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ABSTRACT 

With the rapid development of global economy, there is an ever-growing demand for 

energy. The excessive use of traditional fossil fuel exposes the human to multiple 

environmental issues. As a promising technology, thermochemical conversion of biomass is 

able to provide not only environmental-friendly substitute fuel, but also other value-added 

chemicals. However, the complex composition and poor quality of conversion products 

hinders industrial application of biomass in large scale. This study focuses on pyrolysis 

conversion of biomass and explores possible ways to improve bio-oil quality and stability.  

First, sodium formate was selected as hydrogen donating agent and co-pyrolyzed with 

lignin in a micropyrolyzer. It was found that the presence of sodium formate promotes the 

production of simple and/or stable phenols such as phenol, syringol and ethylphenol, while 

reducing the yields of reactive vinylphenols. Among the pyrolysis products, acetic acid was 

eliminated by neutralization. As a result, the pyrolysis oil produced from co-pyrolysis of 

lignin and sodium formate contained an increased amount of phenolic monomers, and also 

had an improved thermal stability during aging tests compared to pyrolysis–oil of lignin. 

Deuterated sodium formate was also employed in the present study to investigate the 

mechanism of hydrogen transfer during lignin pyrolysis. The presence of hydrogen mainly 

affected depolymerization of lignin polymer through a series of reactions that involving both 

primary and secondary reactions to form alkylated phenols. Electrophilic substitution of 

hydrogen atoms in phenolic aromatic rings was observed. 

Next, the effect of hydroquinone (HQ) on bio-oil storage stability was investigated as 

HQ is a well-known free radical scavenger. The addition of HQ in previously condensed bio-

oil had no effect on bio-oil aging. In comparison, quenching pyrolysis vapors in HQ 
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containing solvent preserved more monomers after aging by suppressing bio-oil 

polymerization. The electro paramagnetic resonance (EPR) was used to analyze free radicals 

in the bio-oils condensed with or without HQ addition. The comparison of the EPR spectra of 

fresh and aged bio-oil samples showed that addition of HQ in the vapor quenching solvent 

effectively reduced the concentration of the free radicals in bio-oil. The study suggests that 

reactive free radicals present in both pyrolysis vapors and freshly condensed bio-oil. 

Eliminating these free radicals using capping reaction improves bio-oil stability. 
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CHAPTER 1 

 INTRODUCTION 

 

With increasing industrialization and global population, especially with the economic 

development in emerging markets, the need for energy has been keep growing [1]. The most 

popular form of energy is fossil fuels, which include petroleum, coal and natural gas. In 

2013, global energy consumption by the form of energy was petroleum 31.1%, coal 28.9% 

and natural gas 21.4% [2].  

Fossil fuels are non-renewable energy resources and the consumption is irreversible. 

It has been reported that “total world proved oil reserves reached 1687.9 billion barrels at the 

end of 2013, sufficient to meet 53.3 years of global production” [3]. Pollution is another 

significant issue caused by the excessive consumption of fossil fuels. Greenhouse gases 

(carbon dioxide, methane, nitrous oxide and fluorinated gases, etc.) are primarily emitted 

from fossil fuel consumptions, creating serious environmental concerns. The average global 

temperature is expected to increase by 2ºF to 11.5ºF by 2100, depending on the level of 

future greenhouse gas emissions [4-6]. Aerosols stemming from particulate matter 2.5 

micrometers or smaller in diameter are released from coal combustion and are adversely 

affecting human health [7-9]. The increasing concerns over world energy crisis and excessive 

pollutants emission have forced researchers to actively research for renewable alternatives of 

fossil fuels [10-14]. 

Biomass, the organic materials of recent biological origin, is a renewable energy 

resource that is abundantly available. The total heating value generated from combusting the 

biomass on the earth is approximately five times of the total heating value of the fossil fuel 
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consumption in the worldwide [15]. Biomass is also considered as carbon neutral energy 

source. Biomass absorbs carbon dioxide from atmosphere through photosynthesis and fixes 

the carbon in its structure as it grows. Therefore, biomass has been considered as the 

promising alternative of fossil fuels to resolve energy crisis and minimize environmental 

concerns.  

 

1. Overview of biomass  

Biomass is the organic matter primarily presents in the form of grass, trees, crops 

residues and aquatic plants. Unlike traditional fossil fuels (i.e., coal, crude oil and natural 

gas) that are mainly consist of carbon and hydrogen, biomass contains a large amount of 

oxygen in its chemical structure in addition to carbon and hydrogen. The main compositions 

of lignocellulosic biomass are cellulose, hemicellulose and lignin. Biomass also contains 

small amounts of extractives and naturally occurring inorganic minerals. The ratios of 

cellulose, hemicellulose and lignin depend on biomass species. A summary of the 

compositions for typical biomass materials is listed in Table 1. 

With a chemical formula (C6H10O5)n, cellulose is a high molecular weight polymer of 

repeating β-D-glucopyranose units bound by (1→4)-glycosidic bonds, as shown in Figure. 1. 

Cellulose molecules are straight chain polymer with no coiling or branching in their 

structure.  Bundles of cellulose molecules were hold side by side by multiple hydroxyl 

groups to form microfibrils, which enjoy highly tensile strength. These cellulose microfibrils 

build up into a polysaccharide matrix [18], [19].  

 

 



3 

 

Table 1. Composition of typical biomass materials [16] 

 Lignocellulose Content (% of Dry Weight) 

Plant material Lignin Hemicellulose Cellulose 

Corn Stover 6.0 25.7 48.0 

Wheat Straw 21.0 20.0 24.0 

Rice Straw 14.2 40.0 34.0 

Switchgrass 16.0 28 32.0 

Orchard Grass 4.7 27.2 32.0 

Oak 27.0 40.0 47.0 

Birchwood 15.7 29.0 40.0 

 

Figure 1. Chemical Structure of Cellulose [17] 
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Hemicellulose, also known as polyose, is another major composition within 

lignocellulosic biomass. It is embedded in the plant cell wall and binds with pectin to form 

cross-linked fibers. Although hemicellulose presents along with cellulose in almost all kinds 

of plant cell wall [20], hemicellulose has a different structure and property than cellulose, as 

shown in Figure 2. Unlike cellulose, which is homo-polysaccharide, hemicellulose is hetero-

polysaccharide and is composed of different polymerized monosaccharides as shown in 

Figure 3. While cellulose consists of 7000-15000 glucose molecules, hemicellulose consists 

of much shorter chains, about 500-3000 sugar units [22]. In addition, hemicellulose is a 

branched polymer, contrary to cellulose which does not consist of braches. Cellulose and 

hemicellulose can be depolymerized biologically or thermochemically to provide monomeric 

sugars. The sugars are currently being upgraded to liquid fuels and chemicals [23-25]. 

 
 

Figure 2. Chemical structure of hemicellulose [17] 
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Figure 3. Main composition of hemicellulose [21] 
 

Lignin accounts for up to 35% of biomass and is the most abundant renewable 

organic polymer next to cellulose [26, 27]. In plant, lignin provides mechanical strength for 

cell wall. Without the structure support provided by lignin, trees will not reach height out of 

100 meters and would collapse on themselves [28]. Technical lignin is the lignin isolated 

from biomass by thermal and/or chemical processes and is readily available from industries 

as a byproduct. In paper industry, lignin is removed from biomass since it is responsible for 

paper yellowing with aging [29]. Lignin is also produced from cellulosic ethanol industry 

after cellulose is utilized for sugars and further to ethanol. [30]. As shown in Figure 4, lignin 

is a complex, three dimensional, cross-linked amorphous polymer made by random 

polymerization of its three primary precursor monomers: p-coumaryl alcohol, coniferyl 

alcohol and sinapyl alcohol [33, 34] shown in Figure 5. If depolymerized, the theoretical 

yields of benzene and phenol from lignin can be as high as 40% and 50%, respectively [35].  

However, the complex and sturdy structure of lignin is recalcitrant for thermochemical or 

biological destruction, which hampers widespread application of lignin as the feedstock to 

produce high valued aromatic compounds [30, 36]. Majority of lignin is currently burned for 
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heat and power and only less than 5% of lignin is utilized for products, such as resin, binder, 

flavoring agent etc [37].  

 

 
Figure 4. Lignin segment structure [31, 32] 
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Figure 5. Three major precursor monomers build up lignin  
(From left to right, p-coumaryl alcohol, coniferyl alcohol and sinapyl alcohol) [21] 

 

 

2. Overview of fast pyrolysis 

Pyrolysis is a thermal treatment process that occurs in the absence of oxygen. 

Depending on the operational conditions employed, pyrolysis process can be defined as slow 

pyrolysis or fast pyrolysis. Fast pyrolysis is commonly used to convert biomass to liquid 

product, so called bio-oil. During fast pyrolysis, biomass is rapidly heated (heating rate > 100 

C/s) and the arising vapor is quenched to produce bio-oil. The vapor residence time is usually 

less than 2 seconds in order to maximize bio-oil yield [38-41].  Bio-oil is the major pyrolysis 

product, accounting for 60-75 wt% of biomass [42, 43]. It is a complex mixture of 

oxygenated compounds produced from depolymerization of biomass [44]. These compounds 

could be further upgraded into transportation fuels and other value-added products. Pyrolysis 

products also include 10-20 wt% of gas and 15-25 wt% of char [42]. Biochar is a solid 

charcoal which is rich in carbon [45]. Biochar has an appreciable surface area due to its 

micropores and also contains various nutrient elements, such as N, S, P and K. Biochar can 

be used as soil amendment to increase soil fertility and improve agricultural production. 

When applied to soil, biochar fix carbon back to the ground to reduce greenhouse gas 
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emission. Biochar also has applications as activated carbon or solid fuel. The non-

condensable gas products of fast pyrolysis are mainly carbon dioxide, carbon monoxide, 

methane and also smaller amounts of hydrogen and hydrocarbon gases. The pyrolysis gas can 

be flared off or recycled back into the process [22]. Therefore, there is nearly no waste 

produced by fast pyrolysis. Pyrolysis reactors usually have low capital and operation costs 

and also great flexibility in reactor design [22]. Thus, fast pyrolysis has been considered as 

one of the most promising approaches to utilize biomass for liquid transportation fuels and 

value-added chemicals.  

 

3. Overview of bio-oil 

Rapid quenching of the vapor after exposing biomass to intense heat was able to 

quickly trap depolymerized fragments of cellulose, hemicellulose and lignin in the form of 

bio-oil. Bio-oil is dark brown, free flowing liquid. It is composed of a number of highly 

oxygenated compounds, such as water, acids, alcohols, aldehydes, aromatics, furans, ketones, 

phenols and sugars [46-49]. Biomass-derived bio-oil is commended for its poor quality 

attributed to complex composition, high water content, corrosive nature and its reactivity. 

High oxygen content of bio-oil is crucial, as the heating value of bio-oil is only an half of 

traditional fossil fuels.  Bio-oil contains over 300 different compounds [46] and many of 

them are very reactive [50]. Carboxylic acids in bio-oil do not only contribute to 

corrosiveness of bio-oil, but also act as catalyst to promote various reactions among phenols, 

sugars and aldehydes, for example polymerization, condensation and degradation [51]. Due 

to its high reactivity, bio-oil is thermally unstable during storage. Thermal instability of bio-

oil increases viscosity of bio-oil and even causes phase separation. 
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Multiple approaches have been investigated in order to improve bio-oil stability. Polk 

et al. [52] added low viscosity solvents, such as water, methanol or acetone to reduce the 

viscosity of bio-oil. However, the effectiveness of the solvents on bio-oil stability and related 

reaction mechanism were not reported. Tiplady et al. [53] also added water to hardwood bio-

oil and aged for four months at room temperature. They found that the viscosity of bio-oil 

decreased clearly with the increase of water addition. When adding 20 wt% water into bio-

oil, the viscosity decrease is 3.3 cP/d. When adding 25 wt% water into bio-oil, the viscosity 

decrease is 0.9 cP/d. When adding 30 wt% water into bio-oil, the viscosity decrease is 0.05 

cP/d. Diebold et al. [54] compared the effectiveness of multiple solvents, including methanol, 

ethanol, acetone, ethyl acetate, in stabilizing hardwood bio-oil. They concluded that 

methanol is the most effective solvent and recommended adding 10 % of methanol in bio-oil 

to improve stability.  

Although lignin accounts for less than 30% of total biomass, phenolic oligomers 

derived from lignin are the major portion of high molecular weight compounds in bio-oil. It 

has been reported that repolymerization of phenolic oligomers during bio-oil storage is one 

of the main contributors of bio-oil instability and high viscosity of bio-oil [55]. The phenolic 

oligomers were thought be partly decomposed fragments of lignin that are thermally ejected 

[56-59]. On the other hand, recent studies showed that lignin initially depolymerizes to 

phenolic monomers and dimers, rather than large phenolic oligomers [60]. After pyrolysis, 

the phenolic monomers can rapidly repolymerize into oligomers through their reactive 

functionalities even in vapor phase [60]. Thus it has been hypothesized that reducing 

reactivity of phenolic monomers using capping reactions can prevent the formation of 

phenolic oligomers and improve stability of bio-oil.  
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In addition to the reactive functionalities, free radicals in pyrolysis products could 

also initiate polymerization through free radical initiation, propagation and termination 

reactions. Although the mechanism is still under debate, it is experimentally proven that 

lignin is the major source of free radicals in biomass [61, 62]. Thus, controlling free radicals 

among pyrolysis products could possibly reduce the polymerization reactions. However, it 

has also been noted that the reactive free radicals often have extremely short life times (less 

than milliseconds) [63]. For this reason, the free radicals that can be detected in condensed 

bio-oil are stable ones, which do not contribute to bio-oil aging [61, 62]. Nevertheless, the 

reactivity of the free radicals in pyrolysis vapor has not been fully understood.  

The goal of this research is to improve bio-oil quality by increasing monomer yields 

and storage stability. In the present study, two types of capping reactions are explored in 

order to stabilize reactive species in bio-oil. 

First, sodium formate is co-pyrolyzed with lignin as the hydrogen donor agent. 

Sodium salt could also potentially neutralize carboxylic acids in bio-oil to reduce the 

catalytic effects of the acids for polymerization. Deuterated sodium formate is also employed 

in order to investigate the mechanism of hydrogen capping reaction. Next, hydroquinone 

(HQ) is used as a free radical scavenger and introduced during biomass pyrolysis. Electro 

Paramagnetic Resonance (EPR) technology is used to investigate the free radicals capping 

mechanism of hydroquinone.  
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CHAPTER 2 

 UNDERSTANDING HYDROGEN TRANSFER EFFECT DURING LIGNIN PYROLYSIS 

FOR STABILIZED PYROLYTIC OIL USING DEUTERATED SODIUM FORMATE 

 

Abstract 

With the rapid commercialization of cellulosic ethanol in recent years, utilization of 

lignin byproduct to produce value-added products has received increasing attention. 

Depolymerizing lignin into phenolic monomers could provide valuable aromatic precursors 

for biofuels and chemicals. Although fast pyrolysis process has the ability to thermally 

depolymerize lignin, it usually yields relatively small amount of phenolic monomers. Instead, 

lignin produces a large amount of phenolic oligomers that are difficult to upgrade. 

Repolymerization and condensation reactions occurring during pyrolysis increase the 

molecular weights of the products and cause thermal instability of bio-oil. Thus, it is 

hypothesized that providing hydrogen atoms during pyrolysis process could stabilize the 

reactive species and improve product stability. In the present study, sodium formate was 

selected as the hydrogen donating agent and co-pyrolyzed with lignin in a micropyrolyzer. It 

was found that the presence of sodium formate promotes the production of simple and/or 

stable phenols such as phenol, syringol and ethylphenol, while reducing the yield of reactive 

vinylphenols and acetic acid. The bio-oil produced from co-pyrolysis of lignin and sodium 

formate contained an increased amount of phenolic monomers, lower fraction of phenolic 

oligomers and a better thermal stability during aging tests compared to the bio–oil of lignin. 

Deuterated sodium formate was also employed in the present study to investigate the 

mechanism of hydrogen transfer during lignin pyrolysis. Hydrogen influences both primary 
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and secondary reactions of the depolymerization of lignin through a series of reactions to 

form alkylated phenols and simpler phenolic monomers during pyrolysis. Substitution of 

hydrogen atoms in phenolic aromatic rings was observed. 

 

Keywords: Fast pyrolysis, sodium formate, bio-oil stability, deuterium  
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1. Introduction 

Increasing concerns over greenhouse gas emission by fossil fuels and national energy 

security have forced researchers to pay more attention to renewable energy [1-4]. Biomass is 

an important source of renewable energy and it is the only alternative of fossil fuels for liquid 

transportation fuels and chemicals [5]. Lignocellulosic biomass consists of three basic 

components, which are cellulose, hemicellulose and lignin [6]. Upgrading of C5 or C6 sugars 

derived from cellulose and hemicellulose to ethanol, hydrocarbon fuels and various 

chemicals have been frequently reported [7-12]. Utilization of lignin for value-added 

products, however, has been known to be extremely challenging.   

Lignin accounts for 10-35% of lignocellulosic biomass and it is the second most 

abundant biopolymer on the earth next to cellulose [13, 14]. In addition to plant biomass, 

technical lignin is also readily available in paper, pulping and cellulosic bio-refineries in 

large quantities as a byproduct [15, 16]. Lignin is a randomly cross-linked three dimensional 

polymer biosynthesized from three primary precursor monomers: p-coumaryl 

alcohol, coniferyl alcohol and sinapyl alcohol [17, 18]. Due to its molecular structure, lignin 

can be a potential source of renewable aromatics. However, only a very small percent of over 

50 million tons of annually produced lignin has been utilized as products, such as resin, 

adhesive, flavoring agent, and over 95% of the lignin is used as boiler fuels for heat and 

power [16]. Lignin is difficult to be utilized either biologically or thermochemically, due to 

its complex chemical structure and recalcitrant for depolymerization [19]. An effective 

utilization of lignin would not only provide an alternative source of biofuels and chemicals, 

but also greatly improve the economic prospect of the lignin producing industries [20].  
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Fast pyrolysis of biomass is a rapid thermochemical decomposition process, mainly 

used to liquefy biomass into high-energy density liquid. Fast pyrolysis occurs at inert 

environment, moderate temperature (around 500 ºC) and usually at atmospheric pressure 

[21]. During pyrolysis, dry biomass particles are heated at heating rates above 100 ºC/s and 

the pyrolysis vapor is rapidly quenched to become bio-oil [22]. High heating rate, moderate 

pyrolysis temperature and short vapor-residence time are critical factors in maximizing bio-

oil yield. The yield as much as 70% is achievable from fast pyrolysis [23]. Bio-oil derived 

from pyrolysis of lignocellulosic biomass is a mixture of decomposed carbohydrates and 

lignin, such as sugars, furans, acids, ketones, aldehydes, alcohols and phenols dispersed in 

water [24].  Although sometimes it is directly used as fuels in boilers, bio-oil is usually 

considered as an intermediate product and further upgraded. Due to its simplicity in the 

reactor design, low capital and operation costs, fast pyrolysis has been considered as one of 

the promising ways to convert biomass into building block chemicals for transportation fuels 

and other value-added products.  

Despite the aforementioned advantages of fast pyrolysis, several significant technical 

barriers remain to be overcome in terms of producing fuels and chemicals from bio-oil in 

scale. The problems are associated with the intrinsic properties of bio-oil, which make it 

much poor raw material compared to petroleum. Bio-oil is acidic liquid that has high oxygen 

content. It also contains high percentage of water derived from both reaction product and 

original moisture [25]. Bio-oil is also a complex and thermally instable mixture of hundreds 

of chemicals [26].  During storage, bio-oil subjects to aging reactions. The aging of bio-oil 

increases viscosity of bio-oil and even cause phase separation. Increasing average molecular 

weight of bio-oil and water content during bio-oil aging indicates polymerization, 
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condensation reactions occur during aging. Aging is highly undesired as it causes the fluidity 

and volatility of bio-oil to dramatically decrease. Bio-oil aging is a complex process, 

involving many different groups of compounds and series of reactions [27-31]. Among it, 

lignin-derived phenolic oligomers greatly contribute aging effect of bio-oil [32]. These high 

molecular weights, high viscosity compounds continue to increase their molecular weights 

due to the reactivity of various functionalities on phenolics.  

Several strategies have been proposed by researchers, aiming to improve stability of 

bio-oil. Some examples include esterification, solvent addition and hydrodeoxygenation 

(HDO). Esterification converts carboxylic acids in bio-oil with alcohols in the presence of 

acidic catalyst [33-38]. Although the mechanisms is under discussion, adding solvents, such 

as methanol, ethanol, water, acetone and ethyl acetate into bio-oil has been experimentally 

proved effective to decrease bio-oil viscosity and aging rate[39-42]. HDO can effectively 

deoxygenates pyrolysis products to stabilize bio-oil, but it usually occurs in the presence of 

catalysts and/or under relatively higher pressures. [18, 43, 44].  

It should be noted that these approaches target condensed bio-oil. Our previous study 

has shown that repolymerization could also occur in the vapor phase prior to the pyrolysis 

products condense [45]. Therefore, it is hypothesized that stabilizing the reactive species 

using capping agents as they formed could produce stable bio-oil. Capping reactions have 

been used in coal liquefaction processes to stabilize the reaction products [46]. Researchers 

proposed that the free radicals formed during coal liquefaction would be stabilized by donor 

hydrogen and thus prevent repolymerization reactions [46-43]. The examples of hydrogen 

donating agents are tetralin, naphthol and formic acid. It should be noted that capping 

reactions often occur at elevated pressures and extended reaction times [51]. It is unknown 
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whether capping reaction equally effective in fast pyrolysis. Therefore, in the present study, 

lignin is co-pyrolyzed with sodium formate as the capping agent. Deuterated sodium formate 

is also employed in the present study to investigate the reaction mechanism of hydrogen 

donor. 

  

2. Materials and Methods 

2.1 Materials 

Organosolv lignin derived from corn stover was provided by Archer Daniels Midland 

(ADM) Company, Chicago, USA. Methanol, acetone and tetrahydrofuran were purchased 

from Fisher Scientific Company. Sodium formate, deuterium sodium formate and the rest of 

the compounds were purchased from Sigma-Aldrich Company.  

2.2 Pyrolysis  

Pyrolysis experiments were performed using a Frontier Lab Tandem μ-Reactor (Rx-

3050TR) with an Auto-Shot sampler (AS-1020E) pyrolysis system. The reactor system has 

two reaction furnaces (1st and 2nd furnaces) and two independent interface sections arranged 

in tandem. Temperature of the furnaces and interfaces can be controlled independently from 

40 to 900 ºC with 1 ºC interval.  In the present study, the temperature of the 1st reactor was 

kept at 500 °C, and the 2nd  reactor and both of the interface sections were set at 300 ºC to 

prevent pyrolysis products from condensation. The 1st furnace was used for pyrolyzing 

samples and 2nd reactor was originally designed to hold a catalyst bed. However, no catalyst 

bed is used in the present study, the pyrolytic vapors just passed through the second reactor 

without any reaction in it. The pyrolysis vapor leaving the micropyrolyzer was swept into an 
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on-line Agilent 7890B/5977A GC/MSD system for instant identification and quantification 

of the products.  

An alloy capillary column (Ultra Alloy-1701) for the GC is purchased from Frontier 

Laboratories LTD, Japan. The GC oven was heated from 40 ºC to 280 ºC at a heating rate of 

6 ºC/min and kept at the final temperature for additional 10 minutes. Three independent 

detectors, MS, FID and TCD, were connected with the end of the GC column and substances 

eluted from the column were separated into 3 parts and measured by the three detectors 

separately. Only MS and FID detector were employed in the present study. The MS signal 

was used to identify the reaction products, including deuterated phenolic compounds. 

Pyrolysis compounds were identified by NIST library, and quantified using authentic 

compounds. The FID signal was used to quantify all the volatile products.  

For each test, about 500 ± 10μg of lignin or phenolic model compound mixed with or 

without sodium formate was placed in a deactivated stainless sample cup for pyrolysis. The 

ratio of lignin to sodium formate ranged from 1:0.5 to 1:4. 

2.3 Collection of pyrolysis vapor 

Pyrolysis reactor system was detached from the GC/MS system and placed on the top 

of a solid framework with a hole in the middle. The reactor needle on the pyrolyzer was 

inserted into a sealed end of a U-shaped glass tube. The other end of the U-shaped tube was 

connected with a fume hood for releasing the non-condensable gas during vapor collection. 

The glass tube was filled with glass beads and immersed into a vessel filled with liquid 

nitrogen to quench the vapors. The glass beads were used to provide a large surface area to 

condense pyrolytic vapors.  
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To collect enough amounts of pyrolysis vapors, 10 cups of the sample were 

sequentially pyrolyzed. For each run, the reactor was purged for two minute to create an inert 

environment in micropyrolyzer. Then place the sample cup into the reactor for one minute 

before take it out of the pyrolyzer. After all ten cups of sample were pyrolyzed, the tube and 

the beads inside the tube were washed with 2.5 mL tetrahydrofuran or methanol to recover 

bio-oil. Generally, tetrahydrofuran was used for GPC analysis, while methanol for aging test. 

 

2.4 Bio-oil aging test 

The methanol dissolved bio-oil samples holding in GC vials were placed in fume 

hood with their cap open to evaporate methanol. After the methanol removed, re-tighten the 

GC vials and leave them aging for two weeks at room temperature. After aging, 2.5 ml of 

THF was added to the bio-oil for the following GPC analysis. 

 

2.5 Gel Permeation Chromatography 

 Gel permeation chromatography (GPC) analysis of the fresh bio-oil or aged bio-oil 

was performed in Dionex ultimate 3000 High Performance Liquid Chromatography system, 

which equipped with a Shodex Refractive Index (RI) and a Diode Array Detector (DAD). 

The GPC system column was calibrated through 6 polystyrene standard samples. Each bio-

oil sample was filtered by a 0.25μm Whatman PTFE filter before analysis. 
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3. Results and Discussion 

3.1 Distribution of pyrolysis products 

The distribution of pyrolysis vapor products is shown in Table 1. When lignin was 

co-pyrolyzed with sodium formate, the yields of ethyl and methyl phenols increased. These 

products include 4-ethylphenol, 2-methylphenol and 4-ethyl-2-methoxyphenol. On the other 

hand, the phenols with C=C bonds or carbonyl group, such as 4-vinyl-phenol, 2-methoxy-4-

vinyl-phenol, trans-isoeugenol and vanillin decreased. Among other types of phenols, the 

phenols with long side chain decreased and simpler phenols, such as phenol, guaiacol, 

increased. As the ratio of sodium formate to lignin increased, the trend became more 

profound. Clearly, the presence of sodium formate promoted both saturation and cracking 

reactions. Another significance of co-pyrolyzing lignin and sodium formate was that it 

significantly reduces the yield of acetic acid, and higher sodium formate content in the 

sample decreased acetic acid even more (Figure 1). When lignin to sodium formate ratio was 

over 1 to 3, no acetic acids was found among the products. 
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Figure 1. Acetic acid yields from lignin co-pyrolysis with sodium formate at different 
ratios 

 

The two main phenolic monomers produced from corn stover-derived lignin are 4-

vinylphenol and 2-methoxy-4-vinylphenol. These compounds are produced during co-

pyrolysis, the yields of 4-vinylphenol and 2-methoxy-4-vinylphenol reduced remarkably, 

while the yield of 4-ethylphenol and 2-methoxy-4-ethylphenol increase. The unsaturated 

C=C bonds are likely saturated by hydrogen released from sodium formate. As a hydrogen 

donor, sodium formate decomposes at 330 ºC into sodium carbonate, carbon monoxide and 

hydrogen. It has been previously reported that inorganic alkali salts can dramatically affect 

pyrolysis mechanism of cellulose to promote glycosidic-ring opening and gases formation 

[52, 53]. Since sodium carbonate is one of the decomposition products of sodium formate, it 

is unknown if sodium carbonate also affects lignin pyrolysis. Thus, lignin was also co-

pyrolyzed with sodium carbonate and the pyrolysis products were examined. As shown in 
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Table 2, overall a reduced amount of volatiles was detected when co-pyrolysis lignin with 

sodium carbonate. The total volatiles yield reduced from 13.913% for pure lignin to 9.358% 

for 1:1 mixture of lignin and sodium carbonate. The yield of nearly every compound 

decreased, both vinylphenols, methyl and ethyl phenols.  Comparing Table 1 with Table 2, 

we can find the decreasing trend of 2-methoxy-4-vinylphenol and 4-vinylphenol clearly 

moderate for co-pyrolysis lignin with sodium formate than with sodium carbonate, although 

the total yield reduced in both co-pyrolysis reactions. Besides, co-pyrolysis of lignin to 

sodium formate 1 to 3 case is a turning point and the yield of 2-methoxy-4-vinylphenol and 

4-vinylphenol increase when the ratio of sodium formate to lignin is higher than this turning 

point. In addition, unlike co-pyrolysis lignin with sodium carbonate, for which decreasing is 

the overall trend, the yield of some compounds increase clearly, although some others 

decrease when co-pyrolysis lignin with sodium formate. All of these results indicate the 

hydrogen released from sodium formate rather than sodium carbonate had taken main effect 

during co-pyrolysis. And the presence of the hydrogen might have 2 functions in capping 

reactions. On one hand, it promotes the hydrocracking of lignin macromolecules, during 

which more amount of 2-methoxy-4-vinylphenol and 4-vinylphenol are created. On the other 

hand, excessive hydrogen will then saturate the unstable C=C and yield more 4-ethyl-2-

methoxyphenol, 4-ethylphenol and other relatively stable compounds. 

 

 

 



Table 1 Overall products distribution of co-pyrolysis lignin with sodium formate 

No. Compound name Control 1 to 0.5 1 to 1 1 to 2 1 to 3 1 to 4 

1 Benzene 0.028 ± 0.004  0.025 ± 0.002 0.027 ± 0.004 0.030 ± 0.002 0.033 ± 0.003 0.031 ± 0.002 

2 Acetic acid 1.989 ± 0.166  0.286 ± 0.087 0.293 ± 0.142 0.043 ± 0.006 0.000 ± 0.000 0.000 ± 0.000 

3 Toluene 0.063 ± 0.001  0.063 ± 0.000 0.071 ± 0.005 0.071 ± 0.002 0.076 ± 0.004 0.077 ± 0.003 

 Sum of hydrocarbons (without acetic acid)  0.091 ± 0.005  0.088 ± 0.002  0.098 ± 0.009  0.101 ± 0.004  0.109 ± 0.007  0.108 ± 0.005 

4 Phenol 0.578 ± 0.017  0.921 ± 0.019 0.970 ± 0.056 1.029 ± 0.003 1.067 ± 0.080 1.049 ± 0.032 

5 2‐methoxyphenol 0.540 ± 0.023  0.893 ± 0.023 0.949 ± 0.085 1.021 ± 0.001 1.028 ± 0.043 1.014 ± 0.049 

6 2‐methylphenol 0.053 ± 0.004  0.099 ± 0.000 0.107 ± 0.009 0.122 ± 0.007 0.135 ± 0.013 0.143 ± 0.006 

7 4‐methylphenol 0.328 ± 0.003  0.207 ± 0.001 0.229 ± 0.020 0.222 ± 0.011 0.223 ± 0.006 0.238 ± 0.008 

8 2‐methoxy‐4‐methylphenol 0.460 ± 0.017  0.238 ± 0.007 0.239 ± 0.022 0.212 ± 0.000 0.213 ± 0.003 0.217 ± 0.008 

9 3,5‐dimethylphenol, 0.043 ± 0.003  0.057 ± 0.001 0.062 ± 0.003 0.071 ± 0.006 0.080 ± 0.007 0.088 ± 0.005 

 10 4‐ethylphenol 0.379 ± 0.016  0.459 ± 0.000 0.474 ± 0.021 0.493 ± 0.015 0.541 ± 0.041 0.542 ± 0.007 

11 4‐ethyl‐2‐methoxyphenol 0.240 ± 0.019  0.249 ± 0.004 0.261 ± 0.017 0.267 ± 0.006 0.270 ± 0.020 0.266 ± 0.003 

12 4‐vinylphenol 4.255 ± 0.107  4.159 ± 0.026 4.113 ± 0.090 4.013 ± 0.042 3.808 ± 0.302 3.844 ± 0.142 

13 2‐methoxy‐4‐vinylphenol 2.400 ± 0.032  2.405 ± 0.018 2.343 ± 0.023 2.295 ± 0.035 2.171 ± 0.194 2.188 ± 0.077 

14 2,6‐dimethoxyphenol 0.711 ± 0.031  1.006 ± 0.033 1.099 ± 0.094 1.191 ± 0.000 1.233 ± 0.040 1.186 ± 0.063 

15 trans‐Isoeugenol 0.133 ± 0.006  0.101 ± 0.005 0.103 ± 0.008 0.092 ± 0.000 0.085 ± 0.011 0.086 ± 0.003 

16 1,2,4‐Trimethoxybenzene 0.431 ± 0.018  0.195 ± 0.006 0.206 ± 0.024 0.176 ± 0.005 0.168 ± 0.012 0.171 ± 0.009 

17 Vanillin 0.141 ± 0.015  0.090 ± 0.003 0.091 ± 0.012 0.080 ± 0.001 0.058 ± 0.020 0.054 ± 0.005 

18 1,2,3‐trimethoxy‐5‐methylbenzene 0.152 ± 0.007  0.156 ± 0.005 0.167 ± 0.008 0.178 ± 0.004 0.186 ± 0.009 0.181 ± 0.005 

19 3',5'‐Dimethoxyacetophenone 0.275 ± 0.004  0.281 ± 0.001 0.277 ± 0.005 0.271 ± 0.008 0.257 ± 0.037 0.271 ± 0.021 

20 Phenol, 2,6‐dimethoxy‐4‐(2‐propenyl)‐ 0.554 ± 0.014  0.461 ± 0.001 0.443 ± 0.032 0.416 ± 0.006 0.402 ± 0.045 0.404 ± 0.008 

21 Ethanone, 1‐(4‐hydroxy‐3,5‐dimethoxyphenyl)‐ 0.159 ± 0.007  0.094 ± 0.005 0.093 ± 0.010 0.072 ± 0.000 0.061 ± 0.015 0.063 ± 0.008 

 Sum of phenolic compounds  13.822 ± 0.510  12.355 ± 0.245  12.521 ± 0.682  12.264 ± 0.158  11.986 ± 0.898  10.955 ± 0.427 

 Total Yield  13.913 ± 0.515  12.443 ± 0.247  12.619 ± 0.691  12.365 ± 0.162  12.095 ± 0.905  11.063 ± 0.432 

26 
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Table 2 Overall products distribution of co-pyrolysis lignin with alkali salts (1 to 1) 

No. Compound name Control w Na2CO3 

1 Benzene 0.028 ± 0.004  0.030 ± 0.001 

2 Acetic acid 1.989 ± 0.166  0.000 ± 0.000 

3 Toluene 0.063 ± 0.001  0.056 ± 0.006 

4 Phenol 0.578 ± 0.017  0.629 ± 0.036 

5 2‐methoxyphenol 0.540 ± 0.023  0.525 ± 0.011 

6 2‐methylphenol 0.053 ± 0.004  0.059 ± 0.008 

7 4‐methylphenol 0.328 ± 0.003  0.251 ± 0.012 

8 2‐methoxy‐4‐methylphenol 0.460 ± 0.017  0.285 ± 0.005 

9 3,5‐dimethylphenol, 0.043 ± 0.003  0.041 ± 0.002 

10 4‐ethylphenol 0.379 ± 0.016  0.420 ± 0.067 

11 4‐ethyl‐2‐methoxyphenol 0.240 ± 0.019  0.186 ± 0.005 

12 4‐vinylphenol 4.255 ± 0.107  3.279 ± 0.109 

13 2‐methoxy‐4‐vinylphenol 2.400 ± 0.032  1.819 ± 0.110 

14 2,6‐dimethoxyphenol 0.711 ± 0.031  0.615 ± 0.011 

15 trans‐Isoeugenol 0.133 ± 0.006  0.092 ± 0.001 

16 1,2,4‐Trimethoxybenzene 0.431 ± 0.018  0.234 ± 0.005 

17 Vanillin 0.141 ± 0.015  0.083 ± 0.001 

18 1,2,3‐trimethoxy‐5‐methylbenzene 0.152 ± 0.007  0.108 ± 0.001 

19 3',5'‐Dimethoxyacetophenone 0.275 ± 0.004  0.205 ± 0.001 

20 Phenol, 2,6‐dimethoxy‐4‐(2‐propenyl)‐ 0.554 ± 0.014  0.366 ± 0.001 

21 Ethanone, 1‐(4‐hydroxy‐3,5‐dimethoxyphenyl)‐ 0.159 ± 0.007  0.073 ± 0.000 

 Total Yield  13.913 ± 0.515  9.358 ± 0.392 

 

3.2 Stability of bio-oil 

 Phenolic oligomers in bio-oil are difficult to be detected by GC/MS. Thus, the 

molecular weight distribution of condensed pyrolysis vapor was analyzed by GPC. Figure 2 

compared the molecular weight distributions of fresh bio-oils produced under various 

conditions. Compared to pyrolyzing lignin alone, there is a clear trend that the concentration 

of light molecular weight compounds increases, accompanied by decreasing concentration of 

the compounds with high molecular weight by the addition of sodium formate. The results 
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correspond to Table 1, indicating that the use of sodium formate as the capping agent 

effectively reduced the formation of phenolic oligomers and increased monomer formation. 

 

 

Figure 2. Fresh oils produced from pyrolysis of lignin and the mixture of lignin and 
sodium formate 

 

Figure 3 (a) and (b) show the aging effect of the bio-oils derived from pyrolysis of 

lignin alone or the mixture of lignin and sodium formate with a ratio of 1 to 1 after 2 weeks 

storage at room temperature. In both cases, the shift in the molecular weight distribution to 

higher end was observed due to the polymerization of phenols to form oligomers. For the 

aged bio-oil of lignin, the right-side peak representing phenolic oligomers became the 

dominant peak. In comparison, this peak was still the minor peak in the aged bio-oil derived 

from co-pyrolysis of lignin and sodium formate. This GPC result indicates that co-pyrolysis 

of lignin and sodium formate produced bio-oil with an improved stability. Vinyl and 

carbonyl groups in phenols are known to be reactive for polymerization and carboxylic acids 
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can act as the catalyst. Co-pyrolysis with sodium formate suppressed the formation of the 

phenols with the reactive functional groups and also neutralized acetic acid in the pyrolysis 

products, which promoted stability of bio-oil.  
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Figure 3. Aging study of the oil products produced from (a) lignin and (b) the mixture 
of lignin and sodium formate 
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3.3 Deuterated MS data 

Hydrogen induced capping reaction is essential in improving the quality of bio-oil. In 

order to investigate the mechanism of hydrogen transfer during pyrolysis, deuterated sodium 

formate was also employed in the present study. Deuterated (D form) sodium formate and 

natural sodium formate (H form) were co-pyrolyzed with lignin respectively and the mass 

spectrum for each pyrolysis product was compared individually.  

The presence of deuterium in a phenolic compound can be determined by comparing 

with the masses (m/z value) of the compound between natural and deuterated sodium 

formate. From NIST database, taking 2-methylphenol as example, as shown in Figure 4, the 

molecular weight of 2-methylphenol is 108, it’s represented by the parent peak, if there is 

one deuterium attached on this compound, it would add one peak line on the right side of the 

parent peak, if there are 2 deuteriums attached on this compound, there would be 2 more 

peak lines added on the right side of the parent peak. So, for 2-methylphenol, there are 5 

more peak lines added besides the parent peak, which means for this compound it could be 

attached by as much as 5 hydrogen atoms during the copyrolysis. 

The presence of deuterium atoms was found in nearly all the pyrolysis products of 

lignin indicate hydrogen had transferred from sodium formate to lignin during pyrolysis. 

However, different compounds show a different hydrogen attachment accessibility. The 

phenomenon that different numbers of deuterium atoms was embedded into different 

phenolic compounds was observed. As shown in Figure 4, alkylphenols (methylphenol and 

ethylphenol), taking 2-methylphenol as example, contained higher number of deuterium 

atoms. Phenol, as shown in Figure 5, contained up to five deuterium atoms, indicating all 

hydrogen atoms on benzene ring are substituted by deuterium. In comparison, fewer 
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deuterium atoms were found in the methoxyl group of phenols, such as 2, 6-

dimethoxyphenol, as shown in Figure 6 and 3', 5'-Dimethoxyacetophenone. Hydrogen in 

methoxyl group of phenols was not substituted by deuterium possibly because hydrogen 

promotes the cleavage of methoxyl group from benzene ring and thus deuterium substitution 

was often observed at ortho position of benzene ring. The plausible structures of the 

phenolics after deuterium transfer are presented in Figure 7. 

3.4 Pyrolysis of model compounds with sodium formate  

To distinguish if capping reactions occur during thermal decomposition of lignin or 

secondary reaction of the primary pyrolysis products of lignin, phenolic compounds were 

also co-pyrolyzed with natural sodium formate and deuterium sodium formate respectively. 

Co-pyrolized natural sodium formate is used to examine product distribution change, while 

deuterium sodium formate was used to identify hydrogen transfer pathway. The GC/MS 

chromatograms of Figure 8 shows the product composition when 2-methoxy-4-vinylphenol 

(i.e., the main pyrolysis product of lignin) was pyrolyzed with or without sodium formate 

with a constant ratio of 1 to 1. Secondary reaction of the vinylphenol was significant during 

pyrolysis, indicated by the presence of several smaller peaks representing the phenols other 

than the starting material in the MS spectra. Among the secondary reaction products, simple 

and/or saturated phenolic compounds, such as phenol, guaiacol and 4-ethylphenol increased 

when the vinylphenol was co-pyrolyzed with sodium formate. When deuterated sodium 

formate was co-pyrolyzed, as the molecular structure plot shown in Figure 8, deuterium 

atoms were also found in the secondary reaction products. This result suggests that hydrogen 

transfer affects secondary reaction of primary pyrolysis products of lignin to produce 

saturated products and promote hydrocracking. 
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Other model compounds, such as phenol, cresol, benzene and guaiacol, were also co-

pyrolyzed with sodium formate and deuterium sodium formate. Interestingly, these 

compounds were fairly stable during pyrolysis and deuterium substitution in these molecules 

was not found. The mass spectrums of phenol co-pyrolyzed with and without sodium formate 

are given in Figure 9 as an example. However, it is noteworthy that these compounds as the 

products of co-pyrolysis of lignin and sodium formate contained deuterium atoms. This 

suggests that the simpler aromatics (phenol, cresol, benzene and guaiacol) are generated 

either by primary lignin depolymerization through hydrocracking or by secondary reaction 

through the saturation or substitution reaction with the products of primary reaction. Based 

on these results, it is concluded that external hydrogen transfer affects thermal 

depolymerization of lignin as well as the secondary reactions of primary products by 

promoting hydrocracking, saturation and substitution reactions. 

 

4. Conclusions 

Co-pyrolysis of lignin and sodium formate was found to increase the yields of simpler 

phenolic monomers and alkylated phenols at the expense of the phenols with vinyl, carbonyl 

and other complex functionalities. The presence of sodium formate also dramatically reduced 

the yield of acetic acid by neutralization. GPC analysis shows that the bio-oil produced from 

co-pyrolysis of lignin and sodium formate was more stable during storage and contained a 

higher amount of total monomers than the oil produced from pyrolysis of lignin. Hydrogen 

transfer from sodium formate to lignin, as well as decreased catalytic effect of acetic acid 

suppressed polymerization of phenolic products and improved the quality of bio-oil. The 

mechanism of hydrogen transfer during lignin pyrolysis was studied using deuterated sodium 
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formate. It was found that external hydrogen mainly transfers to phenolic alkyl side chain as 

well as para and ortho positions of phenolic benzene ring. Pyrolysis of phenolic model 

compounds and sodium formate suggests that external hydrogen affects thermal 

decomposition of lignin polymer through a series of reactions occur in steps to form simpler 

and stable phenols. 

 

 

 



 

Figure 4. Presence of deuterium atoms in pyrolysis products of lignin 
(2-methylphenol) 
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Figure 5. Presence of deuterium atoms in pyrolysis products of lignin 
(Phenol) 
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Figure 6. Presence of deuterium atoms in pyrolysis products of lignin 
(2, 6-dimethoxyphenol) 
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Figure 7. Hydrogen transfer in phenolic compounds during co-pyrolysis of lignin and sodium formate 
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Figure 8. Pyrolysis-GC/MS chromatogram of 2-methoxy-4-vinylphenol w/o sodium formate 
 

 

Figure 9. Pyrolysis-GC/MS chromatogram of phenol w/o sodium formate
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CHAPTER 3 

THE EFFECT OF HYDROQUINONE TO IMPROVING BIO-OIL STORAGE STABILITY 

 

Abstract 

Bio-oil produced from pyrolysis of biomass is unstable during storage and upgrading 

process. Polymerization and condensation of bio-oil compounds catalyzed by carboxylic 

acids can cause increased molecular weight and viscosity of bio-oil. Water content of bio-oil 

also increases and phase separation is possible. The conventional approaches to improve bio-

oil stability is either adding methanol to bio-oil or reducing carboxylic acid through catalytic 

esterification of condensed bio-oil. In the present study, the effect of hydroquinone (HQ) as 

the free radical scavenger related to bio-oil stability was examined. It was found that 

quenching pyrolysis vapors in HQ containing solvent can reduce polymerization of pyrolysis 

products and further improve bio-oil storage stability. However, adding HQ in already 

condensed bio-oil is found to be less effective. Electron paramagnetic resonance (EPR) was 

employed in the present study to investigate the mechanism of hydroquinone in stabilizing 

bio-oil. 

 

Keywords: Biomass, pyrolysis, hydroquinone, bio-oil stability, free radicals 
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1. Introduction 

Increasing energy consumption accompanied by the rapid development of global 

economy and population explosion, the global environment is experiencing increasingly 

serious problems caused by fossil fuels. Climate change due to greenhouse gas (i.e., carbon 

dioxide, methane, nitrous oxide, etc.) emission [1, 2], and human disease due to aerosol 

particulates generated from coal combustion are some of the examples [3-5]. Thus, 

developing green and renewable alternatives of fossil fuel become an urgent task. Among 

various green technologies, biomass is the only natural source that can provide liquid fuels 

and chemicals [6, 7]. Coming from plants, biomass is considered as a carbon neutral energy 

resource since there is no net carbon dioxide is emitted into the earth’s atmosphere during the 

combustion of biomass based fuels [8-10]. Lignocellulosic biomass is also the most abundant 

resources to generate sustainable energy. The worldwide annual production of biomass is 1 × 

1010 million tons [11].  The first generation bio-fuels, which are mainly produced from edible 

crops, are considered finite capability in replacing fossil fuel and alleviating the pressure of 

environmental issues since the competition for land and water. However, these concerns have 

been successfully solved by the second generation biofuel, lignocellulosic biofuel [12-14].  

As a rapid thermochemical decomposition process of organic materials, fast pyrolysis 

is performed in the absence of oxygen to produce non-condensing gases, liquids, and char 

[15]. Fast pyrolysis is considered as one of the most promising conversion technologies due 

to its relatively low capital and operation costs, attributed by the moderate reaction 

temperatures and atmospheric pressure operation [16]. During fast pyrolysis, lignocellulosic 

biomass is depolymerized into building block chemicals through series of reactions, such as 

cracking, deoxygenation, dehydrogenation, decarboxylation and dehydration [17, 18]. The 
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moderate reaction temperature, high heating rate, and super short residence time of the vapor 

are the keys for obtaining high yield of liquid products from biomass by pyrolysis [19]. The 

liquids, so-called, bio-oil, is the major product of fast pyrolysis and it is composed of various 

chemical compounds, including sugars, furans, acids, ketones, aldehydes, alcohols and 

phenols [20]. Bio-oil is also an intermediate produce suitable for upgrading to transportation 

fuels and other value-added products [21].   

Despite of obvious advantages in pyrolytic bio-oils, multiple significant technical 

barriers have to be overcome before fast pyrolysis process being considered for large scale 

industrial application. First of all, high oxygen content of pyrolysis oil is crucial, which 

contributes to a heating value as low as half of traditional fossil fuels [22]. Bio-oil is also a 

complicated mixture of a variety of chemicals and it is known that carboxylic acids in bio-oil 

can catalyze the polymerization and condensation reactions among different compounds [22, 

23]. As a result, bio-oil is extremely unstable and has a poor quality. Thermal instability of 

bio-oil has to be addressed properly before bio-oil can be commercially used as 

transportation fuel, since it increases viscosity of bio-oil and even causes phase separation 

[24, 25].  

The cause of bio-oil instability has been extensively investigated. Polymerization of 

phenolic compounds, reaction of aldehydes, esterification, sugar polymerization and 

degradation were found to contribute bio-oil aging [26-30]. Bio-oil also contains free 

radicals. Free radical is an atom, molecule, or ion that has unpaired valence electrons. 

Researchers have detected the presence of free radicals during the pyrolysis of biomass and 

its components [31-35] and lignin is the major source of free radicals among biomass 

composition [36-39]. Since reactive free radicals usually have very short lifetime, it has been 
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considered that the free radicals remaining in previously condensed bio-oil are stable and 

they do not contribute bio-oil instability [40]. However, the reactivity of free radicals in 

pyrolysis vapor is unknown and how they are correlated with bio-oil instability has never 

been investigated. Furthermore, it may be an effective way to improve bio-oil stability and 

quality by capping the free radicals while they are in pyrolysis vapor. 

Hydroquinone has been commercially utilized as free radical traps to inhibit 

polymerization [41]. A slight amount of HQ can effectively prevent polymerization of 

monomers that initiated by free radical chain reaction [42, 43]. Therefore, it is hypothesized 

that HQ could possibly react with free radicals generated from pyrolysis of biomass and 

therefore prevent polymerization reactions and stabilize bio-oil. To test this hypothesis, HQ 

was either co-pyrolyzed with red oak or added to the vapor quenching solvent in a small 

quantity. 

 

2. Materials and methods 

2.1 Materials 

Red oak powder 

Red oak chips obtained from Wood Residuals Solutions was milled and sieved to a 

size about 250 - 400µm.  

Red oak-derived lignin 

A solvent mixture of ethanol and water (125 ml of ethanol and 125 ml of water) were 

used for lignin extraction. 15 g of biomass sample and 1.5 g sulfuric acid were added to the 

mixture. The solution was transferred into a 500 ml Parr reactor in Iowa State University 

BioCentury Research Farm, the reactor was heated up to 180°C and then cooled down. The 
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solution was filtered by filter paper (Whatman 42), the filtrate was precipitated in 750 ml 

water, and the solid residue was collected and dried at 50°C. 

 

Chemical compounds 

Methanol, tetrahydrofuran and sulfuric acid were purchased from Fisher Scientific 

Company. Hydroquinone and the other compounds employed in the present study were 

purchased from Sigma-Aldrich Company. 

 

2.2 Pyrolysis test and vapor collection  

A Frontier Lab Tandem micro-pyrolysis reactor system (Rx-3050TR) was employed 

to perform red oak biomass pyrolysis. The reactor system has two reaction furnaces (1st and 

2nd furnaces) and two independent interface sections arranged in tandem, each of which is 

able to be independently temperature-controlled. The temperature can be controlled from 40 

to 900 ºC with 1 ºC interval for both reactor and interface section. In the present study, to 

collecting pyrolytic vapors, only the first furnace and its interface section is employed. The 

temperature of reactor was set at 500 ºC and interface section was set at 300 ºC to prevent 

pyrolysis products from condensing inside the system. 

Pyrolysis reactor system was fixed on a solid framework and the needle of 1st reactor 

was inserted into a Thermo Science GC glass vial filled with 1.5 mL solvent to condense 

pyrolysis vapor. The vial was placed in a container which filled with dry ice. The solvent can 

be either tetrahydrofuran or methanol, depending on analytical need. In the present study, 

pure tetrahydrofuran was used for GPC analysis, while pure methanol was for GC/MS, EPR 

analysis and aging tests. For each run, 4000 ± 50µg of red oak biomass or red oak derived 
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lignin was weighed in a sample cup. In order to acquire enough concentration, ten samples 

were pyrolyzed sequentially and the vapors were collected in the same vial. When collecting 

pyrolytic vapors in HQ added solvent, a constant 5 wt% HQ solvent concentration was 

employed in the present study.  

 

2.3 Bio-oil aging test 

To preparing aging samples for GC/MS analysis, an accelerated aging test was 

accomplished at 80 ºC for 12 hours. The GC vials with the methanol condensed bio-oil were 

placed inside a fume hood at room temperature to evaporate the solvent. After methanol 

evaporated, the vials were sealed and heated in a Fisher Scientific Isotemp Oven maintained 

at 80 ºC for 12 hours.  

As for aging test for already condensed bio-oil sample, red oak bio-oil produced in a 

pilot-scale pyrolysis unit in Iowa State University BioCentury Research Farm was employed. 

The bio-oil sample and the bio-oil with 10wt% of HQ were subjected for accelerated aging 

test at 80 ºC for 0, 8, 16 and 24 hours, respectively. The average molecular weights of the 

bio-oils were determined by GPC analysis.  

 

2.4 GC / MS analysis for bio-oil 

An Agilent 7890B/5977A GC/MS system was employed for bio-oil composition 

analysis. A 1 µL of bio-oil sample was injected into the GC column, which was an alloy 

capillary column (Ultra Alloy-1701). The column was contained in GC oven, which was 

heated from 40 ºC to 280 ºC at a heating rate of 6 ºC per minute and kept at the final 

temperature for additional 10 minutes. In the column, volatile compounds were propelled by 
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helium gas and travelled through the column and eventually eluted at different times. Three 

independent detectors, MS, FID and TCD, were connected with the end of the GC column 

and substances eluted from the column were separated into 3 parts and measured by the three 

detectors separately. The MS signal and NIST mass spectral library were used to identify the 

reaction products. FID detector was used to quantify pyrolytic products and the TCD detector 

was not employed in the present study.  

 

2.5 Gel Permeation Chromatography analysis  

The molecular weight (MW) distribution of condensed bio-oil was determined by Gel 

Permeation Chromatography (GPC) through Dionex ultimate 3000 High Performance Liquid 

Chromatography (HPLC) system. The GPC system equipped a Shodex Refractive Index (RI) 

and a Diode Array Detector (DAD).  The GPC system column was calibrated by six 

polystyrene standards. Each bio-oil sample was filtered by a Whatman 0.25μm 

polytetrafluoroethylene (PTFE) filter before analysis. The AMW and the molecular mass 

distribution were determined by Dionex – Chromeleon chromatograph data system software.  

 

2.6 Electron Paramagnetic Resonance analysis 

A 100 µL of vapor condensed solution was transformed to a special EPR quartz tube 

for analysis. EPR spectra was acquired on a Bruker ELEXYS E580 FT-EPR spectrometer at 

the X-band microwave frequency 9.9 GHz with a magnetic field modulation of 100 KHz at 

room temperature, microwave power 6.289mW. EPR parameters: center field of 3510 G, 

sweep time of 20.9 s, sweep width of 200 G, number of scans=16, receiver gain of 50dB, and 

modulation amplitude of 1 G. 
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3. Results and discussion 

3.1 Co-pyrolysis red oak with HQ 

When HQ was co-pyrolyzed with red oak biomass, the thin reactor needle of micro-

pyrolyzer was clogged almost instantly. This suggests that HQ, as free radical scavenger, 

strongly reacts with biomass-derived free radicals in the solid/liquid matrix to create non-

volatile products. The condensation of the large MW products in the vapor clogs the passage 

of the pyrolytic vapors. Thus it is conclude that capping the free radicals in the vapor phase 

using HQ was unsuccessful probably due to thermal instability of HQ.  

 

3.2. GC/MS analysis of HQ treated bio-oil 

Then we tried to collect pyrolytic vapors into HQ added solvent and analyze the bio-

oils composition using GC/MS. Table 1 compared the composition of fresh pyrolysis vapor 

of red oak with or without HQ treated. As shown, the bio-oils collected in HQ added 

quenching solvent have the similar concentrations of GC/MS detectable products compared 

to the bio-oils collected in the quenching solvent without HQ.  

The GC/MS chromatograms of the aged bio-oils with and without HQ treatment were 

compared in Figure 1. As it can be seen, very few volatile compounds can be detected for the 

aged bio-oil samples without HQ treated due to their low concentrations in the bio-oils. On 

the other hand, multiple carbohydrate-derived and lignin-derived compounds were still 

detectable for the bio-oils with HQ treatment after aging.       
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Table 1. Composition analysis of biomass pyrolysis vapors  
w / o hydroquinone solvent condensing 

Compounds (wt% per biomass) W/O HQ With HQ 

1 Glycolaldehyde 2.34 ± 0.03 2.46 ± 0.05 

2 Acetic acid 1.45 ± 0.14 1.61 ± 0.15 

3 Acetol 0.67 ± 0.05 0.73 ± 0.05 

4 Acetoxyacetic acid 0.13 ± 0.01 0.17 ± 0.01 

5 Furfural 0.11 ± 0.00 0.09 ± 0.01 

6 2-Hydroxycyclopent-2-en-1-one 0.02 ± 0.00 0.02 ± 0.00 

7 Guaiacol 0.17 ± 0.03 0.18 ± 0.02 

8 Creosol 0.08 ± 0.01 0.08 ± 0.00 

9 2-Methoxy-4-vinylphenol 0.01 ± 0.00 0.01 ± 0.00 

10 2,6-Dimethoxyphenol 0.09 ± 0.01 0.10 ± 0.01 

11 Isoeugenol 0.09 ± 0.01 0.09 ± 0.01 

12 1,2,4-Trimethoxybenzene 0.12 ± 0.00 0.13 ± 0.01 

13 1,2,3-Trimethoxy-5-methylbenzene 0.26 ± 0.01 0.28 ± 0.02 

14 3',5'-Dimethoxyacetophenone 0.10 ± 0.01 0.10 ± 0.01 

15 Levoglucosan 0.20 ± 0.01 0.20 ± 0.02 

16 2,6-Dimethoxy-4-allylphenol 0.20 ± 0.01 0.18 ± 0.02 

17 3,5-Dimethoxy-4-hydroxybenzaldehyde 1.11 ± 0.14 0.93 ± 0.02 

18 3,5-Dimethoxy-4-hydroxyphenylacetic acid 0.27 ± 0.01 0.28 ± 0.02 

19 3',5'-Dimethoxy-4'-hydroxyacetophenone 0.10 ± 0.00 0.08 ± 0.00 



 

Figure 1. GC/MS chromatograms for aged red oak bio-oils collected in a solvent with no HQ and with HQ 
(1. Glycolaldehyde; 2. Acetic Acid; 3. Acetol; 4. Furfural; 5. 2-Hydroxycyclopent-2-en-1-one; 6. Guaiacol;  

7. Cresol; 8. 2-Methoxy-4-vinylphenol; 9. 2, 6-Dimethoxyphenol; 10. Isoeugenol; 11. 1, 2, 4-trimethoxybenzene,  
12. 3', 5'-Dimethoxyacetophenone, 13. Levoglucosan, 14. 4-Allyl-2, 6-dimethoxyphenol, 15.  3, 5-Dimethoxy-4-

hydroxybenzaldehyde, 16. 3, 5-Dimethoxy-4-hydroxyphenylacetic acid) 
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3.3 GPC analysis of HQ treated bio-oil 

For fresh condensed bio-oil samples, as shown in Figure 2, the MW distribution 

between with and without HQ treated were very similar. After aged for 12 hours, the bio-oils 

with HQ treated consisted of the compounds with both low molecular weights and high 

molecular weights after aging (Figure 3). On the other hand, the bio-oils without HQ treated 

mostly consisted of the compounds with only high molecular weights. For the fresh red oak 

bio-oil with and without hydroquinone solution condensing, the average molecular weight 

(AMW) were 287 Da and 307 Da. After aging, the AMWs of bio-oil samples increased to 

442 Da and 567 Da. The results suggest that the presence of HQ was able to suppress 

polymerization of bio-oil and preserve more low MW compounds after aging. The GPC 

analysis results were in correspondent to the GC/MS chromatograms of the bio-oils since the 

oligomeric compounds with high molecular weights cannot be detected by GC/MS. 

Therefore, the bio-oils quenched in HQ containing solvent probably have lower tendency to 

polymerize thus containing higher concentration of GC/MS detectable low-molecular weight 

products after aging.  

 

3.4 The effect of HQ addition to condensed oil  

The AMWs of the bio-oils (i.e., condensed bio-oil, obtained from the BCRF pilot 

scale reactor) without and with HQ addition after aging test are compared in Figure 4. As 

shown, the addition of HQ to already condensed bio-oil did not have significant influence on 

the aging of bio-oil, as both types of the bio-oil aged in nearly identical pattern. The result is 

consistent with other researchers [38, 39], showing stable radicals in condensed bio-oil do 
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not contribute bio-oil aging and thus the addition of HQ has no effect to the already 

condensed bio-oil.  

 

Figure 2. Molecular weight distribution of fresh bio-oil w/o HQ 
 

 
 

Figure 3. Molecular weight distribution of aged bio-oil w/o HQ 
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Figure 4. Average molecular weights of bio-oils at different accelerated aging times  
  

 
 

Figure 5. EPR spectra of lignin pyrolysis vapor condensed in solvent  
with or without HQ 
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3.5 EPR analysis of HQ treated bio-oil 

As discussed above, the addition of HQ in already condensed bio-oil had no effect to 

bio-oil aging. In comparison, treating hot pyrolysis vapor with HQ was effective in 

decreasing bio-oil polymerization. This indicates that reactive free radicals is present in the 

pyrolysis vapor and HQ could act as a free radical scavenger. This speculation was further 

confirmed by measuring the free radicals in the bio-oil using EPR analysis technique.  

Since lignin is the major source of free radicles, the EPR spectra compared the free 

radical signal of red oak lignin-derived bio-oils with or without HQ treatment. As shown in 

Figure 5. The signal of the fresh bio-oil without HQ treated was significantly stronger than 

the fresh bio-oil with HQ, which indicate that HQ might react with the free radicals in the hot 

vapors when they were condensed in the HQ added solvent. After aging, the bio-oil without 

HQ treated showed a clearly decrease in the concentration of free radicals, while the free 

radical concentration in the bio-oil with HQ treatment did not change after aging. This 

indicates that reactive free radicals present in freshly condensed bio-oil and HQ addition to 

the quenching solvent is able to stabilize reactive free radicals. 

 

4. Conclusion 

The reactivity of free radicals in pyrolysis vapor and its effect on bio-oil stability 

were investigated using HQ as the free radical scavenger.  

1. Quenching pyrolysis vapors in HQ containing solvent can lower the tendency of 

polymerization and thus improve bio-oil storage stability.  

2. The addition of HQ in already condensed bio-oil is less effective. 
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3. The EPR analysis of bio-oil indicates that the free radicals in pyrolysis vapors are 

reactive and contribute to bio-oil instability. HQ stabilized the reactive free radicals when the 

vapor condenses, thus prevented free radical initiated polymerization.  
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CHAPTER 4 

GENERAL CONCLUSIONS 

 

In the present study, fast pyrolysis of biomass and its model compounds was 

investigated in order to understand reaction mechanisms and overcome the technical barriers 

that keeping pyrolytic bio-oil from being produced for large scale application. Currently, the 

poor quality of bio-oil due to complex product composition, and thermal instability of bio-oil 

are among the important factors that impact industrial upgrading of bio-oil. Therefore, it is 

necessary to in-depth examine the reaction mechanism of biomass pyrolysis and the cause of 

bio-oil instability, and provide solutions to improve bio-oil quality and stability. First, 

sodium formate was used as a hydrogen donor capping agent to co-pyrolyze with lignin. It 

was found that sodium formate strongly affects the distribution of lignin pyrolysis products 

by increasing simpler phenolic monomers and alkylated phenols at the expense of the 

phenols with vinyl and carbonyl groups. The addition of sodium formate dramatically 

reduced the yield of acetic acid by neutralization. As a result, bio-oil produced from co-

pyrolysis of lignin and sodium formate contained a higher amount of total monomers and a 

better thermal stability than the bio-oil produced from pyrolysis of lignin. The mechanism of 

hydrogen-transfer from sodium formate to lignin was studied using deuterated sodium 

formate. It was found that external hydrogen atoms mainly substitute phenolic alkyl-side 

chain and para-, ortho- positions of the benzene rings. Hydrogen was able to directly affect 

thermal decomposition of lignin polymer through a series of reactions involving 

hydrocracking, demethoxylation, saturation and substitution to produce simpler and stable 

phenols.  
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The free radical capping reaction was also investigated using hydroquinone (HQ) as 

the scavenger. It was found that quenching pyrolysis vapors in HQ containing solvent can 

lower the tendency of bio-oil polymerization and improve bio-oil storage stability. However, 

adding HQ in already condensed bio-oil was less effective since the condensed bio-oil 

contains stable free radicals, which do not contribute to bio-oil aging. The EPR analysis of 

bio-oil showed that reactive free radicals present in pyrolysis vapor and adding HQ in the 

vapor condensing solvent effectively cap the radicals and further improve bio-oil stability.  
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