generated. Public key sent

to both VS and BB.

Before key generation, some credentials must be prepared depending on number of

voters involved in the election process.

Table 5.1 Key Generation Parameters

Variable Value Description

m 0 m, p and r define the native plaintext space ᴚὢȾ

 ɮ ὢȟὴ

P is defined as 997 for testing, while all results derived mod

p.

It must be a primary number higher final result.

p 997

r 1

l 3 The number of “levels", we chose it to 3 while the deepest

circuit in our solution is Masking process see chapter 3)b(

c 3 Number of columns in key switching matrix

w 64 The Hamming weight of a secret key

Security 128 Used to derive m, with function

FindM(security,L,c,p, d, 0, 0); d 0

The plaintext space defined over G (of type ZZX) a monic polynomial irreducible

over ᴚȢ

`

46

- Public Key generation: to initialize Public Key, an object context that holds (m,

p and r) a part of class FHEcontext, that's responsible for maintaining the

parameters. An object FHEPubKey is defined relative to a fixed FHEcontext ,

which must be supplied to the constructor and cannot be changed later. An

FHEPubKey includes the public encryption key, which is a ciphertext of type

Ctxt , a vector of key-switching matrices of type KeySwitch , and another data

structure called keySwitchM ap that is meant to help finding the right key-

switching matrices use in different settings. The public key is just a ciphertext,

encrypting the constant 0.

Hamming weight of that key stored in FHEPubKey object, for every secret key in

this instance. The FHEPubKey class provides an encryption method, and various

methods to find and access key-switching matrices.

Public key can be imported by providing context and creating an empty

FHEPubKey. Context can be imported using:

readContextBase(inContxt, m, p, r).

- Secret Key generation:

Secret key generated via FHESecKey class provides for either generating a new

secret-key, or importing a new secret key that was generated by the calling

application. That is, we have the methods ImportSecKey and GenSecKey.

Table 5.2 PublicKey, SecretKey and Context sizes; p=997.

Key Size

Public Key 20.3 MB (20,321,810 bytes)

Secret Key 20.3 MB (20,349,993 bytes)

Context 91 bytes

2) Voter authentication:

`

47

In vote generation stage VA program listens always for new voter requests. In this

stage, the program establishes SSL connection to the voter as a response to the SSL

request from the voter. The voter need to provide his international ID number and his

secret password – provided by authority office in registration stage- to be verified and

authenticated. This SSL connection used only for authentication stage to hide voter

identity form any intruder.

 The next stage of authentication is between voter and voting server. AS generates a

random secret key, encrypt it with the voter secret password, sent it back to the voter

with HMAC function used for message integrity. The same random secret key

encrypted with pre-defined symmetric key between VA and VS, also it’s sent to VS.

3) Vote verification:

After voter submit his vote to VS, VS calculates a vote mask described in section 3)b

(vote verification procedure), AS program just always listen for mask verification

requests came from VS. AS program decrypt mask and perform a check, which every

field in the mask must be 1, else it’s invalid vote.

Validation message (valid or invalid) saluted with a random number, encrypted with

symmetric encryption with RSK as a key and sent to VS.

Size of masked vote about 204.3 kB (204,293 bytes). And the execution time of

decryption is 0.019093/s. Also, decode function used internally in this step with

execution time 0.038623/s. The total execution time of decryption is 0.057716/s, this

considered a very small time for decryption which make the system applicable to

work for many decryption processes.

4) Results decryption:

After the specified period of voting ends, end of vote message sent to VS. VS start

tallying votes. AS program decrypt the results of voting using the private key, and

finally validate the count of voters to valid vote count and send results to BB.

The execution time of the decryption function of final results came form VS is

0.011884/s and decode function is 0.0696/s, so the total decryption time is

0.081484/s.

5.2.3 Voting Server Program

`

48

The voting program responsible for

1) Voter authentication:

The VS program receives RSK for AS, decrypt it and wait for voter to send hello

message encrypted with same RSK. Once the voter provides correct RSK, he verified

and become able to send vote to VS, if the provided RSK was wrong, VS sends reject

message to the user, and store logs for that wrong RSK.

2) Vote mask calculation:

The VS program calculates vote mask for every vote, each vote mask sent to AS for

validation. If it's valid, vote acceptance sent to voter encrypted with RSK with

HMAC.

3) Vote tallying:

After the voting ends, a message received indicate that voting period ended, vote

tallying starts. All results computed in one cipher and sent to AS to decrypt and

publish results.

5.2.4 Voter Program

Voter program responsible for:

1) Voter Authentication:

The first step in voter program is authentication with AS and then authenticate with

VS. Voter first establishes SSL connection to AS then authenticate with his ID and

password. Once authenticated he receives an RSK encrypted with his password, he

decrypt it and use it for authentication with VS. Voter sends “hello message”

encrypted with RSK using a symmetric encryption algorithm.

2) Ballot preparation:

The Voter chooses his selection from candidates, and form his ballot in a specified

way as described before in section 4. Voter program just presents just the candidate

choices and user selects his choice. Voter program performs the preparation process.

3) Vote Encryption:

`

49

After ballot preparation voter program encrypt it using the public key provided on

BB. The encrypted ballot size is about 136.1 kB (136,100 bytes) it’s not constant

value and vary for each user, but size almost the same with same parameters.

The encryption time is 0.027659/s. timing function in HELib provides easy to

measure execution time of some basic functions. Function printAllTimers()

used to print all timers in the program. Also function setTimersOn() needed to

start the timer, and setTimersOff() to stop it. Every function needed to be

monitored by individual times.

5.3 Security Properties

The implemented system achieved many security properties, some properties related to the

voting process itself, which described in section 4.2, and some other propertied related to

communication channels and hosting environments. This section discusses related issues.

5.3.1 Communication channels security

Communication done between servers AS and VS secured with two factors:

1. All messages sent between those servers are encrypted even messages like

ACCPTED or REJECTED messaged are salted to be indistinguishable in the case of

symmetric key encryption. All messages are equipped with an HMAC integrity

check. This prevents any eavesdropper of intercept or change the messages

transmitted over the channel.

2. The communication channel secured using VPN service, in this case, we suggest

using OpenVPN service to secure connection, which an open source platform that

provide high security and privacy of communication. OpenVPN can encrypt

communications using many different symmetric key algorithms such as AES, and

its use TLS protocol to provide secure commutations.

The communication between Voter side and AS and VS in other side secured using

encryption and HMAC integrity check. All messaged between servers and Voter are

encrypted and salted. All messages are equipped with an HMAC integrity check. This

prevents any eavesdropper of intercept or change the messages transmitted over the channel.

`

50

5.3.2 Hosting environment security

AS hosted on dedicated servers that secured using Intrusion Detection Systems IDS and

Intrusion Prevention Systems IPS, in addition to firewalls, to prevent any intruder from

accessing AS. If such thing happened, the intruder will be able to access the most sensitive

data in the system ID’s and passwords and secret keys. To prevent this, we suggest securing

AS by monitoring each communication trying to connect AS server, if any suspicious activity

detected the connection must terminate.

VS hosted in cloud service, it also secured using IDS and IPS, which work to prevent any

intruder from accessing VS. If such thing happened, the intruder is able to delete or corrupt

some votes, this will lead to damage voting results. To prevent this, all connections must be

monitored and if any suspicious activity detected, the connection must be terminated and

event log of this activity registered, the voter can do authentication again to be verified.

Voter requested to secure his machine, any hacking to his local machine could lose him his

vote. To prevent intruders form changing the structure of vote for example by infecting the

victim of viruses that can change the vote structure or change the public key or corrupting

votes. VS and AS are responsible for checking the validity of each vote. If the vote is

corrupted or unverified, the user told with this issue and given some instruction to secure his

machine again. The implemented Voter program should not be able to change or code

recover.

`

51

6 CHAPTER 6: RESULTS AND ANALYSIS

6.1 Traffic analysis:

The presented protocol generates communication traffic between each part of the system,

voter, VS and AS. The generated traffic achieved privacy, confidentiality and integrity. As

shown in table 5.3, all traffic between system parts encrypted, checked with integrity

function. This prevents intruders form changing the content of transferred messages and even

change the message itself, while all messages encrypted with securely shared secret key.

Table 6.1 Traffic tracing and protection function

Sender Message Receiver Confidentiality Function

Integrity

Function

AS Public Key BB Public HMAC

AS Public Key VS Public HMAC

V ID, Password AS SSL SSL

AS RSK V AES Encryption, key: password HMAC

AS RSK VS AES Encryption, key: predefined key HMAC

V Hello message VS Salted, AES Encryption, key: RSK HMAC

V Vote VS FHE, key: Public Key HMAC

VS Vote mask AS FHE, key: Public Key HMAC

AS Validation message VS Salted, AES Encryption, key: RSK HMAC

VS
Acceptance message

+ Hash of Enc. Vote
V AES Encryption, key: RSK HMAC

AS
End of voting period

message
VS

AES Encryption, Key: Predefined

key
HMAC

VS
Final Result of

tallied Vote Cipher
AS FHE, Key: Public Key HMAC

AS
Decrypted Final

Results
BB

AES Encryption, Key: Predefined

key
HMAC

`

52

6.2 Performance analysis

All previous results are done with p = 997 and a small number of candidates; p limits the

number of voters. To achieve true decryption of results p must be larger than the number of

voters, because all results are calculated modulo p. To examine the system scalability and

capability to deal with large number of users and much candidates choices, we design a test

to examine different p’s and its reflections on key sizes , vote and mask size, also its reflection

of encryption and decryption time.

The value of p in the test defines the maximum number of users should vote, which restricted

to the number of calculated votes. All results of final tallying and mask calculation done

modulo p. If the number of resulted value greater than p, the decryption result will be

incorrect. We have to choose p greater than the maximum value of the result. Table 6.2,

Results of testing reflection of p on key size , vote and mask size represent the results of

described experiment.

Table 6.2, Results of testing reflection of p on key size , vote and mask size

 V ≈ 1,000 V ≈ 10,000 V ≈ 100,000 V ≈ 10,00,000 V≈ 10,000,000

p=1,009 p= 10,007 p=100,003 p =1,000,003 p=10,000,019

Public key 6.1MB 7.1 MB 7.9 MB 12.4 MB 38.0 MB

Secret key 6.1MB 7.1 MB 7.8 MB 12.4 MB 38.1 MB

Vote 138.6 kB 133.2 kB 143.7 kB 235.4 kB 240.5 kB

Mask 208.0 kB 199.6 kB 215.4 kB 353.1 kB 360.7 kB

As shown in Figure 6.1 PublicKey size and Secretkey size for different. The result derived

from Table 6.2, Results of testing reflection of p on key size , vote and mask size show that

secret key size and public key size is identical for same p value. However, it differs when

choosing a larger value of p. The largest key size hit in this experiment when p = 10,000,019,

it has reached almost 38 MB for both secret key and public key. For public key, this

`

53

considered a large size, but it is necessary when voting made from a large number of persons

such 10 million as described in Table 6.2, Results of testing reflection of p on key size , vote

and mask size. For a less number of users such as 1 million keys decreased to 12.4 MB, which

more affordable. Nevertheless, 38MB not too much size for growing speed of internet. We

considered our system practical for such cases, because the public key will published on BB,

and the user can take their time for receiving it.

An important issue is the stored votes total size, which if we considered each vote take an

average of 250 kb of disk space, it need 2.328 terabit for 10 million users. This small size of

storage compared to a large number of users, is suitable and affordable because this storage

size available from most cloud providers and even for personal computer.

Figure 6.2 Vote and Mask sizes for different p values, the size of both vote and mask

generally increase with greater values of p. Mask size greater than vote size, which mask is

the vote itself process with a defined equation in section 4 which contains addition and

multiplication operations which increase the size of resulted mask. The noise generated from

the homomorphic addition with noise at most B is 2B and the noise generated form

multiplication process is ὄ . BGV provides a noise-management technique that keeps the

noise in check by reducing it after homomorphic operations, its bases on “modulus

switching” technique.

`

54

Figure 6.1 PublicKey size and Secretkey size for different p values shows that the mininumu

recorded value public key and secret key on p = 100,003, and the maxixmun value of keys

on p= 10,000,019.

values shows that the at p=1,000,003 and p=10,000,019 gives the largest value of vote and

mask sizes, while the other p values gives almost the same size. This due to the change value

of L=4 on p=10, 00,003 and p=10, 000,019, which gives an incorrect decryption of mask

when L=3. Because NIZKP circuit contains addition and multiplication, we need to increase

0

5

10

15

20

25

30

35

40

45

p= 1009 p= 10007 p=100003 p =1000003 p=10000019

V ≈ 1000 V ≈ 10000 V ≈ 100000 V ≈ 1000000 V≈ 10000000

Si
ze

 in
 M

B

Defferent P values

Public key Secret key

0

50

100

150

200

250

300

350

400

p=1009 p= 10007 p=100003 p =1000003 p=10000019

Si
ze

 In
 K

ilo
B

it

Different P values

Vote Mask

Figure 6.1 PublicKey size and Secretkey size for different p values

Figure 6.2 Vote and Mask sizes for different p values

`

55

the depth of the circuit to be compatible with resulted cipher while all result decryption done

modulo p. NIZKP circuit increases the cipher text size and noise, which give incorrect

decryption. For smaller p values it succeeded to decrypt mask correctly with smaller L=3,

which the generated noise is smaller than p.

The second part of the test is distinguished the difference of encryption and decryption time

for vote, mask and the result. In addition, mask calculation included which important

component of system performance. Encryption and decryption time for deferent p values

somewhat similar. The produced results are acceptable for our system because it’s small and

does not affected by changing p value. Mask calculation produced different results for

different p value and in general produced higher results of encryption and decryption. This

because of circuit size, which contains mutable addition and multiplication process.

Table 6.3 Vote encryption, mask calculation - decryption and result decryption for different p values

 V ≈ 1,000 V ≈ 10,000 V ≈ 100,000 V ≈ 1,000,000 V≈ 10,000,000

p=997 p= 10,007 p=100,003 p =10,00,003 p=10,000,019

Vote Encryption 24.52/ms 27.51/ms 27.25/ms 31.65/ms 36.52/ms

Mask Calculation 269.8/ms 400.97/ms 446.57/ms 558.35/ms 608.39/ms

Mask Decryption 63.82/ms 37.85/ms 32.64/ms 54.73/ms 70.78/ms

Result Decryption 87.18/ms 79.76/ms 80.68/ms 78.27/ms 82.352/ms

Number of

plaintext slots

53 54 84 60 66

The number of plaintext slots differs for each value of p; in our test, we used 31 slots for vote

formulation. The vote itself takes 30 slot present voting for each candidate, the 31 slot is a

`

56

check digit described in section 3,b) . the rest plaintext value is zero, the number of plaintext

slots is related to CRT technique used by HELib, described in [45] The resulted plaintext slot

can fit up to 65 candidate when p=10,000,019. It’s acceptable for most countries which

number of candidates usually not big.

Figure 6.3 Vote encryption, mask calculation - decryption and result decryption for different p values

Figure 6.3 values shows the time consuming in vote encryption, mask decryption, mask

calculation and result decryption different p values, which indicate that vote encryption is

less time than other and it does not change with changing p value. Second mask decryption

and third result decryption. The result of this test was by tallying 100 votes, thus size of the

vote increase with sum calculation. The time is almost similar in vote encryption, mask

decryption and mask calculation. The major difference is in mask calculation time, which

increase by increasing p value.

Another part of our experiment, is examining the performance of different number of votes,

in this part we designed a method to auto generate encrypted votes. Each vote filled randomly

as a ballot between 30 candidates, and slot 31 filled with 1 as a check digit and encrypt it.

For this experiment we use p=10, 000,019, which indicates the largest number of voters 10

million and the largest resulted public key. Table 6.4 Voting performance analysis for vary

number of voters, where it takes about a half hour to generate 30,000 encrypted votes. This

0

100

200

300

400

500

600

700

p=1009 p= 10007 p=100003 p =1000003 p=10000019

Ti
m

e
in

 M
ill

i S
ec

o
n

d

Different p values

Vote Encryption Mask Calculation

Mask Decryption Result Decryption

`

57

time seems to be linear with larger number of votes. In fact, this not as in real situations,

where voters encrypt their votes at the same period separately, not in a sequential way as in

this test.

Table 6.4 Voting performance analysis for vary number of voter

Number of votes

10,000 20,000 30,000 40,000

Votes generation time 11m 56s 21m 12s 31m 43s 42m 2s

Vote tally time 3m 3s 5m 37 s 9m 9s 12m 4s

Result decryption time 70.303/ms 78.288/ms 84.312/ms 90.772/ms

Tallied result size 240.5/ kB 240.4/ kB 240.4/ kB 240.6/ kB

Total size of votes 2.4/GB 4.8/GB 7.3/GB 9.7/GB

The most important issue of this test is examinig the time of tallying a large number of votes,

the largest number we examined in this test is 40,000 votes. It takes 42 minutes to tally this

number of votes. The test was made on VMware virtual machine configured with 3G of

RAM, 2 processors, 2 cores and 30G of hard disk. The host machine was core i5 processor.

0

5

10

15

20

25

30

35

40

45

10000 20000 30000 40000

Ti
m

e
in

 M
in

u
te

s

Number of votes

Votes generation time Vote tally time

`

58

Figure 6.4 Votes generation time, and Vote tally time for different number of votes

As shown in Figure 6.4, tallying time is somewhat linear in the number of votes. With these

results, an expected time of tallying 10 million votes will be 50 hours, using one single virtual

machine with the previous specifications. In the real situation this tally process will done in

cloud, which may consist of several powerful nodes. The system is scalable, and it may

contain hundreds of nodes, where tailing process is can be done in several nodes and the

result of each node can be tallied to gather to get final results. This scalability will reduce the

time of tallying much time.

Figure 6.5 Final result cipher decryption time

The decryption of results after tallying finish shown in Figure 6.5 Final result cipher

decryption time, it also increases linearly with the number of tallied votes, this because the

noise generated by each homomorphic addition operation. The noise is not too much because

addition has a small noise effect. Where addition of two ciphers generates 2B of noise, this

is small compared with multiplication noise ὄ .

Size of tallied results cipher is somewhat identical for different number of votes as shown in

Table 6.4 Voting performance analysis for vary number of voters, this due to the reduction

technique used by HELib.

0

10

20

30

40

50

60

70

80

90

100

10000 20000 30000 40000

Ti
m

e
in

 M
ill

iS
ec

o
n

d

Number of votes

Result decryption time/ms

`

59

Figure 6.6 Total size of votes for different number of votes

Size of all votes is a big issue, while the size of each vote is small, the total size of large

number of votes considered big. In this experiment, we examined the total size of votes at

different number of votes. As shown in Figure 6.6 the largest size hit on 40,000 was 9.7/Gb.

The size grows with the number of votes linearly. In an expectation for size of 10 million

votes, it will take 2.4Tera bit of size, which very affordable in cloud systems. This size

available now on some personal computers. For such systems, this considered acceptable

size.

6.3 Stored data analysis

At some point, each part of the system has some data, this data maybe secret, public or useless

data. In this section we analyze the data stored at each part and its security concerns.

6.3.1 Authentication Server stored data

The authentication server is the most critical part of the system, whereas it contains the most

sensitive data in the system which private key, database of users – passwords and secret keys.

This part of the system should be secured very well with the most recent ways of server

security like an intrusion detection system IDS, intrusion prevention system IPS and firewall.

It must be monitored in all the period of voting. AS also store temporary data such as RSK,

0

2

4

6

8

10

12

10000 20000 30000 40000

Si
ze

 in
 G

eg
aB

it

Number of Votes

Total size of votes

`

60

mask, mask decryption, and mask validation result with its salt and HMAC’s. All these result

deleted after voter commit his vote for each voter.

6.3.2 Voting Server stored data

VS stores vote cipher and hash function of that vote, until end of voting period ends. Other

temporary data stored in VS such mask, RSK and HMAC’s. Mask deleted immediately after

chinking by AS. In addition, RSK deleted after the session ends with voter.

This provides the minimum information seen by VS, which could be any cloud service that

considered untrusted and could reveal some information about the election process. Cloud

provider or intruder could not have useful data can affect voting process or clarify vote or

voter personality. It also could not leak partial results while all votes encrypted.

6.3.3 Voter stored data

The voter machine contains temporarily authentication credentials, ID and password. RSK,

HMAC, vote and its encryption, which temporary data. The hash function of encrypted vote

stored at the voter side for validation. Vote computed and revote process starts, if coercion

happens.

6.4 General analysis

In general, the system divided to separated parts to prevent any intruder can access one part

of the system from affecting the result of the election or leaking partial results or connect any

voter to his vote.

No one other than registered users can vote or access system. Each voter can vote without

revealing his identity and no one can connect a vote to a voter. Every vote checked whether

it has encrypted with valid public key and formed in the correct format of voting and no

addition values added to a specified candidate to increase his result, also no fake votes made.

No one can compute partial results, or interrupt voting process, all communication processes

encrypted and integrity checked. Any manipulation tries should be discovered by system,

reported and prevented. The user can revote when he felt coerced.

`

61

The system is scalable while it can deal with large number of users at the same time, and

system structure can easily expand without affecting of system functionality. It's also very

practical to be used in real election processes.

The system satisfies the major properties of an optimal voting system such as eligibility,

privacy, accuracy, verifiability, fairness, receipt-freeness, incoercibility, dispute-freeness,

robustness, scalability and practicality.

`

62

7 CHAPTER 7: CONCLUSIONS AND FUTURE WORK

This thesis examines the applicability of FHE in e-voting systems through designing and

implementing internet based voting system. The implemented system able to work through

cloud infrastructure. The conclusions of this work described below.

7.1 Conclusions

This thesis presented an electronic voting system based on fully homomorphic encryption as

a case study, to understand how much fully homomorphic encryption is applicable in real life

systems. The proposed e-voting system consists of main components, authentication server,

voting server, bulletin board and on the other side voters. The separation of authentication

server and voting server, let the voting server could be hosted in any cloud service provider

or any datacenter service. This provides more privacy, which all votes stored in

authentication server encrypted with fully homomorphic encryption and can processed or

calculated in encrypted form. This led to another feature, scalability and cost effectiveness.

The system could easily expand to more cloud server without compromising system structure

or functionality. Using cloud services for a specified period of election obviates buying new

hardware each election cycle. This is sufficient for us to afford the burden of maintaining and

updating hardware for the next election cycle.

We implemented the proposed system using HELib [1] homomorphic library based on BGV

[19] fully homomorphic encryption scheme. The implementation divided into three parts,

authentication server program, voting server program and voter program. We tested results

where the system should deal up to 10 million voter, which meets the need of about 70% of

countries over the world according to the number of eligible users. The results were

applicable for public key size, vote size, mask calculation time, mask decryption time, total

size of votes before tallying, tallying time and decryption result.

Security concerns of voting systems considered in our work. The developed system was able

to prevent intruder form make any fake votes or affect the voting process. The system disable

anybody from linking between voters and their votes, even the voters themselves. Every vote

checked for validation test. All communications encrypted and integrity checked. No one

could calculate partial results even cloud provider. The system satisfies many security

`

63

concerns eligibility, privacy, accuracy, verifiability, fairness, receipt-freeness, incoercibility,

dispute-freeness, robustness, scalability and practicality.

The implemented e-voting was acceptable to work in real elections, with providing more

cloud processing power.

7.2 Future work

Fully homomorphic encryption has many applications, in this thesis we discussed in details

one of these applications, which is voting system and its applicability to deploy to cloud

services.

The implemented e-voting systems need to add usability features to be more user friendly.

And it need to compared with other systems.

 In future work we intended to discuss other types of applications that applicable to work

with cloud infrastructure to study applicability performance and security issues of FHE.

The depth of the circuit in FHE considered as a limitation of the practicality of FHE, we

intended to examine much larger in depth circuits to study its effects on performance and

resulted ciphers.

In addition to, optimizing our implemented voting system to decrease public key size, vote

size and mask size. In addition, to use some other functions of HELib, which deals with

plaintext slots and noise optimization.

`

64

1 ANNEX 1: Implementation of F.H.E

1.1 HELib library:

1.1.1 Install (Compilation)

Installing and compilation of HELib is easy, its depend on NTL (Number Theory Library)

version 6.+, I tyried installing HELib on Ubuntu 12.

First we need to install NTL:

osama@ubntu :~ $ sudo apt - get install g++

osama@ubntu :~ $ sudo apt - get install libgmp3c2

osama@ubntu :~ $ sudo apt - get install libgmp 3- dev

osama@ubntu :~ $ wget http :// www.shoup.net / ntl / ntl - 6.0.0.tar.gz

osama@ubntu :~ $ tar - xvf ntl - 6.0.0.tar.gz

osama@ubntu :~ $ cd ntl - 6.0.0 /

osama@ubntu :~ $ cd src

osama@ubntu :~ $./ configure

osama@ubntu :~ $ make

osama@ubntu :~ $ make check

osama@ubntu :~ $ sudo make install

Then install HELib, first we need to install git application, to be able to download HELib

from githup.

osama@ubntu :~ $ sudo apt - get install git

osama@ubntu :~ $ git clone https :// github.com / shaih / HElib.git

osama@ubntu :~ $ cd Downloads /

osama@ubntu :~ $ cd HElib - master /

osama@ubntu :~ $ cd src /

osama@ubntu :~ $ make

 ; open Makefile and chnge the path inside it into the path

of your NTL include direcroty / home/ osama/ ntl - 6.0.0 / include

osama@ubntu :~ $ nano Makefile

osama@ubntu :~ $ make

osama@ubntu :~ $ make test

1.1.2 Testing:

An example of HELib where created to show the basic idea of HE [64], this example where

based on Test_* files included in HELib, the example showd below:

`

65

App.cpp

#include "FHE.h"

#include "EncryptedArray.h"

#include <NTL/lzz_pXFactoring.h>

#include <fstream>

#include <sstream>

#include <sys/time.h>

int main (int argc , char ** argv)

{

 /* On our trusted system we generate a new key

 * (or read one in) and encrypt the secret data set.

 */

 long m=0, p=2, r =1; // Native plaintext space

 // Computations will be 'modulo p'

 long L=16 ; // Levels

 long c=3; // Columns in key switching matrix

 long w=64 ; // Hamming weight of secret key

 long d=0;

 long security = 128 ;

 ZZX G;

 m = FindM (security , L, c , p, d, 0, 0);

FHEcontext context (m, p, r);

 // initialize context

 buildModChain (context , L, c);

 // modify the context, adding primes to the modulus chain

 FHESecKey secretKey (context);

 // construct a secret key structure

 const FHEPubKey& publicKey = secretKey ;

 // an "upcast": FHESecKey is a subclass of FHEPubKey

 //if(0 == d)

 G = context . alMod . getFactorsOverZZ ()[0];

 secretKey . GenSecKey(w);

 // actually generate a secret key with Hamming weight w

 addSome1DMatrices (secretKey);

 cout << "Generated key" << endl ;

 EncryptedArray ea (context , G);

 // constuct an Encrypted array object ea that is

 // associated with the given context and the polynomial G

`

66

 long nslots = ea . size ();

vector <long > v1 ;

 for (int i = 0 ; i < nslots ; i ++) {

 v1 . push_back (i * 2);

 }

 Ctxt ct1 (publicKey);

 ea . encrypt (ct1 , publicKey , v1);

 vector <long > v2 ;

 Ctxt ct2 (publicKey);

 for (int i = 0 ; i < nslots ; i ++) {

 v2 . push_back (i * 3);

 }

 ea . encrypt (ct2 , publicKey , v2);

// On the public (untrusted) system we

 // can now perform our computation

 Ctxt ctSum = ct1 ;

 Ctxt ctProd = ct1 ;

 ctSum += ct2 ;

 ctProd *= ct2 ;

vector <long > res ;

 ea . decrypt (ctSum , secretKey , res);

 cout << "All computations are modulo " << p << "." << endl ;

 for (int i = 0; i < res . size (); i ++) {

 cout << v1 [i] << " + " << v2 [i] << " = " << res [i] <<

endl ;

 }

 ea . decrypt (ctProd , secretKey , res);

 for (int i = 0; i < res . size (); i ++) {

 cout << v1 [i] << " * " << v2 [i] << " = " << res [i] <<

endl ;

 }

 return 0;

}

`

67

1.1.3 Parameter Description:

R is the number of rounds

p is the plaintext base [default=2]

r is the lifting [default=1]

d is the degree of the field extension [default==1]

(d == 0 => factors[0] defined the extension)

c is number of columns in the key-switching matrices [default=2]

k is the security parameter [default=80]

L is the # of primes in the modulus chai [default=4*R]

s is the minimum number of slots [default=4]

m is a specific modulus

repeat is the number of times to repeat the test

You can compile App.cpp code with: (App.cpp in /scr directory)

sudo g++ Mytest.cpp fhe.a - o App \ - L/ usr / local / lib - lntl

1.2 Scarab library

1.2.1 Installation:

This installation was tested on Ubuntu 12.04 32bit, kernel Linux 3.2.0-60-genric-pae,

processor Intel Core i5 CPU M60 2.67 GHz *4, memory 4GiB, virtualized machine using

VMware.

Download:

¶ libScarab-1.0.0 [65].

¶ gmp-6.0.0

¶ flint-1.6

¶ mpfr-3.1.2

¶ mpir-2.6.0

`

68

Install m4 and lzip

sudo apt - get install m4

sudo apt - get install lzip

Install gmp

lzip - d gmp - 6.0.0.tar.lz

tar xf gmp - 6.0.0.tar

cd gmp- 6.0.0

./ configure

make

make check #(don't skip the checks!)

sudo make install

Install mpfr

tar xjf mpfr - 3.1.2.tar.bz2

cd mpfr - 3.1.2

make

make check

sudo make install

Install mpir

tar xjf mpir - 2.6.0.tar.bz2

cd mpir - 2.6.0

./ configure

make

make check

sudo make install

Install flint

tar xf flint - 1.6.tgz

cd flint - 1.6

source flint_env

`

69

make library

sudo cp libflint.so / usr / local / lib

sudo cp *. h / usr / local / include

sudo mkdir - p / usr / local / include / zn_poly / src

sudo cp zn_poly / include /*. h / usr / local / include / zn_poly / src /

Run libscarab test

mkdir libscarab

cd libscarab

unzip ../ libScarab - 1.0.0.zip

make

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/ usr / local / lib

./ integer - fhe

`

70

Bibliography

[1] S. Halevi, "GitHub -HELib," 31 3 2013. [Online]. Available:

https://github.com/shaih/HElib. [Accessed 28 4 2014].

[2] Z. Brakerski, C. Gentry and V. Vaikuntanathan, "Fully Homomorphic Encryption

without Bootstrapping," Electronic Colloquium on Computational Complexity ECCC,

pp. 1-26, 2011.

[3] R. L. Rivest, L. Adleman and M. L. Dertouzos, "On data banks and privacy

homomorphisms," Foundations of Secure Computation, p. 169{180, 1987.

[4] P. Paillier, "Public-Key Cryptosystems Based on Composite Degree Residuosity

Classes," Springer, 1999.

[5] C. Gentry, A Fully Homomorphic Encryption Scheme, Stanford University, 2009.

[6] C. Gentry, "Fully homomorphic encryption using ideal lattices," Michael

Mitzenmacher , editor, STOC, no. ACM, p. 169–178, 2009.

[7] J. Coron and A. Mandal, "Fully homomorphic encryption over the integers with shorter

public," Advances in Cryptology, pp. 1-24, 2011.

[8] C. Gentry and S. Halevi, "Implementing Gentry ’ s Fully-Homomorphic Encryption

Scheme," Advances in Cryptology–EUROCRYPT , pp. 1-29, 2011.

[9] N. Smart and F. Vercauteren, "Fully Homomorphic Encryption with Relatively Small

Key and Ciphertext Sizes," Public Key Cryptography – PKC 2010 Berlin, Heidelberg,

New York, 2010.

[10] D. Stehlé and R. Steinfeld, "Faster Fully Homomorphic Encryption Damien," Advances

in Cryptology-ASIACRYPT 2010, 2010.

`

71

[11] M. van Dijk, C. Gentry, S. Halevi and V. Vaikuntanathan, "Fully Homomorphic

Encryption over the Integers," Advances in Cryptology–EUROCRYPT 2010, pp. 1-28,

2010.

[12] N. Smart and F. Vercauteren, " Fully Homomorphic SIMD Operations," IACR

Cryptology ePrint Archive, 2011.

[13] C. Gentry and S. Halevi, "ully Homomorphic Encryption without Squashing Using

Depth-3 Arithmetic Circuits," Foundations of Computer Science (FOCS), 2011 IEEE

52nd Annual Symposium on. IEEE, pp. 107-109, 2011.

[14] C. Gentry, S. Halevi and N. . P. Smart, "Better Bootstrapping in Fully Homomorphic

Encryption," Public Key Cryptography–PKC 2011, 2011.

[15] I. Sharma, "Fully Homomorphic Encryption Scheme with Symmetric Keys," Master

Thesis for Master of Technology Department of Computer Science & Engineering,

Rajasthan Technical University, Kota, 2013.

[16] J.-S. Coron, A. Mandal, D. Naccache and M. Tibouchi, "Fully Homomorphic

Encryption over the Integers with Shorter Public Keys," Advances in Cryptology–

EUROCRYPT 2011y, pp. 1-24, 2011.

[17] Z. Brakerski and V. Vaikuntanathan, "Efficient Fully Homomorphic Encryption from

(Standard) LWE," appears in this proceedings. Also available at Cryptology ePrint

Archive,, 2011.

[18] V. Vaikuntanathan, "Computing blindfolded: New developments in fully

homomorphic encryption.," Foundations of Computer Science (FOCS), 2011 IEEE

52nd Annual Symposium on. IEEE, 2011.

[19] Z. Brakerski, C. Gentry and V. Vaikuntanathan, "(Leveled) Fully Homomorphic

Encryption without Bootstrapping," Proceedings of the 3rd Innovations in Theoretical

Computer Science Conference on - ITCS '12, pp. 309-325, 2012.

`

72

[20] P. Fauzi, "On Fully Homomorphic Encryption," Master’s Thesis, University of Tartu

,Faculty of Mathematics and Computer Science Institute of Computer Science, 2012.

[21] C. Gentry, A. Sahai and B. Waters, "Homomorphic Encryption from Learning with

Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based," Cryptology

ePrint Archive, Report 2013/340, 2013.

[22] A. Lopez-Alt, E. Tromer and V. Vaikuntanathan, "On-the-Fly Multiparty Computation

on the Cloud via Multikey Fully Homomorphic Encryption," Cryptology ePrint

Archive, Report 2013/094, 2013.

[23] K. Peng, C. Boyd, E. Dawson, B. Lee and R. Aditya, "Multiplicative Homomorphic E-

Voting," Progress in Cryptology-INDOCRYPT 2004. Springer Berlin Heidelberg., pp.

61-72, 2005.

[24] Y. Hu, "Improving the Efficiency of Homomorphic Encryption Schemes," Diss.

Virginia Tech, 2013.

[25] J. Sen , "Homomorphic Encryption: Theory & Application," in Theory and Practice of

Cryptography and Network Security Protocols and Technologies, InTech, 2013, pp. 1-

21.

[26] I. Damgard, V. Pastro, N. Smart and S. Zakarias, "Multiparty Computation from

Somewhat Homomorphic," pp. 1-46, 2013.

[27] G. Gentry, "Fully homomorphic encryption using ideal lattices," ACM, pp. 169-178,

2009.

[28] M. Yokoo and K. Suzuki, "Secure Multi-agent Dynamic Programming based on

Homomorphic Encryption and its Application to Combinatorial Auctions," ACM, pp.

102-119, 2002.

`

73

[29] J. C. Benaloh, "Secret Sharing Homomorphisms: Keeping Shres of a Secret Secret,"

Springer, pp. 251-260, 1998.

[30] J. Groth, "Minimizing Non-interactive Zero-Knowledge Proofs Using Fully,"

International Association for Cryptologic Research IACR, pp. 1-14, 2011.

[31] "Zero-Knowledge Proofs for Finite Field Arithmetic, Or: Can Zero-Knowledge be for

Free?," Advances in Cryptology - Proceedings of CRYPTO’98, pp. 424-441, 1998.

[32] A. Kiayias and Y. Moti , "Tree-homomorphic encryption and scalable Hierarical

Secret-Ballot Election.," Springer, 2010.

[33] R. Cramer, R. Gennaro and B. Schoenmakers, "Asecure and optimally Efficient Muti-

Authority Election schema," Springer , 1998.

[34] B. Pfitzmann and M. Waidner, "Anonymous Fingerprinting," Springer, vol. 1233, p.

88–102, 1997.

[35] M. Kuribayashi and H. Tanaka, "Fingerprinting Protocol for Images Based on Additive

Homomorphic Property," IEEE TRANSACTIONS ON IMAGE PROCESSING, vol. 14,

no. 12, pp. 2129-2139, 2005.

[36] H. Delfs and H. Knebl, Introduction to Cryptography Principles and Applications,

Berlin Heidelberg: Springer, 2007.

[37] P.-A. Fouque, G. Poupard and J. Stern, "Sharing Dycryption in the Context of Voting

or Lotteries," Proceedings of the 4 th International Conference on Financial

Cryptography (FC’00), vol. 1962, pp. 90-104, 2000.

[38] P. Golle, M. Jakobsson, A. Juels and P. Syverson, "Universal Re-encryption for

Mixnets," Topics in Cryptology–CT-RSA 2004. Springer Berlin Heidelberg,, 2004.

[39] Y. Xiao., "Security in Sensor Networks," Auerbach Publications, pp. 275-290, 2007.

`

74

[40] J. Sen, "Secure and Privacy-Preserving Data Aggregation Protocols for Wireless

Sensor Networks," Cryptography and Security in Computing, 2012.

[41] L. Ertaul and k. Vaidehi, "Computing Aggregation Function Minimum/Maximum

using Homomorphic Encryption Schemes in Wireless Sensor Networks (WSNs),"

California State University, East Bay Hayward, CA, USA, 2007.

[42] M. Brenner, J. Wiebelitz, G. von Voigt and M. Smith, "Secret Program Execution in

the Cloud Applying Homomorphic Encryption," Digital Ecosystems and Technologies

Conference (DEST), 2011 Proceedings of the 5th IEEE International Conference on.

IEEE, pp. 114-119, 2011.

[43] D. Park, J. Kang, K. Heo, S. Cho, Y. Yoon and K. Yi, "Encrypted Execution," Research

on software analysis for error-free computing ROSAEC MEMO, 2014.

[44] C. Gentry, S. Halevi and N. Smart, "Homomorphic Evaluation of the AES Circuit,"

CRYPTO, 2012.

[45] S. Halevi and V. Shoup, "Design and Implementation of a Homomorphic-Encryption

Library," 2013.

[46] S. Halevi and V. Shoup, "Algorithms in HElib," IACR Cryptology ePrint Archive.,

2014.

[47] S. Drew, T. Finkenauer, Z. Durumeric, J. Kitcat, H. Hursti, M. MacAlpine and J. A.

Halderman, "Security Analysis of the Estonian Internet Voting System.," Proceedings

of the 2014 ACM SIGSAC Conference on Computer and Communications Security.

ACM, pp. 703-715, 2014.

[48] M. A. Bingol, F. Birinci, S. Kardas and M. S. Kiraz, "Norwegian Internet Voting

Protocol Revisited: Security and Privacy Enhancements," International Conference

BulCrypt, Sofia, Bulgaria, 2012.

`

75

[49] A. Fujioka, T. Okamoto and K. Ohta, "A practical secret voting scheme for large Scale

Elections.," Advances in Cryptology-AUSCRYPT. Springer-Verlag, p. 244–251, 1992.

[50] C. Park , K. Itoh and K. Kurosawa, "Efficient anonymous channel and all/nothing

election scheme," In Advances in Cryptology - EUROCRYPT ’93, LNCS, Springer-

Verlag, p. 248–259, 1993.

[51] J. K. K. Sako, "Reciept-free Mix-Type Voting Scheme," Advances in Cryptology—

EUROCRYPT’95. Springer Berlin Heidelberg,, p. 393–403, 1995.

[52] D. C. a. M. J. A. Juels, "Coercion-Resistant Electronic Elections," Proceedings of the

2005 ACM workshop on Privacy in the electronic society. ACM, pp. 61-70, 2005.

[53] W.-S. Juang and C.-L. Lei, "A secure and practical electronic voting scheme for real

world environments," IEICE Transaction on Fundamentals of Electronics,

Communications and Computer Science, p. 64–71, 1997.

[54] A. Huszti, "A secure electronic voting scheme.," Electrical Engineering 51, pp. 141-

146, 2008.

[55] I. R. a. N. N. I. Ray, "An anonymous electronic voting protocol for voting over the

Internet," Third InternationalWorkshop on Advanced Issues of E-Commerce and Web-

Based Information Systems (WECWIS ’01), 2001.

[56] T. ElGamal, "A Public Key Cryptosystem and a Signature Scheme Based on Discrete

Logarithms," IEEE TRANSACTIONS ON INFORMATION THEORY, Vols. IT-31,, no.

4, 1985.

[57] O. Baudron, P.-A. Fouque, D. Pointcheval, J. Stern and G. Poupard, "Practical multi-

candidate election system," Proceedings of the twentieth annual ACM symposium on

Principles of distributed computing. ACM,, 2001.

`

76

[58] I. Damgard and M. Jurik, "A generalisation, a simplification and some applications of

Paillier's probabilistic public-key system.," Public Key Cryptography. Springer Berlin

Heidelberg,, 2001.

[59] A. Mohr, "A Survey of Zero-Knowledge Proofs with Applications to Cryptography,"

Southern Illinois University, Carbondale, pp. 1-12, 2007.

[60] J. Groth, "Efficient Zero-Knowledge Arguments from Two-Tiered Homomorphic

Commitments," Advances in Cryptology–ASIACRYPT 2011, 2001.

[61] M. Blum, P. Feldman and S. Micali, "Non-interactive zero-knowledge and its

applications," In STOC, p. 103–112, 1988.

[62] C. Gentry, J. Groth, C. Peikert and A. Smith, "Using Fully Homomorphic Hybrid

Encryption to Minimize Non-interative Zero-Knowledge Proofs," Journal of

Cryptology (2014), pp. 1-22, 2014.

[63] M. Bellare, R. Canetti and H. Krawczyk, "Keying hash functions for message

authentication," Advances in Cryptology—CRYPTO’96. Springer Berlin Heidelberg,,

1996.

[64] T. DuBuisson, "GitHub -Secure Computation with HELib," 13 5 2013. [Online].

Available: http://tommd.github.io/. [Accessed 28 4 2014].

[65] M. Brenner and H. Perl, "hcrypt project," 2011. [Online]. Available:

https://hcrypt.com/scarab-library/. [Accessed 15 5 2014].

[66] S. Jaydip , Theory and Practice of Cryptography and Network Security Protocols and

Technologies, InTech, 2013.

[67] N. P. Smart and F. Vercauteren , "Fully Homomorphic SIMD Operations," Designs,

Codes and Cryptography, vol. 71, no. 1, pp. 57-81, 2012.

