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 ملخص الدراسة

في هذا البحث تم استخدام حلول التشفير المثلي  ظهر التشفير المثلي كحل جديد في أنظمة التصويت الالكتروني،

في أنظمة  لتطبيقلبهدف اختبار ودراسة أداء وقابلية التشفير المثلي التام التام لتصميم وتنفيذ نظام تصويت الكتروني، 

العديد من أنظمة التصويت الالكتروني التي تعتمد التشفير المثلي مبنية على التشفير المثلي  حقيقية.تصويت الكتروني 

   في هذا البحث تم استخدام التشفير المثلي التام لتوفير كلا العمليتين الجمع والضرب، مما سهل انشاء الجمعي أو الضربي.

هم خصائص أنظمة أنظام التصويت المصمم بناء على التشفير المثلي التام حقق  وقد  معرفة غير التفاعلي.الاثبات الصفر ال

التصويت عبر الانترنت الأمنية مثل: الأهلية والخصوصية والدقة والتحقق والانصاف والحرية وعدم الاجبار وحرية 

ة أهم خصائص نظام التصويت عبر الانترنت المطبق هو إمكانيالنزاع والمتانة والتوسع وقابلية التطبيق. بالإضافة الى أحد 

 ، مع الحفاظ على الخصائص الأمنية.تطبيقه عبر تقنية السحاب

تمت كتابة الكود  ،BGV، استنادا الى مخطط التشفير المثلي التام HELibتم التنفيذ باستخدام مكتبة التشفير المثلي التام 

وخادم التصويت والمصوتين. تم استخدام    حققالمصمم الى ثلاثة أقسام: خادم الت. ينقسم النظام ++Cباستخدام لغة 

خصائص الجمع والضرب للتشفير المثلي التام للتحقق من صحة بنية الصوت كإثبات صفري المعرفة غير تفاعلي 

NIZKP،  طبيق لمنفذ قابل للتأظهرت النتائج أن نظام التصويت عبر ا مشفرة. حيث بطريقة التصويتولحساب ناتج عملية

 .مليون ناخب 32يصل الى  على عدد كبير من الناخبين

 

 



` 

v 

 

ABSTRACT 

Homomorphic Cryptography raised as a new solution used in electronic voting 

systems. In this thesis, Fully Homomorphic used to design and implement an e-voting 

system, for the purpose of examination and studying the applicability in real systems and 

performance of fully homomorphic encryption in e-voting systems. Most of homomorphic 

cryptography e-voting systems based on additive or multiplicative homomorphic encryption. 

In this thesis, fully homomorphic encryption used to provide both operations additive and 

multiplication, which ease the demonstration of none interactive zero knowledge proof 

NIZKP. The implemented e-voting systems achieved most of the important security issues 

of the internet-voting systems such as, eligibility, privacy, accuracy, verifiability, fairness, 

receipt-freeness, incoercibility, dispute-freeness, robustness, scalability and practicality. One 

of the most important properties of the implemented internet voting system its applicability 

to work on cloud infrastructure, while preserving its security characteristics. 

The implementation is done using homomorphic encryption library HELib, which based on 

BGV fully homomorphic encryption scheme, written in C++ language. The implemented 

voting systems divided into three parts: Authentication Server, Voting Server and Voters. 

Addition and multiplication properties of fully homomorphic encryption used to verify the 

correctness of vote structure as a NIZKP, and for calculating the results of the voting process 

in an encrypted way. The results show that the implemented internet voting system is secure 

and applicable for a large number of voters up to 10 million voter. 
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1. CHAPTER 1: INTRODUCTION 

Voting is a fundamental decision making instrument in any consensus-based society and 

democracy depends on the proper administration of popular elections.  In any election, there 

exists a set of requirements among which any voters should be confident that their intents 

was correctly captured and no modification done to them votes. In addition, all eligible votes 

were correctly tallied. On the other side, the voting system should ensure that each vote done 

in the wright way and voter coercion is unlikely. These conflicting requirements presents a 

significant challenge. The changing from the traditional paper based voting methods used in 

many countries into electronic election systems, removes such challenge. The challenge 

transferred to build secure voting systems that able to run in real life situations and preserve 

privacy and anonymity for voters, and have verifiability properties to prove a correct tally of 

votes.  

1.1   E-voting solutions 

Many countries have begun to use modern technology into their voting procedures. 

Some solutions presented as Electronic voting systems (e-voting) as a secure method to 

perform secure elections. e-voting refers to the use of computers or computerized voting 

equipment to cast votes in election [1]. e-voting is an interdisciplinary subject and should 

studied from different domains, such as software engineering, cryptography, network 

security, politics, low, economics and social science. Mostly e-voting is known as a 

challenging topic in cryptography, because the need to achieved privacy, anonymity and vote 

encryption. Many e-voting systems proposed among the last decade, a lot of them based of 

complicated encryption schemes and other based on mix net model, blind signature model 

and homomorphic encryption model. Homomorphic Cryptography raised as a new solution 

used in electronic voting systems. E-voting systems tries to resolve many security issues such 

as eligibility, privacy, accuracy, verifiability, fairness, receipt-freeness, incoercibility, 

dispute-freeness, robustness, scalability and practicality. 

1.2   Conventional Cryptography 

Cryptographic solutions provide methods of storing or transferring data in a secure way, 

the  amount of data generated is growing in a huge way, while cloud services is suitable 
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solution for storing such huge amount of data. Since  cloud technologies is one of the most 

cost-saving and scalable solution for processing and saving large data, the need to process 

encrypted data stored in the cloud become more insistent. 

Cryptographic techniques can separate into two general forms, Symmetric and Asymmetric 

encryption: 

In symmetric encryption a common secret key defined between sender and receiver, the same 

key is used for encryption  ὉάȟὯ and decryption ὈὧȟὯ process, where ά is the message 

and ὧ is the generated ciphertext after encryption. The original message could retrieved after 

decrypting cipher using the secret key. 

In asymmetric encryption, private and public keys generated, user can share his public key 

to the public, any sender can use the public key to encrypt a message ὉάȟὴὯȟ then the 

receiver can decrypt using his private key ὈὧȟίὯ. All public key cryptography depends on 

numeric theory and modular operations, this provides a powerful property called 

homomorphism, and thus preserves group operations performed on ciphertexts, add, multiply 

or both  can made on two ciphertext to calculate the result, which will be the same result if 

this operation performed on plaintext. 

1.3   Homomorphic Cryptography 

Homomorphism property preserves new secure method to perform a group of operations on 

ciphertexts in untrusted third party without knowledge of any secret information. The ability 

to perform simple computation on ciphertexts leads to a lot of applications and security 

protocols, but the complicated structure of homomorphic cryptosystems limits applicability 

in some protocols that need fast computation, and it still applicable to some protocols concern 

in security section 2.1 and section 2.2 describes in details the homomorphic encryption. 

1.4   Problem Statement  

Study the applicability of using fully homomorphic encryption in e-voting systems based on 

cloud infrastructure through designing an efficient and practical e-voting system depends on 

fully homomorphic encryption.  
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1.5   Research Aim 

This research aims to study the efficiency and applicability of using fully homomorphic 

encryption in e-voting systems and their effectiveness to be built in untrusted platforms such 

as cloud infrastructure. The thesis also studies, performance, security and privacy issues of 

e-voting system.  

1.6   Research Importance 

The importance of this research that it discusses the practical applications of homomorphic 

encryption. It also studies the applications that could be implemented using fully 

homomorphic encryption and how much it is corresponding the infrastructure and the 

properties, security issues and performance of cloud environment. 

In this topic, an open question raised “Can Homomorphic encryption be efficient enough to 

be practical?” Our thesis addresses this open problem. The proposed protocol clarifies a 

method of using fully homomorphic encryption to develop a practical voting system and 

implements a new non-interactive zero knowledge proof method.  

1.7   Research Structure  

Chapter 2 introduce the homographic encryption, then presents a literature review of 

previous fully homomorphic encryption schemas, properties, underlying principles and 

limitations. It also presents a survey of the most possible applications of homomorphic 

encryption. It gives a brief explanation of what is fully homomorphic encryption, how we 

can use it, and what practical implementations done using FHE. This chapter also focus on 

e-voting systems and give a brief explanation of the previous voting systems. 

Chapter 3 presents the research methodology, the scope, implementation tools and  testing 

methods. 

Chapter 4 presents the implemented e-voting system using fully homomorphic encryption, 

and discuss a designed method of non-interactive zero knowledge proofs. It also describes 

the presentation method used and NIZKP. 
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Chapter 5 presents the structure of the implemented voting system, and describes the 

programming properties of each part of the system. 

Chapter 6 presents analysis and results of the implemented voting system, it shows traffic 

analysis, performance analysis and stored data analysis. 

Chapter 7 in the final chapter a conclusion and the future developments described.  
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2. CHAPTER 2: LITERATURE REVIEW 

This research   study an old problem in cryptography called a privacy homomorphism. It was 

introduced by Rivest, Adleman and Dertouzous [3] after the invention of RSA [2] which is a 

multiplicative homomorphic encryption schema. 

2.1 Homomorphic cryptography. 

If the RSA public key pk = (N,e), then encryption of message x is given by Ὁά

ά άέὨ ὔ , then the homomorphism property is БὉά Бά άέὨ ὔ in other 

words: 

Ὁά ȢὉά  ά ά  άέὨ ὔ  άά άέὨ ὔ ὉάȢά                               (1 ) 

This property led Rives et al. [3] to think about what if we have a schema that is fully 

homomorphic: a schema Ⱡ have an efficient Evaluate‐ algorithm that can evaluate any 

circuit ὅ contains any operation not just multiplication, for any public key pk, where: 

╬░ ἏἶἫἺὁἸἼ‐ὴὯȟά   Gives: 

╬  ╔○╪■◊╪◄▄‐ὴὯȟὅȟ╬ȟȣȟ╬◄ ,                                                      ( 2) 

A vailed encryption of  ὅάȟȣȢȟά  under pk. This can arbitrarily compute on encrypted 

data, so there many applications could be applied using this theory, such as query, calculate 

and write to data without decryption, any operation could be applied while it could be 

expressed  efficiently as a circuit ὅ.  

 

Suppose we have two values ά υ , ά ω, we want to do an arithmetic operation 

multiplication in an untrusted party without revealing any value of άȟά result ὶ. 

Encryption done on άȟά  using homomorphic encryption schema ‐, with generated public 

key pk. 

 Ὁ υ ψσ 

 Ὁ ω  57 
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pk

cm 

f 

ὶ f(m) 

Which indicate for ὧȟὧ respectively, the circuit ὅ need to do in this example is 

multiplication operation. ὧȟὧ sent to the untrusted  third party to be evaluated through 

ἏἾἩἴἽἩἼἭ‐ function which input ὅȟὧȟὧ ὥὲὨ ὴὯ.  

ὶ ὧ  zὧ ψσzυχ τχσρ 

The result sent back after calculation and decryption done using generated private key pk. 

Ὀ = Ὀ τχσρ 45 

Decryption must give the same result of the operation if done in clear, this powerful property 

can work for more complicated circuits, along with other operations based on addition and 

multiplication. 

Figure 2.1 shows the general evaluation process, while the delegator is any user want to use 

the resources of third party evaluator without revealing any information about message m 

and result r. Evaluator could be cloud server, public processing infrastructure or even any 

untrusted PC 

 

 

 

  

   

 

   

 

 

Figure 2.1Homomorphic Encryption Evaluation. 

pk

sk 

Delegator Evaluator 

Generate Keys 

Encrypt 

Decrypt 

Evaluate 
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The function f  represents an arithmetic circuit or a Boolean circuit the scheme called circuit-

based, if function f defined as a mathematical function, the scheme called non-circuit based. 

Next section discusses in more details homomorphic encryption properties, definitions and 

lists many of famous fully homomorphic encryption schemas. 

2.2 Homomorphic encryption schemes 

2.2.1 Additive Homomorphic Encryption scheme: 

2.2.1.1 Paillier scheme 

Paillier crypto system invented by Pascal Paillier in 1999 [4], that relies on the Decisional 

Composite Residuosity Assumption. It is a probabilistic asymmetric algorithm for public key 

cryptography, which computation considered difficult. This cryptosystem based on modular 

operations, with the property of homomorphism over additive. 

Note that if we have two ciphertexts Ὁάȟὶ   and  Ὁάȟὶ  which are encryptions of 

ά , ά  respectively, then: 

ὈὉάȟὶȢὉάȟὶ άέὨ ὲ ά ά   άέὨ ὲ               ( 3) 

So, the product of two ciphertexts will decrypt to the sum of their corresponding plaintexts, 

given encryption of ά , ά  we get the encryption of  ά +ά  without having to know the 

secret key. Paillier cryptosystem used widely in voting systems applications due to additive 

property. 

2.2.2 Multiplicative Homomorphic Encryption scheme 

2.2.2.1 RSA scheme 

 RSA is one of the most practical and popular cryptosystems for asymmetric encryption, 

it was introduced by Rivest, Shamir and Adleman in 1978 [3]. It is one of the first 

homomorphic cryptosystems, and the most widely used public key cryptosystem.  This 

cryptosystem is based on the practical difficulty of factoring the product of two large prime 
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numbers, which used to provide both secrecy and digital signatures and key exchange 

protocols. 

RSA has a multiplicative homomorphic property, which means a multiplication operation 

can done on encrypted messages without revealing their underlying information. If the RSA 

public key is modulus n and exponent e, then the encryption of a message m given by Ὁά

ά  άέὨ ὲ. The homomorphic property then is: 

Ὁά ȢὉά  ά  ά άέὨ ὲ άά  άέὨ ὲ ὉάȢά          ( 4) 

So, decryption of result using secret key gives the result of multiplication of messages. 

2.2.3 Fully homomorphic encryption scheme 

2.2.3.1 Gentry’s Scheme 

Gentry described the first Fully Homomorphic Encryption scheme in 2009 [5] [6], which 

considered as a breakthrough. It solved an old problem of homomorphic cryptosystems, 

which provide addition and multiplication on ciphertexts. 

 Gentry derived a new method for solving this problem, by building a fully homomorphic 

scheme form “somewhat homomorphic scheme”, instead of directly creating a fully 

homomorphic scheme. Somewhat schema was only able to evaluate low degree polynomials 

on the encrypted data, it can perform a limited number of addition and multiplication 

operations on ciphertexts. Next he needs to “squash” the decryption procedure so that it can 

be expressed as a low-degree polynomial in the bits of the ciphertext and the secret key (a 

circuit of small depth). This squashing needed because every ciphertext has a noise 

component and any homomorphic operation applied to ciphertexts increases the noise in the 

resulting ciphertext. Once this noise reaches a certain threshold the resulting ciphertext does 

not decrypt correctly anymore; this limits the degree of the polynomial that can be applied to 

ciphertexts [7].  

Gentry applied a breakthrough idea by evaluating the decryption of polynomial not on the 

bits of ciphertext and secret key directly as in regular, but he performs it homomorphically 

on the encryption of those ciphertexts and secret key. Instead of recovering the plaintext, it 
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gets an encryption of bits for ciphertext, but with less noise if the polynomial degree small 

enough in the ciphertext and this becomes the ciphertext for the original plaintext. This 

process called “ciphertext refresh” procedure.  

The refresh process on a ciphertext make the refreshed ciphertext applicable for the 

homomorphic operation (addition or multiplication), while it’s not possible for the original 

ciphertext due the noise threshold. Using this procedure the number of permissible 

homomorphic operations becomes unlimited and we get a fully homomorphic encryption 

scheme. 

Finally, he applied a “bootstrapping” transformation to obtain fully homomorphic scheme. 

The crucial point in this process is to obtain a scheme that can evaluate polynomials of high-

enough degree, and at the same time has decryption procedure that can be expressed as a 

polynomial of low-enough degree. Once the degree of polynomials that can be evaluated by 

the scheme exceeds the degree of the decryption polynomial (times two), the scheme is called 

“bootstrappable” and it can then be converted into a fully homomorphic scheme [8]. 

2.2.3.2 Implementation of Gentry’s blueprint - Smart-Vercauteren 

The first attempt to implement Gentry’s scheme was made in 2010 by Smart and Vercauteren 

[9], they used a variant based on principal ideal lattices and requiring that the determinant of 

the lattice be a prime number. Such lattices can be represented implicitly by just two integers 

(regardless of their dimension), and moreover Smart and Vercauteren described a decryption 

method where the secret key is represented by a single integer.  

Smart and Vercauteren were able to implement the underlying somewhat homomorphic 

scheme. But they were not able to support large enough parameters to make Gentry’s 

squashing technique go through, because that required a lattice dimension of at least n = 227, 

whereas due to the prime determinant requirement they could not generate keys for 

dimensions n > 2048, which is essential for security purposes. As a result they could not 

obtain a bootstrappable scheme or a fully homomorphic scheme. 



` 

10 

 

2.2.3.3 Gentry-Halevi Scheme 

Gentry and Halevi described the first implementation of Gentry’s scheme [8]. They follow 

the same direction as Smart and Vercauteren. They make some optimizations to implement 

the bootstrapping functionality, which not implemented by Smart and Vercauteren. The main 

optimization is a key-generation method, for the underlying somewhat homomorphic 

encryption, that does not require full polynomial inversion. They eliminate the requirement 

that the determinant is a prime.  

Additionally, they present many clever optimizations that reduce the asymptotic complexity 

and practically reducing the time from many hours/days to a few seconds/minutes. The 

authors of [8] report that for an optimized implementation on a high-end workstation, key 

generation takes 2.2 hours, encryption takes 3 minutes, and ciphertext refresh takes 30 

minutes. 

2.2.3.4 Improvements on Gentry’s scheme 

2.2.3.4.1 Stehle-Steinfeld optimizations 

Stehle and Steinfeld described two improvements [10] on Gentry's fully homomorphic 

scheme based on ideal lattices and its analysis. They provide a more aggressive analysis of 

one of the hardness assumptions (the one related to the Sparse Subset Sum Problem) and 

introduced a probabilistic decryption algorithm that can be implemented with an algebraic 

circuit of low multiplicative degree. Combined, these improvements lead to a faster fully 

homomorphic scheme. These improvements also apply to the fully homomorphic schemes 

of Smart and Vercauteren [9] and van Dijk et al [11]. 

2.2.3.4.2 SIMD Gentry optimization 

In [9] Smart and Vercauteren presented a variant of Gentry’s fully homomorphic scheme and 

mentioned that the scheme could support SIMD style operations. SIMD means simple 

instruction mutable data. While Gentry’s original schema [5] was just able to perform 

encryption and decryption on a plaintext of one bit length. 
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 Gentry and Halevi [8] addressed the slowness of key generation process of the Smart–

Vercauteren system [9], but their key gen eration method excluded the SIMD style operation 

offered by Smart and Vercauteren. 

 In [12] Smart and Vercauteren show how to select parameters to enable such SIMD 

operations, to implement Gentry and Halevi scheme. Moreover, how to obtain a somewhat 

homomorphic scheme supporting SIMD operations. This somewhat homomorphic scheme 

can be made fully homomorphic in a naive way by recrypting all data elements separately. 

This result a substantial speed-up. This make performance 2.4 times faster than the standard 

FHE scheme and the ciphertext size reduced by a factor 1/72.  

 

2.2.3.4.3 Gentry-Halevi without squashing 

Gentry and Halevi describe in [13] a new approach to construct a fully homomorphic scheme 

encryption without the need to squash process. Previous schemes follows Gentry’s blueprints 

in first constructing somewhat homomorphic encryption scheme, and next squash the 

decryption circuit until it is simple enough to be handled within the homomorphic capacity 

of the somewhat homomorphic encryption scheme. Finally perform bootstrapping to get fully 

homomorphic encryption scheme. 

Gentry and Halevi show in their approach constructing of fully homomorphic encryption 

schema as a hybrid of somewhat homomorphic encryption scheme and multiplicatively 

homomorphic encryption scheme. This construction eliminate the need for squashing step. 

But it still using bootstrapping step to get fully homomorphic encryption scheme. 

The main technique is to express the decryption function of somewhat schemes as a depth-3 

(ВБВ ) arithmetic circuit of a particular form. When evaluating this circuit 

homomorphically scheme temporarily switch to a multiplicatively homomorphic encryption 

scheme to handle the multiplication part. Due to the special form of the circuit, the switch to 

the multiplicative scheme can be done without having to evaluate anything 

homomorphically. Then the result translated back to the somewhat scheme by 

homomorphically evaluating the decryption function of the multiplicative scheme. The 
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somewhat homomorphic scheme only needs to be capable of evaluating the multiplicative 

scheme's decryption function, not its own decryption function. This avoids the circularity that 

necessitated squashing in the original blueprint. 

2.2.3.4.4 Gentry-Halevi-Smart scheme 

 Gentry, Halevi and Smart [14] solved the bottleneck in the bootstrapping process, which 

need to evaluate homomorphically the reduction of one integer modulo another. This is 

typically done by emulating a binary modular reduction circuit, using bit operations on the 

binary representation of integers. Gentry, Halevi and Smart present a simpler approach that 

bypasses the homomorphic modular-reduction bottleneck to some extent. The method is 

easier to describe and implement and is likely to be faster in practice. The scheme reduced 

the size of the public key, and work with SIMD homomorphic computations. 

2.2.3.5 DGHV fully homomorphic scheme over the integers 

DGHV fully homomorphic scheme over the integers described in [11] a fully homomorphic 

scheme, that constructed from very simple somewhat homomorphic encryption scheme using 

only elementary modular arithmetic. The somewhat homomorphic scheme merely uses 

addition and multiplication over the integers rather than working with ideal lattices over a 

polynomial ring. 

As in Gentry’s scheme the authors first describe a somewhat homomorphic scheme 

supporting a limited number of additions and multiplications over encrypted bits. Then they 

apply Gentry’s “squash decryption” technique to get a bootstrappable scheme and then 

Gentry’s “ciphertext refresh” procedure to get a fully homomorphic scheme. 

The main appeal of the scheme (compared to the original Gentry's scheme) is its conceptual 

simplicity. However, the public-key was έ‗  in which is too large for any practical system. 

The major achievement of DGVH over the original Gentry scheme, was that the plaintext 

consisted of integers rather than single bits leading a better blueprint improve upon [15]. 
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2.2.3.5.1 DGHV shorter public key  

Coron et al, [16] reduced the public key size to έ‗   by encrypting with a quadratic form 

in the public key elements, instead of a linear form. They proved that the scheme remains 

semantically secure, based on a stronger variant of the approximate-GCD problem, already 

considered by van Dijk et al. 

Coron et al, described also  the first implementation of the resulting fully homomorphic 

scheme. Borrowing some optimizations from the Gentry-Halevi [8] implementation of 

Gentry’s scheme, obtained roughly the same level of efficiency. This shows that fully 

homomorphic encryption can be implemented using simple arithmetic operations. 

2.2.3.6 Learning With Error LWR- FHE 

Gentry’s blueprint suffers from many problems, which first all schemes based on squashing 

decryption, squashing use “sparse subset sum assumption” in decryption circuit. Also the 

large size of keys and ciphertext, the evaluation time per gate, time of encryption and 

decryption. All these reasons make a bottleneck in practical deployment of FHE. 

A new series works address these concerns. Brakerski and Vaikuntanathan [17] show that 

(leveled) FHE can be based on the hardness of the much more standard “learning with error” 

(LWE) problem. LEW show that it is hard to solve various short vector problems on arbitrary 

(not ideal) lattices in the worst case. 

 In effect, Brakerski and Vaikuntanathan show how to obtain a direct construction of a 

bootstrappable encryption scheme without having to squash the decryption circuit and thus, 

without relying on the non-standard sparse subset sum assumption. This construction 

improves the previous works in firstly showing how somewhat homomorphic can based on 

LWE using a new re- linearization technique. While all the previous work relied on 

complexity assumptions related to ideals in various rings. Second, the show to avoid the 

“squashing paradigm” used in all previous works, by introducing a new dimension-modulus 

reduction technique, which shortens the ciphertexts and reduces the decryption complexity 

of our scheme, without introducing additional assumptions [18].  
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The scheme has very short ciphertexts and therefore used to construct an asymptotically 

efficient LWE-based single-server private information retrieval (PIR) protocol. 

2.2.3.7 Brakerski-Gentry-Vaikuntanathan BGV scheme 

Brakerski, Gentry and Vaikuntanathan in [2] [19] presented a new FHE scheme based on 

previous work of  Brakerski and Vaikuntanathan in [17]. This scheme based on LWE 

problem and Ring LWE. They constructed a new way of leveled fully homomorphic 

encryption schemes (capable of evaluating arbitrary polynomial-size circuits), without 

Gentry’s bootstrapping procedure. Instead of recryption, this new scheme uses other light 

weighted methods to refresh the ciphertexts to limit the growth of the noise so that the scheme 

can evaluate much deeper circuits. The recryption process will serve as an optimization to 

deal with over complicated circuits instead of a necessary for most circuits. 

 The most significant development of BGV compared to BV [17]  is the use of well-known 

security assumptions based on RLWE, where the introduces RLWE over standard LWE 

introduce a more efficient fully homomorphic scheme. Also, a fully homomorphic encryption 

without the need for bootstrapping achieved using modulus switching. 

2.2.3.7.1 Encryption Scheme 

The general encryption of BGV scheme that can be instantiated to both LWE and RLWE. 

We will describe RLWE which used by HELib. The RLWE-based public key encryption 

scheme as follows. Most of the description and equations taken from [19] [20]. 

In general, homomorphic encryption scheme is a tuple (HE.KeyGen, HE.Enc, HE.Dec, 

HE.Eval) of probabilistic polynomial time algorithms. In BGV, the message space of the 

scheme will always be some ring Ὑ  and our computational model will be arithmetic circuits 

over this ring (i.e. addition and multiplication gates). 

1. HE.KeyGen takes the security parameter (and possibly other parameters of the scheme) 

and produces a secret key sk and a public key pk. 

2. HE.Enc takes the public key pk a message m and produces a ciphertext c, which is the 

encryption of m. 
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3. HE.Dec takes the secret key sk and a ciphertext c and produces a message m. 

4. HE.Eval takes the public key pk, an arithmetic circuit f over Ὑ , and ciphertexts ὧ, ... ,ὧЉ 

where Љ is the number of inputs to f, and outputs a ciphertext ὧ. 

Given the security parameter ‗ and an additional parameter ‘, first choose a ‘-bit modulus 

q. Where q an odd positive modulus ή ή‗.  For RLWE scheme, chose the degree  Ὠ

Ὠ‗ȟ‘ȟÁ ȰÎÏÉÓÅȱ ÄÉÓÔÒÉÂÕÔÉÏÎ   … …‗ȟ‘ ȟÌÅÔ ÔÈÅ ȰÄÉÍÅÎÓÉÏÎȱ   ὲ σÌÏÇήȢ Let 

Ὑ ᴚ ὼȾὪὼ  with Ὢὼ a polynomial of degree d. Ὢὼ ὼ ρ and Ὠ Ὠ‗ is a 

power of 2. To get the secret key, first draw ▼’uniformly from …. The secret key is then 

 ▼ ρȟ▼ ᶰὙȢ             (5) 

To get the public key, first generate vectors ═ Ὑ , ὩN  … , then set ὦ  ═▼ ςὩ. 

Set public key ὃ ὦȿ ═  ɴὙ . Note that ὃȢί ςὩ.      (6) 

Suppose άᶰπȟρ Is the bit we wanting to encrypt. To encrypt, we do the following: 

1- Select a random ὶɴ Ὑ  and expand the message ά άȟπ ɴὙ . 

2- Output ά ὃὶ ɴ Ὑ  .        (7) 

According to 2,7%ȟȟ where … is a uniform distribution over Ὑ , we can use this scheme 

a polynomial number of times with negligible probability that an adversary can guess ▼. 

To decrypt, do the following: 

1- Compute ὦ ộ╬ȟ▼Ớ .        (8) 

2- Output ά ὦ .        (9) 

2.2.3.7.2 Key Switching (Dimension Reduction). 

This technique used by [17] to reduce the dimension of ciphertext after homomorphic 

operation done. In BGV it can be used to not only reduce the dimension of the ciphertext, but 

more generally, can be used to transform a ciphertext ὧ that is decryptable under one secret 

key vector s1 to a different ciphertext ὧ that encrypts the same message, but is now 

decryptable under a second secret key vector ί. The vectors ὧ, ί may not necessarily be of 
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lower degree or dimension than ὧ , ί . Because of this generality,  it’s called key switching 

procedure. It consist of two basic operations as follows: 

¶ ὄὭὸὈὩὧέάὴὼɴ  Ὑȟή  decomposes ὼ into its bit representation ό  ɴὙȟ then  

Ὑ
Ȣ

. We do this by first writing ὼ В ςȢό with all ό ɴ Ὑ  then 

output ό όȟόȟȢȢȢ  ό ᶰὙ
Ȣ .          (10) 

¶ ὖέύὩὶέὪςὼɴ  Ὑȟή expands ὼ into ό ɴ ὙȢ  that has copies of x 

multiplied by power of 2 . The output is ὼȟςȟὼȟȢȢȢȟς ὼ  ɴὙ
Ȣ

.  ( 11) 

Lemma 2.1 ộὄὭὸὈὩὧέάὴ╬ȟή ỚȟὖέύὩὶέὪςίȟή  ộ╬ȟίỚάέὨ ή  Ȣ Detailed proof 

described in [19] . 

The key switching technique can be defined by the following two operations. 

ὛύὭὸὧὬὑὩώὋὩὲί  ɴὙ ȟίὙ : 

1- Generate a public key A as previously described, but with secret key ί and parameter 

ὲ ὲȢÌÏÇή.              (12) 

2- Set ὄ ὖέύὩὶίέὪςίȿὕ, that is the matrix with the first column containing 

ὖέύὩὶίέὪςί  and augmenting some columns with all elements zero until it 

matches the size of A.  

3- Set ╒ ═ ║, and output †  O ╒.          (13) 

4- ὛύὭὸὧὬὑὩώ†  Oȟὧ : Output ὧ ὄὭὸὈὩὧέάὴὧ Ȣ╒.        (14) 

The following lemma proves that key switching works. 

 Lemma 2.2 Let ί, ί, q, A, B,C be as in ὛύὭὸὧὬὑὩώὋὩὲίȟί , and let ὃȢί ςὩ  ɴὙ . 

Let ὧ  ɴὙ and ὧᴺὛύὭὸὧὬὑὩώ†  Oȟὧ  . Then we have. 

ộὧȟίỚ ςộὄὭὸὈὩὧέάὴὧȟὩỚ  ộὧȟίỚ άέὨ ή.       (15)  

This lemma implies that key switching only produces an error ς᷆ộὄὭὸὈὩὧέάὴὧȟὩ Ớ᷆  

which is small because ὄὭὸὈὩὧέάὴὧ  only has coefficients 0 or 1 in the inner product. 

The performance of the BGV [19] scheme is as follows (RLWE case): 
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• Secret key: The secret key is 2 ring elements, which require ςὨ ὰέὫ ή bits. 

• Single ciphertext: The ciphertext also consists of 2 ring elements, which require 

ςὨ ὰέὫ ή bits. 

• Public key: The public key ὃ ɴ Ὑ  consists of ςὲ ring elements, which require 

ςÄÎ ÌÏÇ Ñ bits. 

2.2.3.8 Gentry-Sahai-Waters scheme 

Gentry, Sahai and Waters described in [21] a comparatively simple fully homomorphic 

encryption (FHE) scheme based on the learning with errors (LWE) problem. In previous 

LWE-based FHE schemes, multiplication is a complicated and expensive step involving 

"relinearization". This scheme proposed a new technique for building FHE schemes that 

called the "approximate eigenvector" method. Homomorphic addition and multiplication 

considered as just matrix addition and multiplication. This makes the scheme both 

asymptotically faster and easier to understand. 

In previous schemes, the homomorphic evaluator needs to obtain the user's "evaluation key", 

which consists of a chain of encrypted secret keys. This  scheme has no evaluation key. The 

evaluator can do homomorphic operations without knowing the user's public key at all, 

except for some basic parameters. They construct the first identity-based FHE scheme. Using 

similar techniques. 

2.2.3.9 NTRU based  FHE 

Lopez-Alt, Tromer and Vaikuntanathan in [22] construct a multikey FHE scheme based on 

NTRU, a very efficient public-key encryption scheme proposed in the 1990s. It was 

previously not known how to make NTRU fully homomorphic even for a single party. They 

viewed the construction of (multikey) FHE from NTRU encryption as a main contribution of 

independent interest. Although the transformation to a fully homomorphic system 

deteriorates the efficiency of NTRU somewhat. 
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2.3 Application of homomorphic Encryption 

H.E has many security applications, this large scope of theoretical and practical applications 

of H.E gives the wide interest of information security  researchers and soon it will be one of 

the big interest of information technology manufacturers specially cloud services vendors 

and providers.  In this section, we will list some of the main applications of homomorphic 

schemas and summarize the idea behind them 

2.3.1 E-voting systems  

E-voting systems have a large space of research in cryptography literature, which many 

secure ballot election schemas has been offered, homomorphic encryption raised as one of 

those solutions for election schemas, which provide security, trust and scalability. 

In such schema, a user simply sends a valid encrypted vote to the server, while the server can 

compute this vote while it encrypted, this property made election systems more simple and 

secure [32] [33].  

Electronic voting solutions or e-voting systems used by many countries around the world. 

Internet voting systems used for general elections by countries like Switzerland, Estonia 

Norway, France, Germany, Spain, Paraguay, Netherlands and the United Kingdom. These 

countries used special cryptosystems to preserve security for the election process [47] [48]. 

Electronic voting (e-voting) can be mainly classified into two different systems: machine 

based systems and Internet voting (i-voting) systems. Machine based e-voting means that 

both casting a vote and tallying the votes are performed using dedicated electronic devices. 

I-voting is a voting method that transmits casted votes via public Internet. Development of  

i-voting systems have been attractive for many researchers and developers, because it uses 

the wide spread of mobiles, smart phones and personal computers. Providers can construct 

secure systems with new technologies like cloud via the public internet. I-voting systems still 

have many security and privacy concerns and there a lot of research in this field. 
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Counting process in i-voting systems can classified into two main methods, mix-nets model, 

blind signature model and homomorphic model.  

2.3.1.1  I-voting Systems Models  

  Mix-nets model: In the mix-nets a several linked servers called mixes, each mix 

randomizes input messages and outputs the permutation of them, such that the input and 

output messages are not linkable to each other, it provides anonymity for a group of voters. 

Several schemes based on mix-nets are proposed in [49] [50] [51] [52]. 

The blind signatures model: In blind signature schemes the voter first obtains a 

token, which is a message blindly signed by the administrator or the authority and known 

only to the voter himself. Later the voter sends his vote anonymously, with this token as proof 

of eligibility. Even if later the (un-blinded) signature is made public, it is impossible to 

connect the signature to the signing process, i.e. to the voter. Schemes based on blind 

signatures usually use anonymous channels in order to send the un-blinded signature and the 

encryption of the ballot to a voting authority, assuring the anonymity of the sender [49] [53] 

[54] [55]. 

Homomorphic Model: In homomorphic model the tally process depends on 

encryption of a vote using homomorphic encryption scheme, where add or multiplication 

process performs homomorphically on encrypted votes to get the results. The voter needs to 

make proof of his valid vote; this proof must be zero knowledge proof. Schemes based on 

homomorphic encryptions possess property of verifiability, while preserving privacy. As 

shown earlier in chapter 2 the property of homomorphism is performed on addition and 

multiplication (ṥȟṧ) which also described in 2.2.1and 2.2.2. Many homomorphic voting 

systems derived from the theory of ElGamal  cryptosystem [56] which additive homomorpthe 

homomorphic voting system of homomoa multiplicative homomorphic Paillier 

cryptosystemorphic Paillier  cryptosystem [4] are proposed in [57] [58] [33].  

3.1.1 Zero Knowledge proofs: 

Zero knowledge proofs can be used to demonstrate the truth of a statement without revealing 

anything else. Which one party (the prover P) can prove to another party (the verifier V) that 



` 

20 

 

a given statement is true, without conveying any information apart from the fact that the 

statement is indeed true. In ZKP, the prover proves that he/she knows a secret without 

revealing it [59].This statement assumed as a secret, the interactions are designed that they 

cannot lead to revealing or guessing the secret. After exchanging messages, the verifier only 

knows that the prover does or does not have the secret, nothing more. The result is a yes/no 

situation, just a single bit of information. 

Zero-knowledge proofs needs interactive communication between Prover and Verifier, 

where input from Verifier needed. The prover must respond with   usually in the form of a 

challenge or challenges such that the responses from the prover will convince the verifier if 

and only if the statement is true. This type is called Interactive Zero- knowledge proofs. 

  A zero-knowledge proof must satisfy three properties: 

    Completeness: The prover can convince the verifier if the prover knows a witness 

testifying to the truth of the statement. 

    Soundness: A malicious prover cannot convince anybody if the statement is false, except 

with some small probability. 

Zero-knowledge: A malicious verifier learns nothing except that the statement is true. This 

is formalized by showing that every cheating verifier has some simulator that, given only the 

statement to be proved (and no access to the prover), can produce a transcript that "looks 

like" an interaction between the honest prover and the cheating verifier [60]. 

3.1.2 Non Interactive Zero-knowledge Proofs: 

Non-interactive zero-knowledge (NIZK) proof systems [61] yield proofs that can convince 

others about the truth of a statement without revealing anything but this truth.  It has been 

shown under standard cryptographic assumptions that NIZK proofs of membership exist for 

all languages in NP.  NIZKP does not need the interactive communications between the 

prover and verifier. We will consider statements of the form x ɴ  L, where L can be an arbitrary 

language in NP. We require that the NIZK proof be complete, sound, and zero-knowledge. 



` 

21 

 

In NIZKP model the prover and the verifier are in  possession of a reference string sampled 

from a distribution D by a trusted setup „ᴺὛὩὸόὴρ . To prove statement ώ ɴ ὒ with 

witness w, the prover  computes “ N ὖὶέὺὩ „ȟώȟύ and sends the proof “ to the verifier. 

The verifier accepts if  ὠὩὶὭὪώ „ȟώȟ“ ὃὧὧὩὴὸ, and rejects others. 

Gentry [5] proposed a fully homomorphic encryption scheme and demonstrated that fully 

homomorphic encryption can be used to construct NIZK proofs whose size depends only on 

the size of the witness and on the security parameter, but not on the size of the circuit used 

to verify the witness. Gentry proposed to encrypt every bit of the witness using a fully 

homomorphic encryption scheme. Using the operations of the fully homomorphic encryption 

scheme, it is possible to evaluate the circuit on the plaintexts to get a ciphertext that contains 

the output. Using an NIZK proof the prover then constructs a proof for the public key being 

valid, the encrypted inputs being valid ciphertexts and the output ciphertext being an 

encryption of 1. Since the proof contains |w| ciphertexts and |w| proofs of their correctness, 

the total complexity is |w|. poly(k) [62]. 

 

2.3.2 Cloud services 

The most trending application of fully homomorphic encryption is cloud services. One of the 

major problems in Cloud Computing is the fact that the customer cannot technically validate 

the security and confidentiality of a remote resource. Current cloud solutions did not preserve 

the optimal privacy for users. Some solutions depend on data encryption, but still 

unsupported with privacy on processing level.  

FHE provide the solutions for processing data while still encrypted, and execute an encrypted 

program as shown [42]. Which the program execution performed in  binary, an encryption of 

a circuit can be done by encoding a bit in a cipher text’s property of having an even or odd 

remainder modulo a secret prime key. This can be easily reduced to a boolean algebra by 

mapping 0-bits to even integers and 1-bits to odd integers. An XOR-operations will be 

represented by the integer addition, while the integer multiplication represents a boolean 

AND-operation. This allows to simulate chains of boolean operations by means of simple 



` 

22 

 

integer arithmetics. A formulation of processor components and memory operations done, to 

determine each circuit for each part or operation. This process, like virtualization of process 

in an encrypted way, which provide execution of program in secret. 

This model can be used in many cases like, delegation of computation to a remote resource, 

remote Search with encrypted search functions, Mobile Code and Multi-Party Computation. 

Another type of secret program execution described in [43], which describes a method of 

formulating programming function such if statement, loops and function calls in encrypted 

forms using FHE and use it in program structure. 

2.3.3 Protection of mobile agents 

It is one of the most famous applications that is applicable by using homomorphic 

cryptography. Since all conventional computer architectures are based on binary strings, and 

only requires the addition and multiplication operations, such fully homomorphic encryption 

schema would offer the possibility to encrypt a whole program so that it is still executable 

[25]. The protection of mobile agents could be based on two ways: (a) computing with 

encrypted functions such as making encrypted queries to search engine. (b) computing with 

encrypted data, while the data is being encrypted in advanced then sent to server to be 

computed without decrypting data with the use of homomorphic properties, finally the 

computed results sent back to user, then he can decrypt it and review the results. 

2.3.4 Making encrypted queries to search engines 

F.H.E could be used to query a search engine, without revealing what is being searched for. 

[5] Alice want to use this property of F.H.E, she generates ciphers (╬ȟȣȟ╬◄ of here query 

(□ ȟȣȟ□◄) under pk, using fully homomorphic encryption schema with ᴇ circuit express 

the server’s search function. The server sets ╬  Evaluate (pk, ᴇ , ╬ȟȣȟ╬◄). The server sends 

these cipher texts to Alice. We know, by the correctness requirement, that Decrypt (sk, c) = 

ᴇ□ ȟȣȟ□◄.These latter values constitute precisely the answer to Alice's query, which she 

recovers through decryption. 
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2.3.5  Searching over encrypted data 

 Alice as many of users want to use the cloud to store her data, because of the benefits of its 

processing power and large storage size, but she does not trust the cloud. She needs her data 

to be stored securely in an encrypted way, because otherwise the server could read or leak 

her private data. In this case Alice needs to encrypt here data using F.H.E schema, store it on 

the cloud, when she wants to perform a search query, which  will represent as a circuit ᴇ. 

As discussed before the result of evaluation process c, represents the data manipulated with 

functionᴇ, decryption gives the right answer of here query without the server learn anything 

of query or data being processed. 

2.3.6 Multiparty Computation (MPC) 

Which is a central problem in theoretical cryptography, in these problem n parties, holding a 

private input □ ȟȣȢȟ□▪, which to compute a given function █□ ȟȣȢȟ□▪ . This problem 

belongs to the area of computing with encrypted data [26]. One of famous approaches in this 

field is F.H.E introduced by Gentry [27], which all parties encrypt their input first under the 

F.H.E schema, then they evaluate the desired function on the cipher texts using the 

homomorphic properties, and finally they perform a distributed decryption on the final cipher 

texts to get the results. 

MCP concept was used to perform a secure dynamic programming protocol that utilizes 

homomorphic encryption. Which can compute optimization problem on servers receives 

encrypted inputs from mutable agents. Servers should not know anything about the data being 

processed, the result will sent to agents to be decrypted [28]. 

2.3.7 Secret  sharing  scheme 

In secret sharing schemas, there is m parties have “sub-secret”, and there exist a “super-

secret” which is the composition of the sub-secret under specified function such as the sum 

of or the multiplication of sub-secrets, each party want to determine the super-secret without 

revealing his sub-secret [29]. 



` 

24 

 

If the secrets of each party are (▼ȟ▼ȟ▼), so each party encrypts his secret ╬ȟȟ  ╔▼ȟȟ , 

then users can share their secrets encrypted with homomorphic schema, so if suppose the 

function is the sum, so the super-secret is  ╢ ╓╬ ╬ ╬ . 

In other words the sum of shares of the secrets are the shares of the sum of the secrets. 

╔▼  ╔▼  ╔▼ ╔▼ ▼ ▼ .           (16) 

2.3.8 Threshold schemes  

Threshold schemes allow any t out of l individuals to recompute a secret (key). In other words 

A key pair is generated jointly between multiple parties, and whereas the public key is used 

for encryption as in ordinary asymmetric cryptosystems, the private key will only exist as a 

shared secret throughout its lifetime. Multiparty Computation and secret sharing are types of 

threshold schemas. 

2.3.9 Zero-knowledge proofs 

Zero-knowledge proofs could be used to demonstrate the truth of a statement without 

revealing anything else, by which one party (the prover) can prove to another party 

(the verifier) that a given statement is true, without conveying any additional information 

apart from the fact that the statement is indeed true. In such case a user wants to log in a host, 

he has to prove his identity by logging his username and password, which the user need to 

be private and not leaked during the protocol operation. An example of using homomorphic 

cryptographic properties in zero-knowledge proofs in [30] and [31].  

2.3.10 Watermarking  and  fingerprinting  schemes   

Watermarking schemas provide a solution for saving  copyrights, illegal redistribution of 

copies and violation of ownership, it enables the owner to embed some information on the 

contents and to extract it, this information indicates to the owner copyrights. A fingerprinting 

scheme embeds the information related to a buyer and enables a merchant to trace the buyer 

from the redistributed copy [34]. 

Homomorphic properties enable the merchant to add or multiply encrypted watermark to the 

encrypted message, then he can prove his ownership of digital data. In fingerprinting, a buyer 
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encrypts his identity, then sends to the merchant using zero-knowledge proofs. The merchant 

embeds encrypted identity to encrypted digital data and returns it to the buyer.  

The buyer decrypts it and gets fingerprinted digital data without disclosing his identity to the 

merchant [35]. 

2.3.11 Commitment schemes 

Commitment schemes are of great importance in cryptography fundamentals, it allows to 

party to choose a value and commit to his choice while keeping it secret, and then he can 

reveal this value later. It’s designed so that the party cannot change his mind and cannot 

change the committed value. 

Commitment schemas have various applications such as secure coin flipping, zero-

knowledge proofs and secure computation. Homomorphic property was used efficiently to 

implement some commitment schemas [36]. 

2.3.12 Lottery protocols 

Usually in cryptographic lottery, which have to compute a random number in order to 

indicate the winning, ticket from all participants. In such homomorphic lottery schemas, a 

random number chosen by the players, then each number encrypted with the homomorphic 

cryptosystem of the lottery. Nobody except the lottery can learn the chosen numbers. Using 

homomorphic property, the encryption of the sum of the random numbers. Then the 

combination of this and a threshold decryption scheme leads to the winning ticket of the 

lottery without the ability to compute the winner during the purchase time [37]. 

2.3.13 Mix-nets 

Mix-nets are protocols that provide anonymity for senders by collecting encrypted messages 

from several users. It uses a set of servers to establish private communication channels that 

hard to trace. One type of mix network accepts as input a collection of ciphertexts, and 

outputs the corresponding plaintexts in a randomly permuted order. In such a scenario, 

privacy is achieved by requiring that the permutation that matches inputs to outputs is kept 

secret to anyone except the mix-net. A desirable property to build such mix-nets are re-
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encrypted, which is achieved by using homomorphic encryption. In a re- encryption mixnet, 

the inputs are submitted encrypted under the public-key of the mixnet. Each mix server 

processes the batch of input ciphertexts sequentially. The First server takes the set of input 

ciphertexts, re-encrypts them, and outputs the re-encrypted ciphertexts in a random order. 

Each server in turn takes the set of ciphertexts output by the previous server, and re-encrypts 

and mixes them. The set of ciphertexts produced by the last server may be decrypted by a 

quorum of mix servers to yield plaintext outputs [38]. 

2.3.14 Data aggregation in wireless sensor networks 

 Wireless Sensor Networks (WSN) consist of less expensive and low power sensor nodes that 

are capable of computation, storage and communication. These sensor nodes have low 

computation power and storage space. The purpose of deploying a sensor node is to monitor 

an area of interest with respect to some physical quantity. Information gathered by the sensor 

nodes is reported to the base station. 

 Data aggregation in wireless sensor networks (WSN) helps eliminate information 

redundancy and increase the lifetime of the network. It is a technique combines partial results 

at the intermediate nodes in route to the base station, thereby reducing the communication 

overhead and optimizing the bandwidth utilization in the wireless links [39] [40]. 

 When homomorphic encryption is used for data aggregation, end-to-end encryption is 

achieved and aggregation function like average or minimum/maximum can be computed on 

the encrypted data. It’s applied to protect the privacy of input data while computing an 

arbitrary aggregation function in a wireless sensor network [41]. 

2.4  Implementations of Homomorphic Encryption schemas 

In the last section, we reviewed the most important theoretical applications of Homomorphic 

Encryption, all these applications still discussed in researches with experimental 

implementations. 

In this section, we will discuss the implemented schemas practically and try to explain how 

it work by examples. 
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2.4.1   Homomorphic Encryption Library HELib  

HElib is a software library that implements homomorphic encryption (HE). Available as an 

implementation of the Brakerski-Gentry-Vaikuntanathan (BGV) scheme [2], along with 

many optimizations to run homomorphic evaluation runs faster, focusing mostly on effective 

use of the Smart-Vercauteren [12] ciphertext packing techniques and the Gentry-Halevi-

Smart  [44] optimizations. 

At its present state, it is fairly low-level provides low-level routines (set, add, multiply, shift, 

etc.). This library is written in C++ and uses the NTL mathematical library (version 6.1.0 or 

higher). It is distributed under the terms of the GNU General Public License (GPL) [1]. Shai 

Halevi and Victor Shoup developed this library. More details in annex 1. 

Figure 3.1 A block diagram of the Homomorphic-Encryption library 

Figure 3.1 shows the structure of HELib library for method and functions.  

HELib [45] consists of four layers: in the bottom layer the modules for implementing 

mathematical structures and various other utilities. The second layer implements the Double-

CRT representation of polynomials. The third layer implements the cryptosystem itself (with 
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the “native” plaintext space of binary polynomials). The top layer provides interfaces for 

using the cryptosystem to operate on arrays of plaintext values. The bottom two layers 

identified as the “math layers”. The top two layers identified as the “crypto layers”. Figure 

3.1 A block diagram of the Homomorphic-Encryption library. Roughly, the modules 

NumbTh, timing , bluestein , PAlgebra , PAlgebraMod , Cmodulus , 

IndexSet  and IndexMap  belong to the bottom layer, FHEcontext , SingleCRT  

and DoubleCRT  belong to the second layer, FHE, Ctxt  and KeySwitching  are in 

the third layer, and EncryptedArray  is in the top layer. 

Implantation of HELib variant original BGV [19] in some issues, where its defined over 

polynomial rings of the form ᴚὢȾɮ ὢ , where ά is a parameter and ɮ ὢ  is 

the ά’th  cyclotomic polynomial. The “native” plaintext space in this scheme is usually the 

ring Ⱦς  namely binary polynomials modulo ɮ ὢ . HELib uses the Smart-

Vercauteren CRT-based encoding technique to “pack” a vector of bits in a binary polynomial, 

so that polynomial arithmetic in  translates to entry-wise arithmetic on the packed bits. 

The ciphertext space in this scheme consists of vectors over Ⱦή , where ή is an odd 

modulus that evolves with the homomorphic evaluation. 

Secret keys are polynomials  ‭  with “small” coefficients, and we view  as the second 

element of the 2-vector ίᴆ ρȟ . A level-i ciphertext ὧᴆ ὧ ȟὧ  encrypts a plaintext 

polynomial άᶰ with respect to ίᴆ ρȟ  if we have the equality over , ộὧᴆȟίᴆỚ ḳ

άάέὨ ς, moreover the polynomial ὧ Ȣὧ  is small, all its coefficients are 

considerably smaller than ή. Roughly, that polynomial is considered the “noise” in the 

ciphertext, and its coefficients grow as homomorphic operations are performed. 

The basic operations done in this scheme are key-generation, encryption, and decryption, the 

homomorphic evaluation routines for addition, multiplication and automorphism (and also 

addition-of-constant and multiplication-by-constant), and the “ciphertext maintenance" 

operations of key-switching and modulus-switching. More details of how HELib work 

described in the report [45] founded in the documentation HELib source code. 
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Halevi and Shoup the Creators of HELib described in [46] some of the algorithms and 

optimization techniques that are used in HElib for data movement and simple linear algebra 

over HELib “platform”. 

2.4.2 Scarab library 

It’s an  open source implementation of a fully homomorphic encryption scheme using large 

integers, based on Gentry [1], and N. Smart and F. Vercauteren [10] for the integer-based 

approach used in this implementation. 

 The software requires other libraries: 

1. GMP: GNU Multiple Precision Arithmetic Library. 

2. FLINT: Fast Library for Number Theory version 1.6. 

3. MPIR: Multiple Precision Integers and Rationals. 

4. MPFR: Multiple-precision floating-point computations with correct rounding. 

The libraries are implemented using C language, and supporting Linux only, the installation 

requires installing the provided libraries before installation of “libScarab”. 

2.5 Summery 

The mentioned schemes separated into three major types of homomorphic encryption.  First, 

additive homomorphic encryption schemes such as Paillier scheme. Second, multiplicative 

homomorphic schemes such as RSA and ElGamal scheme, which is a widely used public key 

scheme. Some applications developed on additive and multiplicative homomorphic schemes 

such as multiplicative homomorphic e-voting system [23]. The limitation to a single 

operation resulted the reduction of the efficiency and effectiveness of these schemas, 

especially for bigger and more complex applications. This led to looking forward to schemas 

that supports both operations, which provides in the third type of homomorphic encryption 

called Fully Homomorphic Encryption which first show was by Gentry in 2009 [5].  

Gentry’s construction consists of several steps: He first constructed a “somewhat 

homomorphic” scheme that supports evaluating low-degree polynomials on the encrypted 

data, next he needed to “squash” the decryption procedure so that it can be expressed as a 
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low-degree polynomial which is supported by the scheme, and finally he applied a 

“bootstrapping” transformation to obtain a fully homomorphic scheme [8].  

A lot of developments and schemas based on Gentry’s blueprints, most of these schemas 

suffer from the squashing process. Although these earlier schemes have achieved full 

homomorphism, the performance of these schemes becomes the bottleneck. To address this 

problem, some To address this problem, some newer FHE schemes were proposed in recent 

years. In [19] Brakerski, Gentry, and Vaikuntanathan proposed a new FHE scheme (BGV) 

based on LWE problems. Instead of recryption, this new scheme uses other light weighted 

methods to refresh the ciphertexts. These methods can limit the growth of the noise so that 

the scheme can evaluate much deeper circuits. The recryption process will serve as an 

optimization to deal with over complicated circuits instead of a necessary for most circuits; 

this scheme based on leveled terminology where the depth of circuit defined early [24]. 

An implementation of BGV scheme was founded by IBM research team in 2013, called 

“HELib” which described as the first well-structured and fully documented implementation 

library of FHE. HELib has a lot of optimization variant of the original BGV, these 

optimizations advance the performance and usability issues. 

In this thesis, HELib chosen as a basic platform to express the properties of FHE, and make 

the implementation of the proposed voting system based on FHE. HELib provide many 

classes and methods to examine performance and timing, which ease results examination. 

The research focuses on election and e-voting systems as a case study, in this work NIZKP 

also discussed as an application on Fully Homomorphic Encryption. Also cloud services used 

as infrastructure of the system. 

 

 

 

 



` 

31 

 

3. Chapter 3: Research Methodology. 

In this research, a proof of concept methodology followed to present that using fully 

homomorphic encryption is applicable in such e-voting systems. Many e-voting protocols 

were implemented; some of them uses homomorphic encryption through additive or 

multiplicative homomorphic property. Our contribution is to design and implement e-voting 

system based on fully homomorphic encryption and can work in cloud infrastructure. 

To prove that using fully homomorphic encryption on e-voting system can give applicable 

performance and security, we designed and implemented e-voting system based on fully 

homomorphic encryption.  

This research tried to prove that the implemented e-voting system met the security properties 

required in such e-voting systems such as eligibility, privacy, accuracy, verifiability, fairness, 

receipt-freeness, incoercibility, dispute-freeness, robustness, scalability and practicality. 

3.1   The basic tool “HELib” 

The implementation deployed using the HELib library [1], which implements homomorphic 

encryption (HE), currently available is an implementation of the Brakerski-Gentry-

Vaikuntanathan (BGV) scheme [2].  

HELib considered as the first applicable implementation library of homomorphic encryption, 

that well-structured and documented. It attracted the attention of many researchers. HELib is 

an open source C++ library focusing on effective use of ciphertext packing and the GHS 

optimizations. It includes an implementation of the BGV scheme itself with all its basic 

homomorphic operation, and some higher-level procedures implementing the GHS data-

movement procedures and simple linear algebra. The operation done on a vector of plaintext 

values, the plaintext arrays in HELib often hold a few hundred plaintext slots (sometimes 

even a few thousand). It also support Single instruction multiple data processing, which 

increase the performance of the library. 

 HELib focuses on two factors time and noise, These correspond roughly to size and depth 

of the corresponding SIMD circuits, but the correspondence is not quite one-to-one since 

different operations have different time and noise behavior. Since multiplication operation 
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have much higher noise than addition operation. Many optimization done in HElib to reduce 

the time and noise of the original BGV scheme [63]. HELib described in details in 

section 2.4.1 and annex 1.1.  

HELib used to generate public-private keys, used to demonstrate a circuit have multiplication 

and addition operation to perform proof operation, and finally used to count results through 

addition operation. 

3.2  Implementation 

An implementation of the enhanced system done using C++ language in Ubuntu Linux 12, 

because help build on C++ and run only on Linux. The implementation divided into three 

parts, the first called Authentication Server program, second called Voting Server program 

and the third called Voting program.  Each part of the system has a different role, the 

authentication server responsible for public-private key generation and this provided by 

HELib. It's also holding authentication credentials such as user passwords and secret keys for 

voting server, also generated random secret, its basic functionality decrypting ciphers. It was 

considered as a trusted party. 

The voting server program is responsible for performing homomorphic operations on 

encrypted cipher which in this case the encrypted votes. It does not do any decryption process 

and considered as an interested party, because it's hosted in cloud infrastructure and the cloud 

provider can disclose some data from the hosted machines.  

The voter program responsible for making authentication with authentication server and 

voting server, formatting the vote according the voter input and encrypt the vote. The voter 

program considered as untrusted and its turn to trust after authentication. 

All communication channels considered as untrusted, and all traffic transferred between 

system parts were encrypted and integrity checked. 

3.3  Testing  

The testing and result analysis based on testing performance and measuring resulted ciphers 

size and processing time, this done by the provided class from HELib “timing”. The class 
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can measure the time of generating public-private key, encryption time, decryption time and 

homomorphic operation time. From these results, we measured the performance of the 

system according to the number of processed votes and the produced size of each vote. We 

designed number of experiment to do that, where the number of vote calculated was variable 

for each experiment. Also p value which indicate the number of users of the systems 

measured. The p value affect the public-private keys and the size of the vote and mask.  

3.4   Scope 

The scope of this research was related to the maximum number of users could participate in 

election process, this number is tied to the maximum value of p produce acceptable public 

key size and processing time for mask and vote tallying. In our experiment, we measured the 

performance for 10 million voter, which able to be applied in about of 70% of countries all 

over the world. In addition, it is applicable to applied to in our country Palestine, and many 

other countries. 

The experiments tested up to 40 thousands votes generated randomly and stored locally in 

one machine, encrypted, masked, homomorphicaly checked and tallied.   
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4. CHAPTER 4: Proposed E-Voting System 

This chapter describe in details the proposed system   

4.1  The proposed E-Voting system 

Our protocol based on using cloud services as an infrastructure for components of the system, 

cloud provides high performance-processing capabilities and can deal with huge numbers of 

communications done by voter that they want to make voting in a short period. 

Cloud considered untrusted platform for such sensitive process, but homomorphic encryption 

solves some of the security issues related to tallying and proving votes, which need the 

biggest part of processing, we needed a part of our system to secure for containing private 

keys, and voter identification information’s. Our system consists of: 

a) Authentication Server (AS): responsible for authentication, verifying the correctness 

of the vote, and valid encrypted with the public key. 

b) Voting Server (VS): responsible for masking the vote and tallying. 

c) Bulletin Board (BB): responsible for display the checksum of vote for public and 

other public information.  

Protocol Steps  

1) Registration: Voter need to have Identification information to be able access and 

authenticated by the system, he need make registration process personally to have his 

secret key, which is required with other information like his national ID number, and 

this information provided by authority office and delivered using the secure method 

as shown in figure 4-1. 

Voter (V) 
 
ựựự Authority Office (AO)  

V    AO 
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Figure 4.1 Voters Registration Process 

2) Authentication: When the voting process starts, the voter needs to connect to the 

Authentication Server to authenticate his identity using his international ID number 

and secret key. This connection to server done via SSL protocol to preserve privacy, 

authenticity and verifiability.  Once the voter authenticated, a new Random Secret 

Key (RSK) generated in AS, this new RSK encrypted with AS secret key Ὁ ὙὛὑ. 

The resulted cipher sent to both Voter and Voting Server. V and VS can reveal RSK 

by decrypting the received cipher using Public Key of Authentication Server ὙὛὑ

Ὀ Ὁ ὙὛὑ. 

Another method to do that, once a voter authenticated, a new Random Secret Key 

(RSK) generated in AS, this new RSK encrypted with voter password, and sent him. 

Also RSK encrypted with predefined key between VS and AS, and sent to VS.  

User allowed to communicate with Voting server using the random secret key generated by 

AS to be authentication secret of session between voter and VS. 

The User can send Hello message to VS with encrypting M using RSK, Ὁ ὓ  and using 

Hash-based message authentication code HMAC [63], which used to verify both the data 

integrity and the authentication of a message. VS also can send response message using the 

same way. The HMAC will be used for the rest of communications with RSK as the secret 

key. 

Voter (V) Authority Office (AO) 

Identity Info 

Verification & Registration 

Secret Key (SK) 
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To prevent attacker form identifying any unencrypted messages sent between VS, AS and V, 

a symmetric encryption used with salting communication messages to prevent cipher 

duplication. The key for the symmetric encryption is the RSK generated from AS, then 

HMAC used along with encrypted messages.    

 ὠ
ȟ
ựự  ὃὛ 

 ὠ ựὃὛ  , ὠὛ ựὃὛ 

 ὠ ự ὠὛ 

Figure 4.2 Voter Authentication with Authentication Server & Voting Server 

3) Voting Process: suppose that the voter wants to vote for some candidates ὔ , where 

i is the number of candidates. Vote ὺ represented by {0, 1} for each candidate, where 

if V is voting for ὅ  for Yes the ὺ= 1, if  No ὺ= 0. Additional digit d is considered 

as verification of the correct tallying of votes with value of 1, where ὺ  

{ὺȟȣȢȢȟὺȟὨ} as shown in Figure 4.3Vote Structure Example. 

Voter  Voting Server 

Login using ID, SK 

Via SSL 

Authentication Process 

Ὁ ὙὛὑ 

ὙὛὑὈ Ὁ ὙὛὑ ὙὛὑὈ Ὁ ὙὛὑ 

Random Secret Key (RSK) Random Secret Key (RSK) 

Authentication with AS 

Hello message from V Ὁ ὓ  

HMAC Protected HMAC Verification 

HMAC Protected 

Ὁ ὓ  Rsponse message from VS 

HMAC Verification 

Authentication Server 
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a. Vote Encryption: ὺ encrypted by public key ὴὯ of VS Ὁ ὺ ὧȢ V need to 

calculate checksum of ὧ = Ὄ , which is used to verify that ὧ is tallied without 

any modification, and it arrived correctly to VS, in this stage HMAC used to 

preserve integrity. 

  ὠᴼ ὠὛ  

ὠ ựự  ὠὛ 

Encrypted cipher sent to VS, which calculateὌὧ, and store both Ὄȟὧ and 

then send Ὄ to the Bulletin Board, ὠ can check for Ὄ in BB. If the values are 

identical, ὧ arrived correctly. 

 ὠὛO  ὄὄ. 

 

b. Vote Verification: at this stage we present a None Interactive Zero Knowledge 

proof method which the voter wants to prove that he used a valid ὴὯ and valid 

voting where no additional number added to some ὺ and restricted to Ὥ 

number of candidates, so that the vote is well formatted. The verifier is our 

system with his both separated parts AS and VS. 

VS process ὧ to make it masked, so that AS can’t identify the original vote 

and still able to verify the correctness of valid encryption and formatting. 

Mask function calculated for ὧ, 

╜ ╬ ╧╞╡ □ ╬ ╧╞╡ □                              ( 17) 

Where ά π ȟȣȟπ  , ά ρ ȟȣȟρ . ὓ is sent to AS, a 

decryption of masked vote is being done Ὀ ὓ Ὗ, so the result must be 

ὅ ὅ ὅ ὅ ὅ Ὠ 

1 1 1 1 0 0 v 

Figure 4.3Vote Structure Example 
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1 for each Ὥ,Ὗ ρȢ If it’s not, a reject flag sent to VS, V told that he tried 

to enter invalid ὧ, and ὧȟὌ deleted for that V. 

For each valid ὧ, AS count 1 valid voting, the number of valid ὧ in VS must 

be identical with number in AS. 

Figure 4.4 Masking process example 

 As shown in Figure 4.4 Masking process example, the addition process 

done in decimal form not in binary form, the intruder may try to add some core 

to a specified candidate, in such case the vote slot will increase by the value 

entered by intruder, it will calculated in the final results. This easy to cover 

after tallying process because the summation of result of each result must be 

equal to the number of voters. No one can identify the vote that have the 

additional score before the tallying process. Here come the NIAZKP role, to 

identify any invalid vote, without decrypt the vote and before the tally process. 

This process can handled using FHE easily as described early. It just need to 

two parties to make this operation away from the voter to preserve the 

correctness of  masking process. 

XOR 

+ 

ὓ ὧ ὢὕὙ ά ὧ ὢὕὙ ά  

ὅ ὅ ὅ ὅ ὅ Ὠ 

1 1 1 1 0 0 v 

    
0 0 0 0 0 0 ά  

ὅ ὅ ὅ ὅ ὅ Ὠ 

1 1 1 1 0 0 v 

    
1 1 1 1 1 1 ά  

    
1 1 1 1 0 0 ὶ 

    
0 0 0 0 1 1 ὶ 

    
1 1 1 1 1 1M 
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4) Tally process: after the specified period form authorities finished, the tallying 

process starts, let the number of valid votes is j, so Вὧ ὅ, which is the final result 

of the voting process 

ὠὛ O  ὃὛ 

Decryption of results processed, Ὀ ὅ Ὑ, where Ὑ ὶȟȣȢȟὶȟὮ.         (18) 

 

a. Ὑȟὅ ὥὲὨ ίὯ put in the BB, so regulatory institutions can verify the tally 

process. 

Authentication Server Voting Server Voter  

Voter choose his ballot v 

ὧ Ὁ ὺ  Ὄ  ὧ 
Encrypted Vote  

 
HMAC 

Masking Process ὓ  
Masked Vote 

Validation Ὀ ὓ  Validation Result 

Ὄ  Accept Vote  
Acceptance Message 

End of connection 

Figure 4.5Vote Encryption & Validation with NIZKP 
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Figure 4.6 Votes tally & results decryption 

4.2 Security analysis 

Any voting system must be able to deal with some security issues related to preserve privacy 

of voting and accuracy of results. 

4.2.1 Eligibility: Only persons who meet certain pre-determined criteria are allowed to cast 

permitted number of votes. To achieve this, authority needs to verify the eligibility of 

voters and record their casted votes, in registration process voter need to introduce all 

information’s to be considered eligible. 

4.2.2 Privacy: No one except voters can know their votes. To achieve this, any traceability 

between voters and their votes must be removed during the whole election. In our 

protocol no one can connect the user to his vote. 

4.2.3 Accuracy: In the elections, voters expect that their votes are correctly captured and 

that all eligible voters are correctly tallied. As we introduced, the tally process is 

verified by the digit d added to each vote, the number of valid votes in AS and V. 

Another verification done by NIZKP which satisfy accuracy and verifiability. 

Authentication Server Voting Server Authority Office (AO) 

End of ballot duration 
End Message  

Start tally process  

ὧ ὅ ὅ  
Final Results 

Ὀ ὅ Ὑ 

Decrypt Results  

Ὑ ὶȟȣȢȟὶȟὮ 

Results for each candidate 
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4.2.4 Verifiability: Verifiability is the ability to determine whether only and all valid votes 

are counted in final tally or not i.e. to determine the accuracy of the election. Accuracy 

of the election can be verified in two ways, one is the individual verifiability where 

only voters can verify their own votes in the tally which done by our NIZKP method. 

Therefore the accuracy of the election consists of N voters is ensured when there are 

less than or equal to N votes and all N voters verify their votes. The other is universal 

verifiability, which enables any third party to verify the accuracy of the election which 

accomplished by putting all R,C,sk on BB for any third party to check tally process.  

4.2.5 Fairness: In order to conduct the impartial election, anyone should not be able to 

compute the partial tally before the end of the election which may influence the 

remaining voters and may affect the voting result, and this accomplished by 

separating AS nd VS. so sk is stored in AS which cannot calculate any results until it 

receive C form AV. 

4.2.6 Receipt-freeness: Receipt-freeness disables anyone including voters themselves to 

link voters to their votes, in order to protect voters from being coerced to follow 

intentions of other entities. To achieve receipt-freeness, the voting system didn’t  

leave any information about the votes of voters. Also, votes should not include any 

information peculiar to the voters. Receipt-freeness shares the same notion with 

privacy. Our protocol is Receipt-free. 

4.2.7 Incoercibility: Incoercibility protects voters against coercers who can communicate 

with the voters actively. In our protocol, we allow V to Revote which a method to 

overcome incoercibility. If V exposed from some incoercible person, he can revote 

again by authenticate to AS, then send revote to VS with his previous H, new vote 

should be replaced with old vote and new H added to BB. 

 

4.2.8 Dispute-freeness: Even if dishonest voters are involved in elections, disputes among 

entities should be solved without involving irrelevant entities. The notion of universal 

verifiability is similar to dispute-freeness but it is limited to the voting and tallying 

stages. Dispute-freeness accomplished by a mutable verification method before 
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considering the vote is valid, and validation using digit and counting the number of 

valid votes in AS and VS. 

4.2.9 Robustness: Any entity should not be able to disrupt the voting, i.e. the voting system 

must be able to detect dishonest entities and to complete the voting process without 

the help of detecting dishonest entities, which is satisfied in our protocol, while any 

illegible voter does not allowed to communicate with VS, and no invalid vote stored.  

4.2.10 Scalability: A scheme has to be extended easily to suffice computation, 

communication and storage requirements of large-scale elections. Our system is 

scalable due to cloud based infrastructure where huge  processing and communication 

can be done. 

4.2.11 Practicality: A scheme should not have assumptions and requirements that are 

difficult to implement. Our scheme is very practical because it doesn’t need any 

special equipment, its just need to rent some cloud servers and put your system on it 

for a specific period of time, it’s also cost effective. 
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5 CHAPTER 5: Design and Implementation 

5.1 Protocol Implementation: 

The proposed protocol in 4 implemented using HELib library described in 2.4.1, the 

implementation done by C++ on Ubuntu 12. Installation method and example of HELib 

described in Annex 1.1. 

5.2 System Structure      

 Our implemented software consists three main programs: 

1) Authentication Server program  

2) Voting Server program 

3) Voter Program 

 

Figure 5.1 System Structure 

 

All three programs can communicate with each other; all informations sent between 

programs encrypted in different ways, depending on the type of message.  

 

Voter Program 

Voting Server 

Program 

Authentication Server 

Program 
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5.2.1 Assumptions 

The assumptions upon which we have built and the design this system are as follows: 

1. Authentication server (AS) considered as a trusted party which fully controlled by 

authorities. AS contains sensitive data like users and passwords database, private keys 

and functions that generate RSK. AS should monitored and logged and controlled by 

the highest authorities of the Central Election Commission. Although this monitoring 

process does not reveal any information about votes or leaks partial results of the 

election process. Which this server does not contain any votes.  

2. Voting Server (VS) considered as untrusted party of the system, it’s hosted in some 

cloud service, and these cloud services considered as untrusted platform, where in 

some cased the vendor can access to the hosted services and serves and may reveal 

some sensitive data. Due to this issue, the FHE provided to solve security issues of 

untrusted platforms. VS could not reveal any data about users, votes and partial 

results. Where authentication with users done based on RSK provided by AS, and all 

votes and results are encrypted using FHE schema, and VS does not contain secret 

key for that scheme. All data are processed in encrypted form, which prevent any 

untrusted party form revealing any sensitive data. 

3. Voter (V) consider as untrusted party, until it authenticate AS. The voter must provide 

secret credentials, which authenticate his identity. Then he transfer to the second level 

of trust, where he can authenticate VS using RSK provided by AS. A voter can 

encrypt his vote locally using the provided program, vote validated to check of correct 

encryption using  a correct public key, and well defined vote according the condition 

provided by the Central Election Commission. The voter cannot prove his vote to 

anybody, and prevent coercion.  

4. The communication between AS and VS considered as secured connection based on 

VPN services, or any other secure connection services. Although all messages 

transferred between AS and VS are encrypted and integrity checked. 

5. The communication between Votes and system considered as untrusted anonymous 

connections, and all messages between Voters and system are encrypted and integrity 

checked. 



` 

45 

 

5.2.2 Authentication Server Program  

Authentication program responsible for:  

1) Key generation: 

In the key generation process, public key and private key generated. Public key sent 

to both VS and BB.  

Before key generation, some credentials must be prepared depending on number of 

voters involved in the election process. 

Table 5.1 Key Generation Parameters 

 

Variable  Value  Description 

m 0 m, p and r define the native plaintext space ᴚὢȾ

 ɮ ὢȟὴ  

P is defined as 997 for testing, while all results derived mod 

p. 

It must be a primary number higher final result. 

p 997 

r 1 

l 3 The number of “levels", we chose it to 3 while the deepest 

circuit in our solution is Masking process see chapter 3)b(  

c 3 Number of columns in key switching matrix 

w 64 The Hamming weight of a secret key 

Security 128 Used to derive m, with function  

FindM(security,L,c,p, d, 0, 0);  d 0 

 

The plaintext space defined over G (of type ZZX) a monic polynomial irreducible 

over ᴚȢ 
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- Public Key generation: to initialize Public Key, an object context  that holds (m, 

p and r) a part of class FHEcontext, that's responsible for maintaining the 

parameters. An object FHEPubKey is defined relative to a fixed FHEcontext , 

which must be supplied to the constructor and cannot be changed later. An 

FHEPubKey includes the public encryption key, which is a ciphertext of type 

Ctxt , a vector of key-switching matrices of type KeySwitch , and another data 

structure called keySwitchM ap  that is meant to help finding the right key-

switching matrices use in different settings. The public key is just a ciphertext, 

encrypting the constant 0. 

Hamming weight of that key stored in FHEPubKey object, for every secret key in 

this instance. The FHEPubKey class provides an encryption method, and various 

methods to find and access key-switching matrices.  

Public key can be imported by providing context and creating an empty 

FHEPubKey.  Context can be imported using: 

readContextBase(inContxt, m, p, r).  

- Secret Key generation: 

Secret key generated via FHESecKey class provides for either generating a new 

secret-key, or importing a new secret key that was generated by the calling 

application. That is, we have the methods ImportSecKey and GenSecKey.  

Table 5.2 PublicKey, SecretKey and Context sizes; p=997. 

Key Size 

Public Key 20.3 MB (20,321,810 bytes) 

Secret Key 20.3 MB (20,349,993 bytes) 

Context 91 bytes 

  

2) Voter authentication:  
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In vote generation stage VA program listens always for new voter requests. In this 

stage, the program establishes SSL connection to the voter as a response to the SSL 

request from the voter. The voter need to provide his international ID number and his 

secret password – provided by authority office in registration stage- to be verified and 

authenticated. This SSL connection used only for authentication stage to hide voter 

identity form any intruder. 

 The next stage of authentication is between voter and voting server. AS generates a 

random secret key, encrypt it with the voter secret password, sent it back to the voter 

with HMAC function used for message integrity. The same random secret key 

encrypted with pre-defined symmetric key between VA and VS, also it’s sent to VS.  

3) Vote verification: 

After voter submit his vote to VS, VS calculates a vote mask described in section 3)b 

(vote verification procedure), AS program just always listen for mask verification 

requests came from VS. AS program decrypt mask and perform a check, which every 

field in the mask must be 1, else it’s invalid vote.  

Validation message (valid or invalid) saluted with a random number, encrypted with 

symmetric encryption with RSK as a key and sent to VS.   

Size of masked vote about 204.3 kB (204,293 bytes). And the execution time of 

decryption is 0.019093/s. Also, decode function used internally in this step with 

execution time 0.038623/s. The total execution time of decryption is  0.057716/s, this 

considered a very small time for decryption which make the system applicable to 

work for many decryption processes. 

4) Results decryption: 

After the specified period of voting ends, end of vote message sent to VS. VS start 

tallying votes. AS program decrypt the results of voting using the private key, and 

finally validate the count of voters to valid vote count and send results to BB. 

The execution time of the decryption function of final results came form VS is 

0.011884/s and decode function is 0.0696/s, so the total decryption time is 

0.081484/s. 

5.2.3 Voting  Server Program  
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The voting program responsible for 

1) Voter authentication: 

The VS program receives RSK for AS, decrypt it and wait for voter to send hello 

message encrypted with same RSK. Once the voter provides correct RSK, he verified 

and become able to send vote to VS, if the provided RSK was wrong, VS sends reject 

message to the user, and store logs for that wrong RSK. 

2) Vote mask calculation: 

The VS program calculates vote mask for every vote, each vote mask sent to AS for 

validation. If it's valid, vote acceptance sent to voter encrypted with RSK with 

HMAC. 

3) Vote tallying: 

After the voting ends, a message received indicate that voting period ended, vote 

tallying starts. All results computed in one cipher and sent to AS to decrypt and 

publish results. 

5.2.4 Voter Program  

Voter program responsible for:  

1) Voter Authentication: 

The first step in voter program is authentication with AS and then authenticate with 

VS. Voter first establishes SSL connection to AS then authenticate with his ID and 

password. Once authenticated he receives an RSK encrypted with his password, he 

decrypt it and use it for authentication with VS. Voter sends “hello message” 

encrypted with RSK using a symmetric encryption algorithm. 

2) Ballot preparation: 

The Voter chooses his selection from candidates, and form his ballot in a specified 

way as described before in section 4. Voter program just presents just the candidate 

choices and user selects his choice. Voter program performs the preparation process. 

3) Vote Encryption: 
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After ballot preparation voter program encrypt it using the public key provided on 

BB. The encrypted ballot size is about 136.1 kB (136,100 bytes) it’s not constant 

value and vary for each user, but size almost the same with same parameters. 

The encryption time is 0.027659/s. timing function in HELib provides easy to 

measure execution time of some basic functions. Function printAllTimers()  

used to print all timers in the program. Also function setTimersOn()  needed to 

start the timer, and setTimersOff()  to stop it. Every function needed to be 

monitored by individual times. 

5.3 Security Properties  

The implemented system achieved many security properties, some properties related to the 

voting process itself, which described in section 4.2, and some other propertied related to 

communication channels and hosting environments. This section discusses related issues.  

5.3.1 Communication channels security 

Communication done between servers AS and VS secured with two factors: 

1. All messages sent between those servers are encrypted even messages like 

ACCPTED or REJECTED messaged are salted to be indistinguishable in the case of 

symmetric key encryption. All messages are equipped with an HMAC integrity 

check. This prevents any eavesdropper of intercept or change the messages 

transmitted over the channel. 

2. The communication channel secured using VPN service, in this case, we suggest 

using OpenVPN service to secure connection, which an open source platform that 

provide high security and privacy of communication. OpenVPN can encrypt 

communications using many different symmetric key algorithms such as AES, and 

its use TLS protocol to provide secure commutations. 

The communication between Voter side and AS and VS in other side secured using 

encryption and HMAC integrity check. All messaged between servers and Voter are 

encrypted and salted. All messages are equipped with an HMAC integrity check. This 

prevents any eavesdropper of intercept or change the messages transmitted over the channel. 
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5.3.2 Hosting environment security 

AS hosted on dedicated servers that secured using Intrusion Detection Systems IDS and 

Intrusion Prevention Systems IPS, in addition to firewalls, to prevent any intruder from 

accessing AS. If such thing happened, the intruder will be able to access the most sensitive 

data in the system ID’s and passwords and secret keys. To prevent this, we suggest securing 

AS by monitoring each communication trying to connect AS server, if any suspicious activity 

detected the connection must terminate. 

VS hosted in cloud service, it also secured using IDS and IPS, which work to prevent any 

intruder from accessing VS. If such thing happened, the intruder is able to delete or corrupt 

some votes, this will lead to damage voting results. To prevent this, all connections must  be 

monitored and if any suspicious activity detected, the connection must be terminated and 

event log of this activity registered, the voter can do authentication again to be verified. 

Voter requested to secure his machine, any hacking to his local machine could lose him his 

vote. To prevent intruders form changing the structure of vote for example by infecting the 

victim of viruses that can change the vote structure or change the public key or corrupting 

votes. VS and AS are responsible for checking the validity of each vote. If the vote is 

corrupted or unverified, the  user told with this issue and given some instruction to secure his 

machine again. The implemented Voter program should not be able to change or code 

recover.  
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6 CHAPTER 6: RESULTS AND ANALYSIS 

6.1 Traffic analysis: 

The presented protocol generates communication traffic between each part of the system, 

voter, VS and AS. The generated traffic achieved privacy, confidentiality and integrity. As 

shown in table 5.3, all traffic between system parts encrypted, checked with integrity 

function. This prevents intruders form changing the content of transferred messages and even 

change the message itself, while all messages encrypted with securely shared secret key. 

Table 6.1 Traffic tracing and protection function 

Sender Message Receiver Confidentiality Function 

Integrity 

Function 

AS Public Key BB Public HMAC 

AS Public Key VS Public HMAC 

V ID, Password AS SSL SSL 

AS RSK V AES Encryption, key: password HMAC 

AS RSK VS AES Encryption, key: predefined key HMAC 

V Hello message VS Salted, AES Encryption, key: RSK HMAC 

V Vote VS FHE, key: Public Key HMAC 

VS Vote mask AS FHE, key: Public Key HMAC 

AS Validation message VS Salted,  AES Encryption, key: RSK HMAC 

VS 
Acceptance message 

+ Hash of Enc. Vote 
V AES Encryption, key: RSK HMAC 

AS 
End of voting period 

message  
VS 

AES Encryption, Key: Predefined 

key 
HMAC 

VS 
Final Result of 

tallied Vote Cipher 
AS FHE, Key: Public Key HMAC 

AS 
Decrypted Final 

Results 
BB 

AES Encryption, Key:  Predefined 

key 
HMAC 
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6.2 Performance analysis 

All previous results are done with p = 997 and a small number of candidates; p limits the 

number of voters. To achieve true decryption of results p must be larger than the number of 

voters, because all results are calculated modulo p. To examine the system scalability and 

capability to deal with large number of users and much candidates choices, we design a test 

to examine different p’s and its reflections on key sizes , vote and mask size, also its reflection 

of encryption and decryption time. 

The value of p in the test defines the maximum number of users should vote, which restricted 

to the number of calculated votes. All results of final tallying and mask calculation done 

modulo p. If the number of resulted value greater than p, the decryption result will be 

incorrect. We have to choose p greater than the maximum value of the result. Table 6.2, 

Results of testing reflection of p on key size , vote and mask size represent the results of 

described experiment. 

Table 6.2, Results of testing reflection of p on key size , vote and mask size 

  V ≈ 1,000 V ≈ 10,000 V ≈ 100,000 V ≈ 10,00,000 V≈ 10,000,000 

p=1,009 p= 10,007 p=100,003   p =1,000,003 p=10,000,019 

Public key  6.1MB 7.1 MB 7.9 MB 12.4 MB 38.0 MB 

Secret key  6.1MB 7.1 MB 7.8 MB 12.4 MB 38.1 MB 

Vote 138.6 kB 133.2 kB 143.7 kB 235.4 kB 240.5 kB 

Mask 208.0 kB 199.6 kB 215.4 kB 353.1 kB 360.7 kB 

 

As shown in Figure 6.1 PublicKey size and Secretkey size for different. The result derived 

from Table 6.2, Results of testing reflection of p on key size , vote and mask size show that 

secret key size and public key size is identical for same p value. However, it differs when 

choosing a larger value of p. The largest key size hit in this experiment when p = 10,000,019, 

it has reached almost 38 MB for both secret key and public key. For public key, this 
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considered a large size, but it is necessary when voting made from a large number of persons 

such 10 million as described in Table 6.2, Results of testing reflection of p on key size , vote 

and mask size. For a less number of users such as 1 million keys decreased to 12.4 MB, which 

more affordable. Nevertheless, 38MB not too much size for growing speed of internet. We 

considered our system practical for such cases, because the public key will published on BB, 

and the user can take their time for receiving it.  

An important issue is the stored votes total size, which if we considered each vote take an 

average of 250 kb of disk space, it need 2.328 terabit for 10 million users. This small size of 

storage compared to a large number of users, is suitable and affordable because this storage 

size available from most cloud providers and even for personal computer. 

Figure 6.2 Vote and Mask sizes for different p values, the size of both vote and mask 

generally increase with greater values of p. Mask size greater than vote size, which mask is 

the vote itself process with a defined equation in section 4 which contains addition and 

multiplication operations which increase the size of resulted mask. The noise generated from 

the homomorphic addition with noise at most B is 2B and the noise generated form 

multiplication process is ὄ . BGV provides a noise-management technique that keeps the 

noise in check by reducing it after homomorphic operations, its bases on “modulus 

switching” technique. 
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Figure 6.1 PublicKey size and Secretkey size for different p values shows that the mininumu 

recorded value public key and secret key on p = 100,003, and the maxixmun value of keys 

on p= 10,000,019. 

values shows that the at p=1,000,003 and p=10,000,019 gives the largest value of  vote and 

mask sizes, while the other p values gives almost the same size. This due to the change value 

of L=4 on p=10, 00,003 and p=10, 000,019, which gives an incorrect decryption of mask 

when L=3. Because NIZKP circuit contains addition and multiplication, we need to increase 
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the depth of the circuit to be compatible with resulted cipher while all result decryption done 

modulo p. NIZKP circuit increases the cipher text size and noise, which give incorrect 

decryption. For smaller p values it succeeded to decrypt mask correctly with smaller L=3, 

which the generated noise is smaller than p. 

The second part of the test is distinguished the difference of encryption and decryption time 

for vote, mask and the result. In addition, mask calculation included which important 

component of system performance. Encryption and decryption time for deferent p values 

somewhat similar. The produced results are acceptable for our system because it’s small and 

does not affected by changing p value. Mask calculation produced different results for 

different p value and in general produced higher results of encryption and decryption. This 

because of circuit size, which contains mutable addition and multiplication process.  

 

 

Table 6.3 Vote encryption, mask calculation - decryption and result decryption for different p values 

  V ≈ 1,000 V ≈ 10,000 V ≈ 100,000 V ≈ 1,000,000 V≈ 10,000,000 

p=997 p= 10,007 p=100,003   p =10,00,003 p=10,000,019 

Vote Encryption 24.52/ms 27.51/ms 27.25/ms 31.65/ms 36.52/ms 

Mask Calculation 269.8/ms 400.97/ms 446.57/ms 558.35/ms 608.39/ms 

Mask Decryption 63.82/ms 37.85/ms 32.64/ms 54.73/ms 70.78/ms 

Result Decryption 87.18/ms 79.76/ms 80.68/ms 78.27/ms 82.352/ms 

Number of 

plaintext slots 

53 54 84 60 66 

 

The number of plaintext slots differs for each value of p; in our test, we used 31 slots for vote 

formulation. The vote itself takes 30 slot present voting for each candidate, the 31 slot is a 
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check digit described in section  3,b) . the rest plaintext value is zero, the number of plaintext 

slots is related to CRT technique used by HELib, described in [45] The resulted plaintext slot 

can fit up to 65 candidate when p=10,000,019. It’s acceptable for most countries which 

number of candidates usually not big. 

 

Figure 6.3 Vote encryption, mask calculation - decryption and result decryption for different p values 

 

Figure 6.3 values shows the time consuming in vote encryption, mask decryption, mask 

calculation and result decryption different p values, which indicate that vote encryption is 

less time than other and it does not change with changing p value. Second mask decryption 

and third result decryption. The result of this test was by tallying 100 votes, thus size of the 

vote increase with sum calculation. The time is almost similar in vote encryption, mask 

decryption and mask calculation. The major difference is in mask calculation time, which 

increase by increasing p value. 

Another part of our experiment, is examining the performance of different number of votes, 

in this part we designed a method to auto generate encrypted votes. Each vote filled randomly 

as a ballot between 30 candidates, and slot 31 filled with 1 as a check digit and encrypt it. 

For this experiment we use p=10, 000,019, which indicates the largest number of voters 10 

million and the largest resulted public key. Table 6.4 Voting performance analysis for vary 

number of voters, where it takes about a half hour to generate 30,000 encrypted votes. This 
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time seems to be linear with larger number of votes. In fact, this not as in real situations, 

where voters encrypt their votes at the same period separately, not in a sequential way as in 

this test. 

Table 6.4 Voting performance analysis for vary number of voter 

 

Number of votes 

10,000 20,000 30,000 40,000 

Votes generation time  11m 56s 21m 12s 31m 43s 42m 2s 

Vote tally time  3m 3s 5m 37 s 9m 9s 12m 4s 

Result decryption time 70.303/ms 78.288/ms 84.312/ms 90.772/ms 

Tallied result  size 240.5/ kB 240.4/ kB 240.4/ kB 240.6/ kB 

Total size of votes  2.4/GB 4.8/GB 7.3/GB 9.7/GB 

 

The most important issue of this test is examinig the time of tallying a large number of votes, 

the largest number we examined in this test is 40,000 votes. It takes 42 minutes to tally this 

number of votes. The test was made on VMware virtual machine configured with 3G of 

RAM, 2 processors, 2 cores and 30G of hard disk. The host machine was core i5 processor. 
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Figure 6.4 Votes generation time, and Vote tally time for different number of votes 

As shown in Figure 6.4, tallying time is somewhat linear in the number of votes. With these 

results, an expected time of tallying 10 million votes will be 50 hours, using one single virtual 

machine with the previous specifications. In the real situation this tally process will done in 

cloud, which may consist of several powerful nodes.  The system is scalable, and it may 

contain hundreds of nodes, where tailing process is can be done in several nodes and the 

result of each node can be tallied to gather to get final results. This scalability will reduce the 

time of tallying much time.  

 

Figure 6.5 Final result cipher decryption time 

The decryption of results after tallying finish shown in Figure 6.5 Final result cipher 

decryption time, it also increases linearly with the number of tallied votes, this because the 

noise generated by each homomorphic addition operation. The noise is not too much because 

addition has a small noise effect. Where addition of two ciphers generates 2B of noise, this 

is small compared with multiplication noise ὄ . 

Size of tallied results cipher is somewhat identical for different number of votes as shown in 

Table 6.4 Voting performance analysis for vary number of voters, this due to the reduction 

technique used by HELib. 
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Figure 6.6 Total size of votes for different number of votes 

Size of all votes is a big issue, while the size of each vote is small, the total size of large 

number of votes considered big. In this experiment, we examined the total size of votes at 

different number of votes. As shown in Figure 6.6 the largest size hit on 40,000 was 9.7/Gb. 

The size grows with the number of votes linearly. In an expectation for size of 10 million 

votes, it will take 2.4Tera bit of size, which very affordable in cloud systems. This size 

available now on some personal computers. For such systems, this considered acceptable 

size. 

6.3 Stored data analysis 

At some point, each part of the system has some data, this data maybe secret, public or useless 

data. In this section we analyze the data stored at each part and its security concerns.  

6.3.1 Authentication Server stored data 

The authentication server is the most critical part of the system, whereas it contains the most 

sensitive data in the system which private key, database of users – passwords and secret keys. 

This part of the system should be secured very well with the most recent ways of server 

security like an intrusion detection system IDS, intrusion prevention system IPS and firewall. 

It must be monitored in all the period of voting. AS also store temporary data such as RSK, 
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mask, mask decryption, and mask validation result with its salt and HMAC’s. All these result 

deleted after voter commit his vote for each voter.  

6.3.2 Voting Server stored data 

VS stores vote cipher and hash function of that vote, until end of voting period ends. Other 

temporary data stored in VS such mask, RSK and HMAC’s. Mask deleted immediately after 

chinking by AS. In addition, RSK deleted after the session ends with voter.  

This provides the minimum information seen by VS, which could be any cloud service that 

considered untrusted and could reveal some information about the election process. Cloud 

provider or intruder could not have useful data can affect voting process or clarify vote or 

voter personality. It also could not leak partial results while all votes encrypted. 

6.3.3 Voter stored data 

The voter machine contains temporarily authentication credentials, ID and password. RSK, 

HMAC, vote and its encryption, which temporary data. The hash function of encrypted vote 

stored at the voter side for validation. Vote computed and revote process starts, if coercion 

happens. 

6.4 General analysis 

In general, the system divided to separated parts to prevent any intruder can access one part 

of the system from affecting the result of the election or leaking partial results or connect any 

voter to his vote. 

No one other than registered users can vote or access system. Each voter can vote without 

revealing his identity and no one can connect a vote to a voter. Every vote checked whether 

it has encrypted with valid public key and formed in the correct format of voting and no 

addition values added to a specified candidate to increase his result, also no fake votes made. 

No one can compute partial results, or interrupt voting process, all communication processes 

encrypted and integrity checked. Any manipulation tries should be discovered by system, 

reported and prevented. The user can revote when he felt coerced. 
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The system is scalable while it can deal with large number of users at the same time, and 

system structure can easily expand without affecting of system functionality. It's also very 

practical to be used in real election processes. 

The system satisfies the major properties of an optimal voting system such as eligibility, 

privacy, accuracy, verifiability, fairness, receipt-freeness, incoercibility, dispute-freeness, 

robustness, scalability and practicality. 
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7 CHAPTER 7: CONCLUSIONS AND FUTURE WORK 

This thesis examines the applicability of FHE in e-voting systems through designing and 

implementing internet based voting system. The implemented system able to work through 

cloud infrastructure. The conclusions of this work described below. 

7.1 Conclusions  

This thesis presented an electronic voting system based on fully homomorphic encryption as 

a case study, to understand how much fully homomorphic encryption is applicable in real life 

systems. The proposed e-voting system consists of main components, authentication server, 

voting server, bulletin board and on the other side voters. The separation of authentication 

server and voting server, let the voting server could be hosted in any cloud service provider 

or any datacenter service. This provides more privacy, which all votes stored in 

authentication server encrypted with fully homomorphic encryption and can processed or 

calculated in encrypted form. This led to another feature, scalability and cost effectiveness. 

The system could easily expand to more cloud server without compromising system structure 

or functionality. Using cloud services for a specified period of election obviates buying new 

hardware each election cycle. This is sufficient for us to afford the burden of maintaining and 

updating hardware for the next election cycle. 

We implemented the proposed system using HELib [1] homomorphic library based on BGV 

[19] fully homomorphic encryption scheme. The implementation divided into three parts, 

authentication server program, voting server program and voter program. We tested results 

where the system should deal up to 10 million voter, which meets the need of about 70% of 

countries over the world according to the number of eligible users. The results were 

applicable for public key size, vote size, mask calculation time, mask decryption time, total 

size of votes before tallying, tallying time and decryption result.  

Security concerns of voting systems considered in our work. The developed system was able 

to prevent intruder form make any fake votes or affect the voting process. The system disable 

anybody from linking between voters and their votes, even the voters themselves. Every vote 

checked for validation test. All communications encrypted and integrity checked. No one 

could calculate partial results even cloud provider. The system satisfies many security 
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concerns eligibility, privacy, accuracy, verifiability, fairness, receipt-freeness, incoercibility, 

dispute-freeness, robustness, scalability and practicality. 

The implemented e-voting was acceptable to work in real elections, with providing more 

cloud processing power. 

7.2 Future work 

Fully homomorphic encryption has many applications, in this thesis we discussed in details 

one of these applications, which is voting system and its applicability to deploy to cloud 

services. 

The implemented e-voting systems need to add usability features to be more user friendly. 

And it need to compared with other systems. 

 In future work we intended to discuss other types of applications that applicable to work 

with cloud infrastructure to study applicability performance and security issues of FHE.  

The depth of the circuit in FHE considered as a limitation of the practicality of FHE, we 

intended to examine much larger in depth circuits to study its effects on performance and 

resulted ciphers. 

In addition to, optimizing our implemented voting system to decrease public key size, vote 

size and mask size. In addition, to use some other functions of HELib, which deals with 

plaintext slots and noise optimization. 
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1 ANNEX 1: Implementation of F.H.E 

1.1 HELib library: 

1.1.1 Install (Compilation) 

Installing and compilation of HELib is easy, its depend on NTL (Number Theory Library)  

version 6.+, I tyried installing HELib on Ubuntu 12. 

First we need to install NTL:  

osama@ubntu :~ $ sudo  apt - get install g++  

osama@ubntu :~ $ sudo  apt - get install libgmp3c2  

osama@ubntu :~ $ sudo  apt - get install libgmp 3- dev  

osama@ubntu :~ $ wget  http :// www.shoup.net / ntl / ntl - 6.0.0.tar.gz  

osama@ubntu :~ $ tar  - xvf ntl - 6.0.0.tar.gz  

osama@ubntu :~ $ cd  ntl - 6.0.0 /  

osama@ubntu :~ $ cd  src  

osama@ubntu :~ $ ./ configure  

osama@ubntu :~ $  make  

osama@ubntu :~ $  make check  

osama@ubntu :~ $ sudo  make install  

 
Then install HELib, first we need to install git application, to be able to download HELib 

from githup. 

osama@ubntu :~ $ sudo  apt - get install git  

osama@ubntu :~ $ git  clone https :// github.com / shaih / HElib.git  

osama@ubntu :~ $ cd  Downloads /  

osama@ubntu :~ $ cd  HElib - master /  

osama@ubntu :~ $  cd src /  

osama@ubntu :~ $  make 

   ;  open Makefile and chnge the path inside it into the path 

of your NTL include direcroty / home/ osama/ ntl - 6.0.0 / include  

osama@ubntu :~ $  nano Makefile  

osama@ubntu :~ $  make 

osama@ubntu :~ $ make  test  

1.1.2 Testing: 

An example of HELib where created to show the basic idea of HE [64], this example where 

based on Test_* files included in HELib, the example showd below: 
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App.cpp 

#include "FHE.h"  

#include "EncryptedArray.h"  

#include <NTL/lzz_pXFactoring.h>  

#include <fstream>  

#include <sstream>  

#include <sys/time.h>  

 

int  main ( int  argc ,  char  ** argv )  

{  

    /* On our trusted system we generate a new key  

     * (or read one in) and encrypt the secret data set.  

     */  

 

    long  m=0,  p=2,  r =1;  // Native plaintext space  

                        // Computations will be 'modulo p'  

    long  L=16 ;           // Levels  

    long  c=3;            // Columns in key switching matrix  

    long  w=64 ;           // Hamming weight of secret key  

    long  d=0;  

    long  security = 128 ;  

    ZZX G;  

    m = FindM ( security , L, c , p,  d,  0,  0);  

FHEcontext context ( m,  p,  r );  

    // initialize context  

    buildModChain ( context ,  L,  c );  

    // modify the context, adding primes to the modulus chain  

    FHESecKey secretKey ( context );  

    // construct a secret key structure  

    const  FHEPubKey& publicKey = secretKey ;  

    // an "upcast": FHESecKey is a subclass of FHEPubKey  

 

    //if(0 == d)  

    G = context . alMod . getFactorsOverZZ ()[ 0];  

 

   secretKey . GenSecKey( w);  

   // actually generate a secret key with Hamming weight w  

 

   addSome1DMatrices ( secretKey );  

   cout << "Generated key"  << endl ;  

 

   EncryptedArray ea ( context ,  G);  

   // constuct an Encrypted array object ea that is  

   // associated with the given context and the polynomial G  
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   long  nslots = ea . size ();  

 

vector <long > v1 ;  

   for ( int  i = 0 ;  i < nslots ;  i ++)  {  

       v1 . push_back ( i * 2);  

   }  

   Ctxt ct1 ( publicKey );  

   ea . encrypt ( ct1 ,  publicKey ,  v1 );  

     

   vector <long > v2 ;  

   Ctxt ct2 ( publicKey );  

   for ( int  i = 0 ;  i < nslots ;  i ++)  {  

       v2 . push_back ( i * 3);  

   }  

   ea . encrypt ( ct2 ,  publicKey ,  v2 );  

 

// On the public (untrusted) system we  

   // can now perform our computation  

 

   Ctxt ctSum = ct1 ;  

   Ctxt ctProd = ct1 ;  

 

   ctSum += ct2 ;  

   ctProd *=  ct2 ;  

vector <long > res ;  

    ea . decrypt ( ctSum ,  secretKey ,  res );  

 

    cout << "All computations are modulo "  << p << "."  << endl ;  

    for ( int  i = 0;  i < res . size ();  i ++)  {  

        cout << v1 [ i ]  << " + "  << v2 [ i ]  << " = "  << res [ i ]  << 

endl ;  

    }  

 

    ea . decrypt ( ctProd ,  secretKey ,  res );  

    for ( int  i = 0;  i < res . size ();  i ++)  {  

        cout << v1 [ i ]  << " * "  << v2 [ i ]  << " = "  << res [ i ]  << 

endl ;  

    }  

 

    return  0;  

}  
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1.1.3 Parameter Description: 

R is the number of rounds 

p is the plaintext base [default=2] 

r is the lifting [default=1] 

d is the degree of the field extension [default==1] 

(d == 0 => factors[0] defined the extension) 

c is number of columns in the key-switching matrices [default=2] 

k is the security parameter [default=80] 

L is the # of primes in the modulus chai [default=4*R] 

s is the minimum number of slots [default=4] 

m is a specific modulus 

repeat is the number of times to repeat the test 

 

You can compile App.cpp code with: (App.cpp in /scr directory) 

sudo g++ Mytest.cpp fhe.a - o App \ - L/ usr / local / lib - lntl  

 

1.2 Scarab library 

1.2.1 Installation: 

This installation was tested on Ubuntu 12.04 32bit, kernel Linux 3.2.0-60-genric-pae, 

processor Intel Core i5 CPU M60 2.67 GHz *4, memory 4GiB, virtualized machine using 

VMware. 

Download:  

¶ libScarab-1.0.0 [65]. 

¶ gmp-6.0.0   

¶ flint-1.6 

¶ mpfr-3.1.2 

¶ mpir-2.6.0 
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# Install m4 and lzip  

 

sudo apt - get install m4  

 

sudo apt - get install lzip  

 

# Install gmp  

 

lzip - d gmp - 6.0.0.tar.lz  

 

tar  xf gmp - 6.0.0.tar  

 

cd  gmp- 6.0.0  

 

./ configure  

 

make 

 

make check #(don't skip the checks!)  

 

sudo make install  

 

# Install mpfr  

 

tar  xjf mpfr - 3.1.2.tar.bz2  

 

cd  mpfr - 3.1.2  

 

make 

 

make check  

 

sudo make install  

 

# Install mpir  

 

tar  xjf mpir - 2.6.0.tar.bz2  

 

cd  mpir - 2.6.0  

 

./ configure  

 

make 

 

make check  

 

sudo make install  

 

# Install flint  

 

tar  xf flint - 1.6.tgz  

 

cd  flint - 1.6  

 

source flint_env  
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make library  

 

sudo cp libflint.so / usr / local / lib  

 

sudo cp *. h / usr / local / include  

 

sudo mkdir - p / usr / local / include / zn_poly / src  

 

sudo cp zn_poly / include /*. h / usr / local / include / zn_poly / src /  

 

# Run libscarab test  

 

mkdir  libscarab  

 

cd  libscarab  

 

unzip ../ libScarab - 1.0.0.zip  

 

make 

 

export  LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/ usr / local / lib  

 

./ integer - fhe  
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