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which is the most frequently reported environmental factor that influence the dynamic properties of
civil structures, has to be eliminated, otherwise, it can mask the structural damage easily. Much
research has been carried out to address the temperature effect issue while using control chart as
the data analysis tool to determine the occurrence of damages. These efforts are summarized in the

following.

In the work conducted by Kuallaa (2003), factor analysis technique was used to eliminate the
temperature effect without the requirement of measuring the temperature. Schewart control charts
were employed to verify the effectiveness of the proposed method using simulation data which
resembled the observations of the Z24 Bridge. Although this work was carried out to find a solution
to address the issue of temperature induced structural response variations, the results proved the

effectiveness of using control chart in damage detection as well.

Also to address the damage detection problem under varying temperatures, Yan and et al (2005)
proposed a PCA based method. Two examples were employed to verify the method: 1) A 3-span
bridge simulated by 32 beam elements. Damages were introduced by reduce the stiffness of
selected elements. 2) A wooden bridge. Artificial damages were created by adding different lumped
masses. The natural frequencies were chosen as the damage indicator. PCA was first applied to the
vibration features in reference state to capture the temperature effect. Using the established model,
the residual error of the prediction of current feature remains small if no damage happens. On the
other hand, if damage occurs, significant residual increase can be seen from the control chart

analysis. This method is very straightforward and verified to be powerful by the examples.

The first problem (A 3-span bridge simulated by 32 beam finite elements) solved in the previous
work was further studied by Deraemaeke and et al (2008). Damage indicators, including: 1) natural
frequencies; 2) mode shapes; 3) peak indictors extracted from the output of Fourier transform of
modal filters, were compared. The effects of temperature are treated using the factor analysis
technique. Multivariate Shewart-T control charts were employed as the data analysis tool to
determine the damages. Results indicated that when no noise present in the measurement, the
features can be ranked in terms of increasing damage sensitivity: natural frequencies, lower order
mode shapes, higher order model shapes, and the peak indictor extracted from the model filters.

However, when noises exist, mode shapes are ideal damage indictor.
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2.3.3 Summary

The researches reviewed above all concluded that Schewart control chart is a possible statistical
analysis tool that can be used to solve the structural damage detection problem. It has been
revealed that the selection of damage indicator and the elimination of environmental effect are
essential for the damage sensitivities. The frame work of applying control charts in damage
detection was established by these efforts. The control chart based damage detection approach is
attractive for the development of an automated continuous monitoring system because of its
simplicity, less interaction with users, and no analysis model was involved. However, most of these
efforts are based on data obtained from controlled lab testing and/or finite element analysis. When
applied in long term field monitoring, many improvements must still be made. First, the excitation
variance induced structural response change may be significant, especially when the collected data
were used directly without converting to structural dynamic features. None of these efforts
addressed the damage location detection problem, and none of the reviewed work has successfully
applied the control chart based damage detection approach with strain data. Being aware of the
advantages of control chart based damage detection approach and the limitations of existing efforts,
a strain based damage detection approach was developed at the BEC (Doornink, 2006) using the
concept of control chart. As mentioned before, it is the foundation for the work described in this

thesis. Important details of this work are reviewed in the following.

2.4 The Strain Based Damage Detection Method Developed in BEC

Upon the request of lowa DOT, the BEC developed a long term SHM system for two-girder fracture-
critical bridges in 2006. As a demonstration, the system was installed at the US 30 south skunk
bridge. Forty fiber optic strain sensors were installed along the bridge framing system to collect the
response strains resulting from ambient traffics. The major objective of this system is to detect the
formation of fatigue cracks in the girder web cut-back areas. Sensors that were installed in the
damage prone areas were named TS (Target Sensor) and other sensors are named NTS (Non Target
Sensor). The strain data collected by all the sensors are first zeroed and filtered to remove the
temperature effects and dynamic effects, and then, the maximum or minimum strains were roughly
detected for each vehicle event. With the extreme strains, match relationships can be developed
between TSs and NTSs with training data sets. An example of such match relationships is shown in

Fig. 2. 2a.
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Figure 2.2 A typical example of the match relationship and the control limits

Among the 1200 possible match relationships, 415 were considered to be useful and further
evaluated to determine damage occurrence. The baseline performance of the bridge was defined
through the upper and lower control limits similar to those used by control chart analysis. In this
work, the limits were defined manually. Figure 2.2b illustrates the control limits for the match

relationship shown in Fig. 2.2a.

After the match relationships and control limits were established, they are used to evaluate the data
obtained from an unknown structural state. During the evaluation, the match relationships were
created and compared with the control limits. Data within the control limits were assessed as “Pass”,
otherwise, they were assessed as “Fail”. For each event, the relationship pass percentage (RPP) was
calculated for each TS using Eq2.1. At the end of a specified evaluation period, the RPP assessments
are summarized in histograms. An example of the histograms is shown in Fig. 2.3a. The structural
damage occurrence was expected to be evidently shown in the histogram. The expected histogram
change caused by structural damage is shown in Fig. 2.3b.

Number of "pass"assessments Eqg. 2.1

RPP (%) = (100)
Total number of assessments
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Figure 2.3 Example of the RPP histogram

This system enables bridge owners to remotely monitor bridges for damage formation in the
damage prone areas. The strain-based SHM system is trained with measured performance data to
identify typical bridge responses when subjected to ambient traffic loads, and the knowledge that is
learned during the training is used to evaluate newly collected data. Evaluation reports can be
generated automatically at specified intervals. The system is probably the most sophisticated strain-
based SHM system that can be found in the literature. However, reviewing of this system, many
limitations can still be found:

1) The manually defined control limits are subjective, with which, the false alarm rate is hard to
control. In addition, the required personal interaction prevented the training procedure to
be realized automatically.

2) The final structural performance report was generated in the format of the RPP histogram. It
does not show the damage directly, further knowledge based interpretation of the report is
necessary.

3) The extreme strain values used in the evaluation were not based on an exact vehicular event
detection results. Therefore, the matches could be created between points that were not

produced by the same vehicle.

4) All the strain peaks were used in the evaluation. The different relationship patterns resulting
from the different load conditions can reduce the damage sensitivity of the method.

5) To apply the system, the damage prone areas have to be known in advance.
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6) No verification was performed for the proposed damage detection algorithm.
To address these limitations, a new strain-based damage detection approach was proposed in this

work.
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CHAPTER 3 SHM SYSTEM HARDWARE
AND DEMONSTRATION BRIDGE

The basic SHM hardware installed at the US Highway 30 (US30) bridge during previous research was
used in this project after integrating additional sensors. Figure3.1 illustrates the general
configuration of the SHM system hardware. The bridge site components (i.e. those components
residing at the bridge) consist of a strategically deployed fiber Bragg grating (FBG) strain sensor
network and the data collection, analysis and management components which includes: Micron
Optical Si425-500 interrogator, a Linksys router, and a desktop computer. The interrogator,
computer, and router were located in an environmentally controlled cabinet. The data collected by
sensors and interrogator are relayed through the router to the computer where they are
temporarily stored and immediately processed. The processed results can be sent back to the

remote office computer through the long range antennas.

@f
v
i
T
H

Figure 3.1 Schematic of the SHM system
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Details about the demonstration bridge, the sensor network and the communication network are
discussed in the remaining part of the chapter. In some cases further information may be found in

Chapter 4.

3.1 Demonstration Bridge

3.1.1 General Information

The US Highway 30 (US30) bridge crossing the South Skunk River near Ames, IA (Fig. 3.2) was
selected to demonstrate the developed SHM system primarily because this work built on work
previously completed. The three-span 320ft long 30 ft wide bridge carries two east bound traffic
lanes with a posted speed limit of 65mph. The 7.25in thick cast-in-place reinforced concrete slab
deck is supported by a framing system consisting of two stringers, 19 floor beams, and two welded
plate girders. The plate girders are continuous over the three spans (97’-6” end spans and a 125’-0"
main span), while the stringers are continuous over the floor beams. Figure 3.3 illustrates the layout,
typical cross section and the size of the structural components of the bridge. The girder flanges
taper from 28”x1.5” to 13”x1.5” within the negative moment region (Fig. 3.3-1c) and the girders
are spliced at locations 30ft from both piers. The bridge supports were designed to be roller at both
abutments and at the east pier and pined supported at west pier. The abutments are stub

reinforced concrete and the piers are monolithic concrete.

a. Side view b. Bottom view

Figure 3.2 US30 South Skunk Bridge
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3.1.2 Fatigue Damage in the Cut Back Regions

Under traffic loads, the vertical deflections of adjacent girders are different (primarily due to the
bridge skew), which in turn leads to an overall rotation of the floor-beams. As shown in Fig. 3.3-23,
the web stiffener was not welded to the girder top flange and as such, it is able to rotate with the
floor beam. However, due to the concrete deck the top un-stiffened portion of the girder web is
constrained from free rotation, and thus, a double curvature out-of-plane distortion is produced in
the small segment of the web between the top flange and the top of the connection plate (Fig. 3.3-2
b). As a result, the web gap region experiences high stress levels under traffic loading which can
result in the development of fatigue cracks. This type of out-of-plane induced fatigue damages has
been found in many welded plate steel bridges at locations where transverse structural members
are connected to the longitudinal girders (Fisher 1984; Roddis 2003). As a retrofit on the bridges of
this type in lowa, the connection plates were cut back (Fig. 3.3-2c) to reduce the out-of-plane
bending stresses. The retrofit slowed but did not completely eliminate the development of fatigue
damage at the cut back areas. The desire to detect this damage is what led to the work previously

completed and that described herein.

17!

— Connection plate was
not welded to the
girder top flange

a. Web gap

c. Cut-back area d. Bending at cut-back area

Figure 3.3-2 The web gap and cut-back area details and out-of-plate bending
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3.2 Fiber Optic Sensor Network

3.2.1 Sensor Selection and Installation

The developed SHM system utilizes FBG sensors to collect performance and live load data. Fiber
optic sensors (FOS) out perform other strain transducers in long term application due to their ability
to multiplex, sensor stability, and longevity in harsh environments (Schulz 1998). Previous SHM
research (Wipf 2006) and laboratory testing conducted by the BEC demonstrated the long term
performance and reliability of surface mountable sensors (SMS), and they were used in this project
as well. Figure 3.4 is a photograph of a 10mm FGB, which is embedded in a 210x 20 x1mm CFRP
package. The packaging protects the sensor and provides more surface bonding. The fiber pigtails
exiting from each side of the packaging (entry fiber and exit fiber) consist of SMF simplex cable
(3mm jacketing) and FC/APC mechanical connectors. The built in FC/APC connectors of the standard
FGB packages provided a convenient way to connect the sensors in series. Figure 3.5 presents the
typical FC/APC mechanical connections and how they were connected via a mating sleeve. In this
project, adjacent FGBs within one series were selected to have a 5nm center wavelength separation

to allow for an adequate strain range. Detailed sensor specifications can be found in Appendix C.

The standard FBGs (10mm long) are sufficient for strain data collection at locations where strain
fields are relatively uniform. However, for locations with complicated strain fields, shorter sensors
are needed. The complicated non-uniform strain field at cut back regions, which result from the
previously described reverse curvature condition, were measured by two special designed 5mm FBG
packages: 1) Single 5mm FBG in a 15x20x1mm small form factor CFRP packaging; 2) an array of five
5mm FGB embedded in a single 220x20x1mm CFRP package.

¥ - N\

\J/ A\ —_—
[

) —
AN s
DAL
E—,

Figure 3.3 The standard FBG SMS
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FC/APC Connector ‘T

FC/APC Connector

FC/APC mating sleeve

Figure 3.5 FC/APC mating sleeve connecting two fibers

The 40 existing Fiber Bragg Grating (FBG) strain sensors distributed along the bridge framing system
including the girders, floor beams and stringers were employed to monitor the performance of the
bridge. Additionally, eight new strain sensors were installed at the bottom surface of the concrete

deck to obtain the live load condition information.

3.2.2 Layout of the Sensor Network

3.2.2.1 Existing Sensors

The 40 previously installed FBG sensors were distributed in six cross sections (indentified as Section
A through F in Fig. 3.6). These sensors can be classified into two categories according to the sensor
orientation:

1) Horizontal: bottom flanges of girders within positive (Section A, Section B, Section D, and
Section F) and negative(Section C and Section E ) moment regions, stringers, and floor
beams;

2) Vertical: cut-back regions and stringer webs above floor beams support points.

Figure 3.7 presents the locations and orientations of the sensors at each section. To be consistent,
the sensor naming convention was inherited from previous work. Each sensor is named in the
format: Section-Member-Part-Orientation, in which, Section can be “A” to “F”; descriptions of
Member, Part and Orientation are listed in Table 3.1. For example, B-SG-BF-H means Section B south

girder bottom flange horizontal sensor.

Table 3.1 Name convention for sensors located at the bridge frame system

Member Description Part Description Orientation Description
North Girder
NG/SG /South girder BF Bottom flange H Horizontal
North Stringer
NS/SS /South stringer CB Cut-back region \% Vertical

FB Floor Beam WB Web
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3.2.2.2 New Deck-Bottom Sensors
Two lines of deck-bottom sensors (10mm FBG strain sensor with the 210 x 20 x 1mm FRP packaging)
were installed at Section A and the section above the fifth floor beam. The longitudinal and

transverse locations of the sensors are illustrated by Fig. 3.6 and Fig. 3.8, respectively.

3.3 Communication Network Configuration

Figure 3.10 illustrates the communication networking topology and configurations of the SHM
system. The bridge site subnet managed by the Linksys router enables data communication between
the interrogator and the bridge site computer. Using long-range antennas and the accompanying
radio modems, the bridge site subnet was connected to the CTRE network wirelessly. As shown in
Fig. 3.10, two radios were involved in this system, the remote one was connected to the LinkSYS
router while the master radio was connected to the CTRE internet switch. Each was assigned with a
fixed public IP address. Information is transferred via electromagnetic energy radiated by one
antenna and received by the second. This setup provides internet access for the bridge site
computer and, thus, enabled data communication between the bridge-site computer and any other

internet accessible computer.
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Figure 3.6 FOS longitudinal positions
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Figure 3.8 Sensors located at the bridge deck bottom
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Figure 3.9 The networking setup and IP configuration of the SHM system
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CHAPTER 4 DATA PREPROCESSING

During normal operation, highway bridges are subjected to many changing environmental and
operational conditions that can impact measured structural performance metrics. If the variances
caused by these conditions are not properly addressed, they can either mask the subtle changes
caused by structural damage and reduce the sensitivity of the damage detection approach or result

in undesirable false alarms.

Three major environmental and operational factors were identified and addressed to improve the
sensitivity of the developed damage detection algorithm. First, an effective temperature effect
remove algorithm created in previous related research was used in this work (Doornink 2006).
Secondly, the dynamic effects caused by truck vibration and its interaction with the bridge can cause
significant uncertainty in the collected strain data. Using a pseudo static strain response instead of
the original data is an effective way to reduce the variances, and it was realized through specially
designed digital filters (Doornink 2006). In addition, variations in bridge response to a variety of
vehicle configurations were also found to be a significant source of uncertainty. To address this, a
strain-based truck parameter detection algorithm, which enabled further data selection, was
developed in this research. Using data from select truck load conditions can reduce strain variances
significantly. The developed data selection procedure also fulfilled the function of extracting the

most useful information from the original data.

Truck parameters that affect strain measurements were identified through observations and basic
structured engineering concepts. Figure 4.1 illustrates a typical example of such strain relationships.
The horizontal axis represents the maximum event strain of a girder bottom sensor, and the vertical
axis is the minimum event strain of a sensor located at the cut-back area. Two obvious groups can
be identified from the data points. The one with fewer points was thought to represent left lane
events (i.e. those with the vehicle in the left lane), while the other one represents right lane events
(i.e. those with the vehicle in the right lane). The remaining points which do not appear to belong to
the lane groups may have resulted from concurrent truck events (i.e. two or more vehicles on the
bridge) or truck lane switching (i.e. a vehicle changes lane while on the bridge). These patterns

indicate that the transverse truck position affects the strain relationships. Additionally, slight
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deviations of the relationship can be observed within each lane group (i.e. it is not perfectly linear).
They can be likely attributed to different truck weights and geometry combinations. In short, truck
parameters including travel lane, number of axles, axle spacings, and truck weight were considered
to be important for the extreme event strain relationship and, thus, needed to be detected/
calculated. To avoid confusion in the following discussion it should be pointed out that the
calculation of axle spacings requires the truck speed be known; so truck speed is also included in the

developed truck parameter detection approach.
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Figure 4.1 An example of the extreme event strain relations for two selected sensors

In summary, a three step data preprocessing procedure was developed in this work to separate the
strain changes caused by operational (e.g. truck parameters and bridge parameters) and
environmental (e.g. temperature) variances from the interested structural changes.
Step 1, remove the temperature induce strain through a process referred to as data zeroing.
Step 2, remove the dynamic strain response with lowpass frequency digital filters, which are
unique to each sensor.
Step 3, remove the strain variance caused by different live load conditions through data
selection. In particular, data produced by only right lane, five-axle, trucks were selected to feed

into the damage detection procedure.
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Details of the data zeroing, data filtering, and data selection procedures are described in the

following sections.

4.1 Data Zeroing

For highway bridges the mechanical strains resulting from ambient traffic loadings have much higher
frequencies than temperature-induced strains. Thus, it can be assumed that the temperature
change within a sufficiently short time period is neglectable. Therefore, by segmenting the
monitoring data into small size files, a constant baseline thermal strain can be determined in each
file for each sensor. Previous research (Doornink 2006) showed that segments of data collected

every 27 seconds are sufficient to ensure the correctness of the assumption for all sensors.

The baseline thermal strain (i.e. the offset from zero strain) for each sensor was determined by
finding the mode from each data segment. In statistics, the mode is defined as the value that occurs
the most frequently in a data set or a probability distribution. However, when the data contains
noise, it is more practical to take the mode as the center value of the histogram bin that contains
the most values. In practice, it is difficult, if not impossible, to find a predetermined bin size that
would be successful for every strain record. Therefore, instead of using a fixed bin size, an iterative
approach was used to calculate a satisfactory mode value. After all baselines have been established,
the raw data for each sensor are zeroed by subtracting the baseline strain from each strain value in
the raw data. In this way the zeroed data consists of only the mechanical strains and noise. For
example, as shown in Fig. 4.2, the green line represents the raw strain data for sensor B-SG-BF-H
obtained from a right lane truck event. The zeroed data were computed by subtracting the mode

value (136 u¢ ) from each data point of the raw data.


http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Data_set
http://en.wikipedia.org/wiki/Probability_distribution
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Figure 4.2 An example of raw data and zeroed data

4.2 Data Filtering

The zeroed data still contains three components: 1) quasi-static strain response, 2) dynamic effects,
and 3) noise. Among the three components, only the quasi-static strain is the desirable part for this
work. The frequencies of dynamic effects are much higher than that of the quasi-static strain
response, so appropriately designed lowpass digital filters can be applied to remove the dynamic

effects and some high frequency noise.

The Chebyshev filter was considered to be superior to other filters due to its ability to minimize peak
detection error while using relatively less processing time. To determine the frequencies of the
guasi-static events for each sensor, a one hour data set that was collected during dense traffic was
investigated. A Fast Fourier Transform (FFT) was used to generate a power spectral density (PSD)
plot for each sensor. As an example presented in Fig. 4.3 is the PSD plot for sensor B-SG-BF-H. As
marked in the figure, the frequency of the quasi-static response has been identified as well as the
fundamental frequency. It can be seen that the quasi-static response of vehicular event has lower
frequency but larger contribution than the natural frequency of the bridge. Although this
phenomenon can be observed in all sensors, PSD plots are different for each and, as a result, the
design of the filter for each sensor was different. In particular, the quasi-static frequency of each
sensor is selected as the cut-off frequency of the corresponding filter. The passband allowable error

(PAE) was set to 1% for all filters and the passband ripple was calculated as follows:
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ripple (dB) =

ZOXIOg(wO—PAE)

100

Owing to the noise contained in the zeroed strain data, the filtered data often has slight offset from
zero. To adjust the baseline point to zero, the data zeroing procedure was carried out again to
complete the data filtering.

500

Frequency of quasi-static
responses

400

300 4

Power

200

100
Fundamental Frequency

0 1 2 3 4 5 6 7 8 9 10

Frequency (Hz)

Figure 4.3 An example of PSD plot

Figure 4.4 presents the filtered strain for the data used to create Fig. 4.3. To obtain the quasi-static
response sketched in Fig. 4.4, the parameters of the Chebyshev filter were set as the follows: the
cutoff frequency equal to 0.35Hz, and Passband Ripple is 0.0873dB. The filtered data are plotted in
red. The smoothness of the line indicates that most dynamic effects and high frequency noise were
removed. Due to the nature of the digital filter, the filtered data shows a phase delay from the
original data. Compensations for the phase shift in SHM are widely discussed in the literature (Fraser
2006, Wang 2006). In the proposed damage detection approach, since only the event strain peaks

are needed, the shift can be simply ignored without impacting the overall results.
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Figure 4.4 An example of raw data, zeroed data, and filtered data

4.3 Truck Parameter Detection

For highway bridges, it usually is difficult to distinguish between the response changes caused by the
variability in ambient live load conditions (e.g. truck weight, geometry, etc) and those induced by
structural damage. In this work, two approaches were deployed to reduce the live load condition
induced variability. First, utilizing a strategically defined damage indicator (discussed in Chapter 5);
secondly, including truck parameters into the base-line model. Specifically with regarding to the
truck parameters, only the strain data that are produced by select truck load conditions are utilized
in the damage detection procedure. To realize the data selection, a strain based truck parameter
detection sub-system was developed. The sub-system can detect/calculate/estimate the relevant
truck parameters, which include the travel lane, number of axles, speed, axle spacings, event start

and end times, and truck weight group.

When the work described here was initiated, forty FOSs installed on the demonstration bridge
(girders, floor-beams, and stringers) existed already. It would have, thus, been ideal if some of those
sensors could be utilized in the truck parameter detection sub-system. In this way, the strain
patterns of the sensors were studied, and the results revealed that the girder bottom sensors are
capable of detecting truck event and the travel lane. However, none of the existing sensors could
collect enough information about the truck axles, which is a key parameter to calculate all other
parameters. Therefore, new sensors were needed. Figure 4.5 represents the conceptual live load

transfer path of the demonstration bridge. The deck system collects the traffic loads and distributes
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most of the load to the stringers with very little transferred to the girders directly. The stringers pass
the loads to the floor beams and eventually to the girders. Finally, through the girders, all forces are
transferred to the bearings that are supported by the abutments and/or piers. In general, structural
components located at the bottom of the load path show more globalized character in their strain
response. The strain responses of these components are more relevant to truck GVW (gross vehicle
weight) and travel lane than truck geometry configuration. On the other hand, the structural
components located at the top of the load path show a more localized strain response pattern due
to their vicinity to the load. Therefore, the deck bottom sensors were considered to be a possible
option for the truck axle detection. Previous experiences had shown this to be true. To further verify
the effectiveness of the deck bottom sensors and determine their proper locations and orientations,

FEA and controlled load tests were carried out before installation of additional FOSs.
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Figure 4.5 Load path of the demonstration bridge

4.3.1 Sensors Employed for Truck Parameter Detection

Although many existing commercial systems can detect the truck axles, traveling lanes, and truck
weight, they are either very expensive or can not be practically integrated into the existing FOS-
based strain monitoring system. Further, the synchronization of components in a heterogeneous

system is difficult especially when the monitoring is time sensitive. To address these issues, a pure
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FOS strain based truck parameter detection subsystem was developed and integrated into the

existing system.

Determining truck parameters from strain data is a reverse problem. Solving a reverse problem is
hard, in general. However, the solution can be dramatically simplified if a one-to-one mapping
between the variables and responses can be established. In this research, efforts were carried out to
search for such mapping between the strains and the object truck parameters. Both the existing

sensors and new sensors were studied.

4.3.1.1 Existing Sensor Study

The originally installed sensors can be classified into four categories: girder bottom sensors, floor
beams sensors, and horizontal and vertical stringer sensors. In Fig. 4.6, an example of the strains
produced by a five-axle semi truck (Fig. 4.6a) and a dump truck (Fig. 4.6b), both in the right lane, are
shown for four selected sensors: B-SG-BF-H, B-SS-BF-H, C-FB(SS)-BF-H, C-SS-WB-V. These sensors
represent typical behaviors for the four sensor categories. Comparing Fig. 4.6¢ with Fig. 4.6d, the
strains produced by the semi and the dump truck show the same general pattern for the girder
bottom sensor B-SG-BF-H, which is located at the middle of the first south girder span. The “Positive
peak 1” occurred when the truck was in the same span as the sensor, while the “Positive peak 2"
occurred when the truck was travelling in the third span. The magnitude of the first peak is
significantly larger than the second peak. Therefore, by properly selecting a peak magnitude
threshold, only one peak would be detected, and such, a one-to-one mapping can be established

between a positive strain peak and a truck event.

a. 5-axle semi truck b. dump truck
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Figure 4.6 Strain patterns for the frame sensors produced by five-axle semi and dump trucks

In terms of truck axle detection, the strain patterns for the floor beam sensors and the stringer
sensors were studied. In Fig. 4.6e, the two peaks shown in the strain of the floor beam sensor C-
FB(SS)-BF-H represent the two tandem groups of the five-axle truck. Similarly, the only peak
produced by the tandem group of the dump truck was shown in Fig. 4.6f. In both cases, the floor
beam sensor failed to detect the steering axle, and the axles within an axle group can not be

differentiated from one another.

Comparing the horizontal (Figs. 4.6e and 4.6f) and vertical (Figs. 4.6i and 4.6j) stringer sensors, it can
be seen that both can detect not only the tandem groups but also the steering axle. Figure 4.6i
presents the strain produced by the five-axle truck and recorded by the vertical stringer sensor C-SS-
WB-V. Implementing an algorithm that can ensure the detection and differentiation of such peaks is,
if not impossible, very hard. On contrast, the strains for the horizontal sensor (B-SS-BF-H) rarely
include such ambiguous peaks. Therefore, among the existing sensors, the horizontal stringer
sensors collected the most information about the truck geometry. Nevertheless, the differentiation

of axles within an axle group was still believed to be hard to achieve.

4.3.1.2 New Sensor Investigation and Installation
Since no existing sensor can easily satisfy truck axle detection needs, studies were performed to
determine the positions and orientations of new sensors. Attached to the most localized structural

component, deck bottom sensors should be able to collect more information about truck axles. FEA
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and control load tests were carried out to verify the effectiveness and determine the proper

locations and orientations of the sensors.

4.3.1.2.1 Finite Element Analysis

A FEA was carried out to identify the correlation between the deck-bottom strain peaks and the
truck axles. A three-dimensional finite element model was constructed for the demonstration bridge
using the ANSYS software package. The steel frame of the bridge model is shown in Fig. 4.7(a).
Figure 4.7 (b) shows a typical cross section including the steel frame, deck, and barrier system. The
entire model contains approximately 79,423 active nodes and 72,811 elements. With the exception
of the cross braces, two-dimensional quadratic shell elements were used to model all steel and
concrete All elements were placed at the centerline of the true geometric positions, so gaps, such
as the one between the curb and deck shown in Fig. 4.7b, can be formed between actually
connected components. Rigid links were used to connect such components. They were also used to
connect the deck elements to the girder and stringer elements to simulate composite action. The
boundary conditions were modeled to simulate the bridge support conditions. The entire width of
the girders bottom flanges are restrained in all three degree of translation freedom (pinned support)

at the east pier; longitudinal movement is allowed (roller supported) at the abutments and west pier.

In practice, strain peaks produced by a truck crossing over can be captured only when the truck
speed is low or the data collection frequency is high. In either case, the ratio of move-distance/load-
step should be sufficiently small. In this study, for simulation simplicity, the single truck passing over
the bridge was simulated to be moving wheel forces which were always applied to nodes directly.
Owing to this simulation approach, the value of move-distance/load-step is controlled by the size of
deck element along the traffic direction. A finer mesh ensured better peak capture results at the
cost of computation resources. As a compromise, the deck mesh size was selected to be6 in.x6 in. .
So for each load step, the truck position could move in increments of six inches. This scenario
simulates a truck moving at a speed of 42.6mph with a data collection frequency of 125Hz, or it can

also represent truck speed of 85.2mph with the data collection frequency of 250Hz and so on.
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Figure 4.7 The finite element model of the bridge
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Figure 4.8 The comparison of longitudinal and transverse strain of point “A”

The FEA results were also utilized to study the sensor orientations and associated sensitivities. As an
example, Fig. 4.8 presents strains produced by a 3-axle dump truck at sensing point “A” shown in Fig.
4.7a (located at the deck-bottom, one foot west of the deck center line, and above the fifth floor
beam). The resulting longitudinal and transverse strains are shown in Fig. 4.8a&b, respectively. The
blue vertical lines illustrate the truck positions for which one of the truck axles were aligned with the
sensing point. Figure 4.8a reveals a good correlation between the longitudinal strain peaks and the
truck axles. However, for the transverse strain the correlation does not always exist. The two peaks
marked as 1 and 3 in Fig. 4.8b were produced by a single truck axle. Strain contours shown in Fig.
4.8c&d can explain the different peak patterns of the longitudinal and transverse strains. In Fig. 4.8d,
the centers of the four red areas indicate the four tandem wheels of the dump truck. The points
marked with 1, 2, 3 show the relative positions between the sensing point and the 1* tandem axle

for three continues load steps. Strain at point 2 is smaller than that at point 1 and 3, and as such,
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two peaks, peakl and peak3 in Fig. 4.8b, were formed. As long as the sensing point is located in the
two peak regions (Fig. 4.8d), one truck axle will always produce two strain peaks. Only when the
sensor is located within the one peak region, can the correlation of the strain peak and truck axles
be established. Due to the narrow bandwidth of the one peak region (Fig. 4.8d) and the existence of
wide two peak regions, the transverse strain was determined to be inappropriate for truck axle
detection. By contrast, the longitudinal strain contour is always convex along the traffic direction, so
there is no two peak region. As shown in Fig. 4.8c, the width of the one peak region is as large as 3ft.
Including the width of truck wheels into consideration, truck axles are detectable when the sensors

are spaced no more than 2ft away from the typical truck wheel line.

Notice that, in the simulation described above, the load step was selected to be 12in. to study the
data collection frequency needs. A 12in. step is equivalent to a truck speed of 127.8mph and data
collection frequency of 125Hz. The strain peaks shown in Fig. 4.8a indicate, therefore, that 125Hz is

adequate for axle detection at highway speeds.

In summary, the FEA study concluded that: 1) deck bottom strain sensors can detect truck axles; 2)
sensors must be oriented in the longitudinal direction; 3) sensors must be located within one peak
regions, and no more than 2ft from the truck wheel-lines; 4) 125Hz data acquisition frequency is

adequate to capture strain peaks produced by highway speed trucks.

4.3.1.2.2 Control Load Test

The FEA results indicated that the longitudinal deck-bottom sensors can detect the truck axles.
However, random effects like the unavoidable cracks in concrete structural components and noise
caused by the data acquisition system are hard to simulate. So a controlled load test was performed

to verify the truck parameter detection ability of the selected sensors in an operational environment.

4.3.2.2.2.1 Testing Instrumentation

Data acquisition system

BDI strain transducers together with the MegaDAC (model 3415AC, Fig. 4.9) general purpose data
logger were utilized in the controlled test. The BDI strain transducer, shown in Fig. 4.10, is
manufactured by Bridge Diagnostics, Inc. The overall size is 4.375 in x 1.25 in x 0.5 in with an

effective gage length of 3.0in.
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Figure 4.10 BDI strain transducer

BDI sensor installation

Thirty BDI sensors were installed in the west span of the demonstration bridge. As shown in Fig. 4.11,
among the 30 BDI sensors, 24 were located on the deck-bottom; and the other six were located on
the girder bottom flange with the intention of calculating the truck weight using weight in motion
(WIM) concepts. In addition, the two mid-span girder bottom sensors were also used to detect truck

event and travelling lane.

4.3.2.2.2.2 Testing Procedure

A three-axle dump truck and a six-axle truck were employed as the control trucks in this testing. The
axle configurations of the two trucks are illustrated in Fig. 4.12a & b, respectively. Table 4.1 & 4.2
summarize the axle weight and the total weight of the trucks. During the test, the right lane was first
closed for testing and then the left lane. While one lane was closed, the other lane was kept open to
normal traffic. Dump1-4 (Table 4.1) were used for right-lane testing and Dump4-7 were used for
left-lane testing. For each lane, testing was conducted at both highway speed and crawl speed

(twice at each speed). Note that, only right-lane testing was performed with the semi truck.
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Figure 4.11 Axle configurations for the testing trucks

Table 4.1 The weights of the dump truck

Truck designation Weight (k)
1st axle 2nd axle group GVW
Dump 1 11.28 14.24 25.52
Dump 2 13.08 23.94 37.02
Dump 3 12.34 27.54 39.88
Dump 4 13.60 38.78 52.38
Dump 5 11.66 18.16 29.82
Dump 6 11.10 13.98 25.08
Dump 7 12.58 24.40 36.98
Table 4.2 The weights of the semi truck
Truck Weight (k)
designation 1st axle 2nd axle group 3" axle group Total
Semi 1 44.76 71.96 37.24 153.96
Semi 2 42.06 67.30 34.88 144.24

4.3.2.2.2.3 Test Results 1 6 7

Girder bottom sensors

Among the six girder bottom BDIs, BDI4814 and BDI4820 were located at the middle of the first span
of the south girder and north girder. They can be used for truck event occurrence and travelling lane
detection. Figure 4.13 presents the filtered data for them produced by a right lane truck (Dump2
travelling at 62.25mph). As discussed before, for each mid-span girder sensor, if a threshold is

properly defined, one truck event should produce at most one positive peak whose magnitude is
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larger than the threshold. Further, the truck’s travel lane can be determined by comparing the
maximum event-strain values of the two sensors. Figure 4.13 shows a representative truck event
and travel lane detection example. The large positive peak in the figure represents a detection of a
truck event. It is determined to be a right-lane event since the magnitude of the strain peak of
BDI4814 is larger than that of BDI4820, which is consistent with the test conditions. Similar analysis
of the data was performed for all control testing. The results demonstrated the effectiveness of the

mid-span girder bottom sensors in terms of truck event and travel lane detection.

50 ‘ ‘ ‘

—— BDI4814 (mid south girder)
— BDI4820 (mid north girder) | |

Threshold

_30 1 1 1 1 1 1 1
0 40 80 120 160 200 250 300 350
First Axle Position (ft)

Figure 4.12 The global strains produced by Dump?2 at the speed of 62.25mph

deck-bottom sensors

The first deck-bottom sensor line (BDI4703, 4785, 4829, and 4780 in Fig. 4.11) were positioned so
that at least one would be sufficiently near to the typical left wheel line of right lane trucks. At the
same transverse positions, a second deck-bottom BDI line (BDI4821, 4692, 4824, and 1112), were
deployed. The test results showed that the typical left wheel line of right lane truck is located
between BDI4785 and 4829. As an example, Fig. 4.14 depicts the strains from the eight deck-bottom
sensors. Figures 4.14a&b were generated from the data of Dump2 (Table 4.1), while Figs. 4.14c&d

were generated from a random semi truck. In these plots, sensor BDI4785 (referred to as “S1” in the
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remainder of the report) and BDI4692 (S3) consistently show the best truck axle detection ability
except for Fig. 4.12(d), in which, the strain peaks of BDI112 is sharper than S3. This may have been
caused by a slight transverse location shift of the random truck. Nevertheless, S3 is still sufficient for
truck axle detection. The strains of left lane trucks were also studied, and the results indicate that

BDI16084 (S2) and BDI 4811(S4) are the best deck-bottom sensors for left vehicles.

25 : 100 : :
BDI4703 BDI4821
ool ——BDI4785 (S1) | | 80r —— BDI4692 (S3) |1
—— BDI4829 —— BDI4824
BDI4780 60y BDI1112
15} ]
— . 40}
Y !
E 10’ E 20,
g 8
3 /\ & ol
5 L
\ M 20t
0 \’k 4 wwmdpwl‘ el
%G pupei -40f
-5 | | L | | | | -60 | | | | L L
0 100 200 300 400 500 600 700 600 800 1000 1200 1400 1600
First Axle Position (in) First Axle Position (in)
a. Control dump truck (the first sensor line) b. Control dump truck (the second sensor line)
: 100 : :
BDI4703 BDI4821
—— BDI4785 (S1) |1 8ol —— BDI4692 (S3) ||
—— BDI4829 —— BDI4824
BDI4780 ] 6ol BDI1112
g g 40f
£ £
£ £ o0f
(7] n
Opa | j
= ‘\
-20} f
-4 L L L L -40 L L L L L
200 400 600 800 400 600 800 1000 1200
First Axle Position (in) First Axle Position (in)
c. Ambient semi truck (the first sensor line) d. Ambient semi truck (the second sensor line)

Figure 4.13 The example of right lane truck strains

The strains of S1 and S3 produced by Dump2 with different travel speeds are compared in Fig. 4.15.
The slow1 and slow2 speeds are estimated to be 6mph and 7mph respectively, while fastl and fast2
are estimated to be 62mph and 58mph. In the figure, the magnitudes of the strain peaks obtained
from fast trucks are smaller than that of crawl speed trucks. This indicated that the data collection
rate (250Hz) does not ensure the capture of the exact maximum strain peaks for fast trucks.

However, as long as the stain peak pattern can show the truck axles, the data collection rate may
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still be sufficient. To determine if the data collection frequency can be further reduced without

impacting the detection results. The strains shown in Figs. 4.15a&b were processed to simulate data

collection rates of 125Hz, 62.5Hz and 31.25Hz. The resulting strains are plotted in Figs. 4.15c & d for
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Figure 4.14 Example of the deck-bottom strain produced by right lane dump truck (dump2)

S1 and S3, respectively. From the graphs one can see that when the frequency was reduced to

31.25Hz, S1 failed to capture all the strain peaks, and as a result, truck axles could be missed. Study

with other data sets showed that missed peaks can occur for frequency as high as 50Hz. Note that

the current data acquisition system required frequencies be 250Hz/n, where n is an integer.

Therefore, 62.5Hz is considered to be the minimum data acquisition frequency for axle detection.

In summary, the controlled testing further showed that the mid-span girder bottom sensors can

detect truck events and the travel lane and that deck-bottom sensors are capable of detecting truck
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axles. The position of deck-bottom sensors should be near to sensors S1, S2, S3 and S4 (Fig. 4.11).

The data acquisition rate should not be lower than 62.5Hz.

4.3.1.2.3 New FOS Installation

After verified by FEA and control load tests, eight FOSs (DB1-DB8) were installed at the deck bottom
for integration into the long-term structural monitoring system. The FOS locations were selected to
be near the identified typical wheel lines (as shown in Figs. 3.5 and 3.7), and the sensors were

positioned in the traffic direction.

Figure 4.16 presents a truck axle detection example using the deck-bottom FOSs. The strains shown
in the figure were produced by the same semi and dump trucks that produced Fig. 4.6. Figure 4.16
shows a very good correlation between the truck axles and the strain peaks. However, further
studies indicated that there are cases that the truck axles are not as easy to detect as those shown
in Fig. 4.16. In instances when this happen, a double checking algorithm (will be discussed shortly) is

proposed to improve the axle detection results.
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Figure 4.15 Strain of deck-bottom FOSs

4.3.2 Truck Parameter Detection and Calculation

The global sensors, B-SG-BF-H and B-NG-BF-H, and local sensors, DB1-DBS, are all involved in the
truck parameter detection/calculation procedure. Before implementing the final truck detection

component for the long term SHM system, conceptual functions were developed using the control
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load tests data and/or FEA results to verify the proposed methodology. The results indicated that
parameters of travelling lane, truck axles, speed, axle distances, and event start and end times can
be detected/calculated very well. However, for truck weight calculation, the error was considered to
be unacceptable. Therefore, in the SHM system implementation, instead of trying to calculate the

exact truck weight, trucks were roughly classified into two weight categories: heavy or light.

The truck detection program was implemented in a two stage hierarchical way. First, selected global
sensor data were scanned to screen for truck events and to estimate the event time window; then,
the data from the deck-bottom sensors within the roughly estimated time window were further
analyzed to confirm the event and calculate the parameters including number of axles, speed, axle
spacings, and event start and end time. For each truck event, the start and end time are compared
with that of other truck event to determine if it is a concurrent event (i.e. multiple trucks on the

bridge at once).

The following sections present the methodology and implementation of the truck parameter
detection function. Details of the truck weight calculation procedure, including the WIM concept,

FEA feasibility verification, and controlled test verification are documented in Appendix A.

4.3.2.1 Event Occurrence and Travel Lane Detection

The procedure for truck event and travel lane detection is illustrated in Fig. 4.17. When a collected
data set accumulates to the size of one mega-bite, a new data file is created and it automatically
triggers the event detection procedure. The data for sensor B-SG-BF-H and B-NG-BF-H are zeroed
and filtered before being fed to peak detection function. The “south/north peaks” in Fig. 4.17 refer
to the positive peaks for the south/north girder bottom sensor data and their magnitude must be
larger than a predefined threshold value; the threshold was determined to be 17 1¢ for the
demonstration bridge. As discussed before, the peaks are indications of truck events. If the truck

was detected by only one sensor (Case3 or Case4 in Fig. 4.17), the travel lane is directly determined.
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Figure 4.16 Truck event and travel lane detection procedure

For example, the peakl in Fig. 4.18 represents a right lane event. If an event is detected by both

sensors (Case2 in Fig. 4.17), such as the peak2 & 3 shown in Fig. 4.18, it could be a side by side event,



56

or it could simply be a heavy truck. These two cases (e.g. side by side event or heavy truck event)

can be differentiated by comparing the relative magnitudes of the two peaks (peak2 & 3 in Fig. 4.18).
If they are close to each other, to be more specific, the ratio of the south peak over the north peak is
within the range of 0.52 to 1.6, the peaks are considered to be produced by side by side event at the
screening level. Otherwise, if the magnitudes of the two peaks are significantly different so that the
peak ratio is outside of the range shown in Fig. 4.19, the event should be either a south-lane event
or a north-lane event dependent upon which peak is larger. Following the described side-by-side
event and single-lane event differentiation rule, the event represented by peak2&3 in Fig. 4.18

would be determined to be a south-lane event.
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Figure 4.17 Truck event screening and travelling lane detection

The peak-ratio-thresholds used above (i.e., 0.52 and 1.6) were determined from the peak ratio
histogram data shown in Fig. 4.19 and a simple analytical study of two extreme cases: 1) Assuming a
very heavy truck on the right lane and a very light truck on the left lane; 2) The reverse of case 1.
Heavy truck on the left lane and light truck on right lane. Fig. 4.19 is generated from one week
training data sets. The two obvious peaks (shown by green lines) in the histogram show the peak
ratio of typical right lane and left lane single truck events and they are approximately 2.1 and 0.4,

respectively. For the first case, the heavy truck was assumed to produce a 120 s peak strain at B-
SG-BF-H and thus a 57 ue (120u& /2.1=57 ue ) peak strain might be produced at B-NG-BF-H; at the

same time, the light truck on the left lane was assumed to produce a peak strain of 20 u¢ for B-NG-
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BF-H and 8 ue for B-SG-BF-H. Summing the peak strains results in a total peak of 128 & for B-SG-H
and 77 ue for B-SG-H. Thus the peak ratio for this situation is equal to 128/77 = 1.6, which is the

upper threshold for side-by-side events. Repeating the same analysis for case 2, assuming the heavy

truck produce a 120 e peak strain for the north girder sensor (B-NG-BF-H) and the light truck
produce a 20 ue peak strain for south girder sensor (B-SG-BF-H). The peak ratio is calculated to be

0.52, and it is used as the lower threshold for a side-by-side event.
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Figure 4.18 Histogram of the peak ratio obtained from one day data

After the truck event was initially detected, the data from the deck-bottom sensors within a roughly
estimated time window are used to determine the number of truck axle, speed, axle spacings, and
the event start and end time (i.e. when the tuck entered and exits the bridge, respectively). In the
case that a side-by-side event was detected, the data for all deck-bottom sensor data are further
processed. For single lane events, analyses need to be performed for select sensor data only. With
the screening step mentioned above, only a small part of the deck-bottom sensor data are selected

to be further processed and as such saves significant computation time and resources.

4.3.2.2 Number of Truck Axles, Speed and Axle Spacings Calculation
After the event screening, select deck-bottom sensor data are passed to a second function to
determine the number of truck axles, which is a key step for other parameter calculations. Once the

truck axles and the associated time of occurrence are determined, the duration that it takes an axle
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to reach the first and second line of deck-bottom sensors can be calculated. As the distance
between the two sensor lines was known, the truck speed is that distance divided by the time

duration. With the truck speed known, calculation of the axle spacings, and the event starts and end

time is straightforward.
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Figure 4.19 The strain plot of the deck bottom sensor data

4.3.2.2.1 Detection of Truck Axles

When the truck is relatively heavy and near a sensor, the peak strains measured by the deck-bottom
sensors represent the passage of a truck axle very well. As an example, Figs. 4.20a & b depict deck-
bottom sensor strain patterns associated with the events denoted by Peakl and Peak2&3 in Fig.
4.18. The table in Fig. 4.20c lists the calculated parameters which include: travel lane, maximum first
mid-span girder bottom strain, event start time, event end time, number of axles, total truck length,
speed, start point ID, end point ID, and axle spacings. The results indicated that the first truck (Fig.
4.20a) has two axles while the second one (Fig. 4.20b) has five axles. The detected number of truck

axles is consistent with the number of strain peaks. Here a strain peak was considered to be
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detected only when its magnitude is larger than the predefined threshold value (3 u¢ ). Peaks

detected in this way were referred as strong peaks and such detection are called strong detection. In

this example, truck axles were determined by strong peak detection results.

However, the axle detection may not be always as simple as strain peak detection. There are cases
that the strain peaks are not as ideal as those shown in Fig. 4.20. Figure 4.21 presents a less than
ideal example in which the first line of deck-bottom sensors failed to detect one axle of the second
tandem group of the five-axle semi truck. Observations indicated that missing peaks is not a rare
occurrence. To solve this problem, a three step data processing strategy was developed:
1) Lower the peak detection requirement. In the example described above, only strong
detections were allowed. Doing this can avoid the detection of false-peaks (Fig. 4.21) caused

by the sensitivity ( £2 ¢ ) limitation of the FOSs. However, in less than ideal situations, the

use of strong peaks alone can miss some peaks that were produced by truck axles.
Therefore, peaks with the magnitude larger than the upper bound of zero readings and
smaller than the strong peak threshold value (3 u¢ ) are allowed. These peaks are called
weak peaks and such detection is referred as weak detection. Upper bound of zero readings
(one example is shown in Fig. 4.21) is the maximum strain reading of a sensor when the true
strain value is zero. It can be determined by finding the modes of positive strains of the

sensor in a collected data file.
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Figure 4.20 An imperfect truck axle detection example

Table 4.3 The number of strong detections and weak detection received by each truck axle

(for the example shown in Fig. 4.21)

Axles Number of strong detections =~ Number of weak detections
1" axle 4 0
2" axle 2 2
3" axle 3 0
4™ axle 1 1
5™ axle 2 2

2) Create a polling strategy to cross check the peak detection results among the sensors. After
the strong peaks and weak peaks were detected for all involved deck-bottom sensors, they
are combined to form two peak-groups, one for each sensor line. The time stamps
associated with each peak are then used to calculate the t (see Fig. 4.22), which is the time
duration that a truck moved from the first sensor line to the second. As shown in Fig. 4.22,

T, is the time stamp when the first axle of the truck aligned with the first sensor line, and T,

is the time stamp when the axle moved to the second sensor line. The difference between

T, and T, is the time duration of t . In the similar way, t can be calculated using any axle of

a truck. If assumes that the truck does not appreciably change speed on the bridge, t will be
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same for all truck axles. Its value can be determined by finding the most common time-
stamp difference between any two peaks, and one from each peak-group. The detailed
steps of the calculation are described in Appedix B. After t was calculated, the two peak
groups can be further combined into one. To do this, the time-stamp of each peak in the
second group was shifted with t . The peak detection results obtained from both the first
and the second sensor lines were then cross checked through a polling procedure. A peak
can be confirmed when it receives at least two detections, and at least one of them is a
strong detection. Only peaks passing the checking procedure are considered to be truck axle
indications. For an example, if a south-lane event is detected, four deck-bottom sensors will
be involved in the axle detection procedure. In an ideal situation, one sensor creates a
strong detection for one axle, and thus, each axle can receive four strong detections during
the polling. For another example, for the data shown in Fig. 4.21, the number of strong
detections and weak detections received by each truck axle were presented in Table 4.3.
The polling results indicated that all five truck axles passed the cross checking. The axle that
failed to be detected by the first sensor line was, as such, confirmed without introducing any

false detection.

3) In addition to the cross checking procedure, other knowledge based constraints, such as, the
reasonable ranges of axle spacings, truck speeds and so on, were also applied to ensure

correct truck axle detections.

4.3.2.2.2 Calculation of Speed, Axle Spacings, and Other parameters

During the truck axle detection discussed above, the time duration that the truck traveled from the
first sensor line to the second (t in Fig. 4.22) was calculated. The distance between the two deck-
bottom sensor lines was known after the sensors were installed, and it is denoted as d1 in Fig. 4.22.

The truck speed can be simply calculated as the distance over the time duration (Eq.4.1).

dl
speed =—~ Eq.4.1

in which, d1 is the distance between the two sensor lines, and
t is the time difference of one axle on two sensor lines.
After the truck axles are identified, the time that a truck axle is located over a deck-bottom sensor

line is known; therefore the difference between the time stamps for any two adjacent axles can be
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calculated. As shown in Fig. 4.22, t1 is the time difference between the first and the second truck
axles. The axle spacings are the speed multiplied by the time differences, and the total truck length

is the sum of all axle distances (see Eq.4.2 and Eq.4.3).

Axle spacing;, = Speed x t, Eq.4.2

number of axles -1

Total truck length = z Axle spacing, Eq.4.3

i=1

in which, t; is the time difference between i-th and (i+1)-th axle, and

Speed is the truck speed calculated before.
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Figure 4. 21 Speed, axle spacings and other parameter calculation

The time when the first axle of a truck reaches the bridge is defined as the event start time. The first
deck-bottom sensor line is taken as the start point of the bridge as it is very near to the west
abutment, and thus, T, in Fig. 4.22 is the event start time. The event end time (T, ) is the time
instance that the last axle of the truck is leaving the bridge. It can be estimated as following:

Bridge length + Total truck length
=T + g 9 g Eq.4.4
Speed
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After obtaining the event start time and estimated event end time, the side-by-side events detected
at the screening stage can be confirmed at the detection level. In addition, other concurrent truck
events can also be detected by comparing the event start and end times associated with adjacent
trucks. Figure 4.23 presents the four different concurrent event cases. Case (a) is the side-by-side
event that can be detected at the screening stage. In this case, the two trucks are undifferentiable
by the global sensors. Case (b) shows another side-by-side scenario, unlike case (a), the trucks
produce different global peaks. So they are identified as two different events at the screening stage.
Cases (c)& (d) illustrate two one-after-another truck events, which involved at least two trucks in the
same lane simultaneously. Concurrent events data are included in the truck detection output report

and they are not be used in the damage detection procedure.

T T
T T
‘ V V V
a. side-by-side b. side-by-side c. one-after-another d. one-after-another

Figure 4. 22 Concurrent events

4.3.2.2.3 Evaluation of the Truck Parameter Calculation Method

To evaluate the truck parameter calculation method, truck speed and axle distances calculated from
the BDI test data were studied and selected examples are summarized in Tables 4.4 and 4.5. The
examples were selected to cover as many different cases as possible, in particular, they included
dump and semi trucks, left-lane and right-lane events, highway and crawl speeds. During the test,
the base-line truck speed data were not collected, so direct evaluation of the speed results was not
possible. However, the accuracy of speed calculation can be indirectly evaluated by the small errors
in the calculated truck axle spacings. In fact, the small errors in truck axle spacings proved the
performance of the entire truck parameter calculation procedure, because its calculation involved

most other truck parameters such as speed, t , t1, etc.
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Table 4.4 Speed and axle distances for right lane 6-axle semi truck (Semi2)

Speed Axle distances (inch) Error
(mph) BDI4785&4692 BDI4829&4824 Average  Actual
D1 167.0 161.9 164.4 167.0 -1.54%
D2 52.8 51.6 52.2 56.0 -6.82%
5.6 D3 338.7 333.2 335.9 336.0 -0.02%
D4 49.2 49.2 49.2 49.0 0.47%
D5 49.6 49.2 49.4 50.0 -1.15%
Total 657.3 645.1 651.2 658.0 -1.03%
D1 164.0 164.0 164.0 167.0 -1.78%
D2 534 534 534 56.0 -4.64%
54.2 D3 339.5 339.5 339.5 336.0 1.04%
D4 49.6 49. 6 49.6 49.0 1.20%
D5 53.4 49. 6 51.5 50.0 2.99%
Total 659.9 656.1 658.0 658.0 -0.001%
Table 4.5 Speed and axle distances for left lane dump truck (Dump5)
Speed Axle distances (inch)
(mph) BDI6084&4810 BDI4811&4863 Average  Actual Error
D1 180.9 178.3 179.6 176.0 2.04%
6.4 D2 55.1 53.2 54.2 56.0 -3.24%
Total 236.0 231.5 233.8 232.0 0.76%
D1 178.1 178.1 178.1 176.0 1.18%
55.0 D2 55.4 55.4 55.4 56.0 -1.07%
Total 233.5 233.5 233.5 232.0 0.64%

4.4 Data Selection

The calculated truck parameters along with the extreme event strain values, including both the
maximum and minimum strains, for the 40 performance monitoring sensors were permanently
saved for each truck event and they can be retrieved by other algorithms. The truck parameter
results allowed the selection of the standard load condition that will be used in the structural
condition evaluation. Obviously, the data selection procedure also served as the information
extraction function for the SHM system, which reduced the size of collected data dramatically. A

study of a randomly selected day shows that the data volume was reduced by more than 98.

After all identified parameters were determined, the data shown in Fig. 4.1 were re-plotted and
shown in Fig. 4.24a (the concurrent event data were removed). In the figure, circles and triangles

represent right lane and left lane events, respectively. The events are color coded according to the
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truck type as determined by the number of axles. For example, a green circle represents a right lane,
five-axle truck event. Figure 4.24a shows that the extreme strain relationships are highly correlated
with truck types and travel lanes. As an example, Fig. 4.24b depicts the relationship created by five-
axle truck data. The two significantly different data patterns indicate that for the same type of trucks,
the travel lane can lead to different strain relationships. Further, as shown in Fig. 4.24c, trucks in the
same travel lane but different geometry configurations can also produce different strain
relationships. Figure 4.24d displays the extreme strain relationship produced by right-lane, five-axle
trucks. Apparently, the linear pattern is more easily defined for this subset than for those shown in
Fig. 4.24a to c. Even for the same lane and same truck type, the data in Fig. 4.24d can still be further
roughly divided into two groups according to the strain-ranges of sensor B-SG-BF-H. This is more

clearly shown in the maximum strain histogram plot (Fig. 4.25). Data with values smaller than 55 u¢

represented lightly loaded or empty trucks, while the others represented heavily loaded trucks. The
slightly different extreme strain relationship patterns produced by the two truck groups (Fig. 4.24d)
indicate that classifying the trucks into weight groups is necessary. The strain magnitude variance
within each group can be explained by the linear model and will be further eliminated by a

strategically selected damage indicator.

In this work, data from non-concurrent, right-lane, five-axle, heavy trucks were further analyzed to
determine the structural status. This loading condition was selected for three reasons. First, it has
the largest truck population. As shown in Fig. 4.24a, the number of five-axle trucks is much larger
than that of any other truck. In any given time duration, using this type of truck can result in more
data sets and thus reduce the damage detection time delay. Secondly, heavy five-axle semi trucks
can produce larger absolute strains, which can be sensed with a lower percent error. In addition,
heavy trucks likely lead to a more significant strain shift when damage does occur. In Chapter 5, the
damage detection results obtained from different weight groups of right-lane, five-axle semis are

compared to further verify the advantage of the utilization of the heavy truck group.
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Figure 4.23 An example of the typical relationship of extreme even strains of two sensors
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CHAPTER 5 DAMAGE DETECTION ALGORITHM
DEVELOPMENT AND EVALUATION

Damage can be defined as changes introduced into a system that adversely affects its current or
future performance (Sohn 2003). For damage detection approaches which utilize time domain
response data only, the comparison between two different states of the structural system is
essential. One of the states should be the baseline which represents the performance of undamaged
structure. Statistical pattern recognition has been shown to be an effective comparison tool by
dynamic-based SHM systems. However, its application with time domain static (pseudo-static) strain

data is very limited, if existing, at all.

5.1 Damage Detection Algorithm

In this work, new damage detection approaches, which primarily focus on the detection of relatively
small local damages in highway bridges, were developed and studied. The approaches utilize event
based extreme live load strains as the input data and statistical control chart philosophies were
employed as the comparison tool. Intuitively, comparing the strain data recorded by each sensor
can indicate the occurrence of damage and the sensor location can be used to indicate the damage
areas. Further study, which is described herein, showed that residuals, which are defined as the
difference between the collected strain data and the predicted data calculated from linear
prediction models, are more sensitive to local damage than strain itself. This is likely due to fact that
the strain variances caused by varying truck weights are removed during the residual calculation
procedure. Two major prediction models were studied here:

1) One-to-one model: with this model, strains from combinations of two sensors in the sensor
network are used to predict each other. For example, there are 40 performance monitoring
sensors in the testbed SHM system. For each event, the strain data of any sensor “A” were
used to predict the data of any other sensor “B”. For this system, 1600 prediction models
can be created.

2) Many-to-one model: with this model, the strain for one sensor is predicted by involving all
other sensors. For the demonstration system, the data for 39 sensors are used to predict the
data for the remaining one sensor. Altogether, 40 such models can be created for the

demonstration installation.
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The size of the residual matrix/vector is determined by the prediction model type (e.g., one-to-one

or many-to-one model). When the dimension equals the number of sensors (e.g. for the many-to-

one model), one control chart can be created each one sensor and, thus, the control chart analysis

results show the occurrence of damage and the damage location directly. In the case of the one-to-

one model, two damage identification solutions are proposed:

1)

2)

Direct evaluation method. This method first simplifies the residual matrix into desirable
dimensions by calculating the row-sum, column-sum or the combine-sum (equal to the row-
sum minus column-sum). The obtained sum-residual matrix is then used as the damage
metric with which control charts can be created to evaluate the structural condition. The
control chart results show the structural state directly. As such, this method is referred to as
direct evaluation method.

Two-level evaluation method. With this method, a first level control chart is created for all
elements in the residual matrix. The first level evaluation results are then used to generate
an evaluation matrix. The dimension of the evaluation matrix is the same as that of the
residual matrix. Therefore, the simplification (row-sum, column-sum, combine-sum) is
necessary. With the simplified evaluation matrix calculated, a second level control chart can
be generated for each sensor and the control chart result indicates the structural status.
Since two levels of control charts were involved here, this method is referred to as two-level

evaluation method.

Although the implementation of the damage detection approach is slightly different when different

prediction models and different damage indictors are used, the major steps are roughly the same,

and they all include the training procedure and the monitoring procedure. The general steps

involved are:

Training procedure:

1)
2)
3)
4)

Create linear prediction models from training data.
Calculate the residual matrix for each event.
Convert the residual matrix into the damage indicator.

Create the training stage control chart on the damage indicator

Monitoring procedure:
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1) Calculate the residual matrix for each event using the linear prediction model created in the
training stage.
2) Convert the residual matrix into the damage indicator.

3) Chart the damage indicator to determine the structural health state.

The proposed damage detection approaches use an unsupervised learning method. Only data from
the undamaged structure are involved in the training. However, to verify the method, data of
damaged structure is necessary. As the damage data are not available through field monitoring,
finite element analysis was carried out to generate the needed synthetic data sets that represent

the damaged condition.

In the remainder of this chapter, the FEA procedure, results and synthetic data generation are first
presented in Section 5.2. Section 5.3 discusses the one-to-one model direct evaluation method.
Different one-to-one models (e.g. max-max, max-min, min-max, min-min and range models) and
different residual simplification procedures were compared. The best one-to-one model and
residual simplification method is then recommended. Section 5.4 presents the two-level evaluation
approach. Results of this approach were compared with the direct evaluation method. In this
section, the two-level evaluation approach was also compared with the improved version of the
method which was originally proposed in the previous research (Doornink,2006). Section 5.5 is
dedicated to the many-to-one model approach. In Section 5.6, further studies to evaluate the
relationship among the damage level, damage detection delay, and the group size selection for the

direct evaluation method are described. Finally, this chapter is concluded with a brief summary.

5.2 FEA Procedure and Synthetic Data Generation

The finite element model described in Section 4.3.2 .2.1 was once again used in this portion of the
work. The joint where the floor-beam was connected to the girder at Section C were re-meshed to
accommodate small size cracks and to capture the complicated strain field at the cut-back areas
more accurately. Figure 5.1 presents the refined mesh at the cut-back area of the south girder and
the connection between the floor beam and the south girder. The north girder counterparts are

symmetric. The finest mesh size was selected to be 0.25in. at the cut-back area.
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b. Position of the simulated cut-back
area fatigue crack and sensing points
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Figure 5.1 The refined model for the cut-back area at Section C

Before being used for the prediction of the damaged bridge response, the finite element model was

verified for the undamaged state with field test data. The verification results are presented in
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Section 5.2.1. After the verification, two types of damage, fatigue cracks at cut-back areas and
corrosion damage at girder bottom, were introduced to the model. The details of the damage
simulation procedure and the damage induced strain changes are discussed in Section5.2.2 and

Section5.2.3.

5.2.1 Model Verification

The control dump truck (Dump4 in Table 4.1, Fig. 5.2 a) was simulated as six concentrated wheel
loads (Fig. 5.2b). For simulation simplicity, the moving wheel loads were applied onto nodes of the
model directly. Due to the mesh size of the bridge deck elements (6inx6in ), instead of using the
measured axle spacings (176in. and 56in.), spacings of 174in. and 54in. were used. In the following
paragraphs, the field measured strains and the strains obtained from the FEA were compared for
the girder bottom sensors, the floor-beam sensors, the horizontal and vertical stringer sensors, and

the sensors located at the cut-back areas.
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a. Control dump truck b. load model for the dump truck

Figure 5.2 Control dump truck and the load model

Girder bottom flange strains

The FEA results and the field data for the girder bottom sensors are plotted in Fig. 5.3. The field data
set was produced at highway speeds as it was hard to find a crawl speed truck event when no other
vehicles were on the bridge at the same time. The dynamic vibrations in the field data are obvious.
However, the overall strain pattern and the magnitude of the extreme strains are generally well

matched.
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Figure 5.3 The comparison of girder bottom flange strains

Floor beam strains

In Fig. 5.4, the field collected floor beam strains are compared with the FEA results. The sensors are
located at Section C and Section E under the south stringer and north stringer, respectively. As can
be seen from Fig. 5.4 a&c, the floor beam strains under south stringers match the FEA results very
well. For the north side of the floor beams, the field collected data are approximately 50% of the
theoretical data (Fig. 5.4 b&d). Many reasons can contribute to this. For example, the truck position
in the model may not be exactly the same as its field position; the transverse wheel spacings of the
truck model could be slight different to that of the real truck, and so on. As the difference is mainly

caused by the load model, the overall performance of the bridge model is considered acceptable.
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Figure 5.4 The comparison of the strains for floor beams

Horizontal stringer strains

Figure 5.5 shows the strains collected by the bottom flange stringer sensors and the strains obtained
from the FEA. It can be seen that the FEA results consistently show a slightly larger maximum event
strain. This is because the composite action effects between the bridge deck and stringers are not
perfectly simulated by the model. However, considering the good match of the overall strain

patterns, the model is considered sufficient for stringer bottom flange strain analysis.
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Vertical stringer strains

Figure 5.6 presents the strains collected by the sensors located at the web of the stringers and the
vertical strains obtained from the FEA. The differences between the field collected data and the FEA
results are quite large. It was observed that eh strain gradient in this area is quite large; as such a
small difference between the actual sensor position and its nominal position can cause significant
differences. In the simulation, the nominal sensor position data were used which may not
necessarily represent the real sensor position well. Therefore, the inconsistency between the FEA
results and the field collected data shown in Fig. 5.6 was not considered to be caused by the

inaccuracy of the model.
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Figure 5.6 The comparison of vertical stringer web strains

Cut-back area strains

Figure 5.7 compares the cut-back area strains obtained from the FEA and the field test results. The

figure shows that the theoretical strain patterns match the field data well. The difference between

the magnitudes of the extreme strains can be caused by non-exact sensor position coupled with the

complicated strain field at the cut-back areas. The comparison shows that the model can generally

represent the structural performance at the cut-back areas.
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Figure 5.7 The comparison of strains at cut-back areas

In summary, the verification indicated that the over all performance of the finite element model can

represent the bridge fairly well. Although the model does not provide the exact replication of the

measured data, it can produce comparable data which may be used to test the various analysis

algorithms.
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5.2.2 Damage Simulation

During damage simulation, a right lane, five-axle, heavy, semi truck was modeled and used as the
load condition for all structural states. In particular, the standard lowa DOT 3S2A truck was used (Fig.
5.8). Two types of damage were simulated: 1) Fatigue crack with different sizes at the Section C cut-

back area of south girder. 2) Corrosion damage at the south girder bottom flange near Section B.

SEMI

L0000

Ik 15.5515.5%  15.5%5.5

o |4 22 | 4

.
-

i

b 3 A 3

40’

I

P
e

Figure 5.8 Load model used in the damage simulation

5.2.2.1 Fatigue Cracks at the Cut-back Area

Cracks, with size varying from Qin. to 2in. in 0.25in. increments, were introduced to the middle of C-
SG-CB1 and C-SG-CB2 (Fig. 5.1b & d, 1in. away from both sensors). For all the simulated fatigue
crack damage states, the strain responses associated with representative sensors are plotted in Figs.
5.9 to 5.13. Specifically, Fig. 5.9 shows the strains for the sensors located at both south and north
cut-back areas; Figs. 5.10 to 5.13 show the strains for selected girder bottom sensors, floor beam
bottom sensors, and horizontal and vertical stringer sensors. It can be seen that the cracks affected
the strain responses at the sensors located neat the crack. For C-SG-CB(1)-V and C-SG-CB(2)-V, the
damage caused strain changes are pretty significant while the changes are very small for C-SG-CB(3)-
V and C-SG-CB(4)-V (Fig. 5.9). Generally, the introduced crack did not change the strain responses
for other sensors (Fig. 5.9 to 5.13). As shown in Fig. 5.9 for sensors C-SG-CB(1-3)-V, as the crack size
increases, the event maximum strain gets smaller while the event minimum strain gets larger. The
opposite trend can be seen for sensor C-SG-CB(4)-V because it is located at the other side of the
zero strain point. However, since sensor C-SG-CB(3)-V and C-SG-CB(4)-V are near to the neutral
point, the absolute value of the extreme event strains are small, and in addition, the damage caused
strain changes are pretty small for these two sensors. Among the simulated fatigue cracks, six were
employed to illustrate and verify of the proposed damage detection approaches. The six damage
states (LevelO to Level5) and the corresponding crack sizes are listed in Table 5.1. Table 5.2

summarizes the event extreme strains (maximum and minimum strains) for sensors C-SG-CB(1-5)-V
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at the six different structural states. Table 5.3 shows the percentage of the strain changes with

respect to the non-damaged strain.
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Figure 5.10 Strains for the selected girder bottom sensors
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Figure 5.11 Strains for the selected floor beam bottom sensors
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Figure 5.12 Strains for the selected stringer bottom sensors
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Table 5.1 Damage level and the corresponding crack size

Damage Level Level0 Levell Level2 Level3 Leveld Level5

Crack size (in.) O 0.5 0.75 1 1.25 1.50

Table 5.2 Maximum and minimum strain at vicinity sensors for different damage levels (352A)

Max strain (ue
Structural states (ue)

C-SG-CB(1)-V C-SG-CB(2)-V  C-SG-CB(3)-V  C-SG-CB(4)-V  C-SG-CB(5)-V

LevelO 34.47 21.14 10.06 14.55 88.47
Levell 34.25 20.95 10.04 14.55 88.47
Level2 33.16 21.17 10.01 14.59 88.47
Level3 33.08 20.02 9.90 14.62 88.47
Leveld 30.58 20.52 9.87 14.70 88.47
Level5 30.71 18.23 9.65 14.77 88.46
Min strain (ue)
LevelO -164.77 -100.89 -47.49 -1.31 -17.01
Levell -163.51 -99.81 -47.33 -1.32 -17.01
Level2 -161.43 -97.46 -47.01 -1.33 -17.01
Level3 -157.20 -94.70 -46.56 -1.36 -17.01
Leveld -152.68 -89.76 -45.88 -1.38 -17.00
Level5 -145.07 -85.37 -45.18 -1.44 -17.01

Table 5.3 Percentages of damage caused maximum and minimum strain changes

O _max (%)
Structural states
C-SG-CB(1)-V C-SG-CB(2)-V  C-SG-CB(3)-V  C-SG-CB(4)-V  C-SG-CB(5)-V
LevelO 0.00% 0.00% 0.00% 0.00% 0.00%
Levell -0.64% -0.89% -0.25% 0.06% 0.00%
Level2 -3.81% 0.13% -0.54% 0.27% 0.00%
Level3 -4.04% -5.29% -1.60% 0.53% -0.01%
Level4 -11.29% -2.93% -1.92% 1.09% -0.01%
Level5 -10.90% -13.77% -4.07% 1.51% -0.01%
O _min (%)
LevelO 0.00% 0.00% 0.00% 0.00% 0.00%
Levell 0.77% 1.08% 0.32% -0.65% 0.00%
Level2 2.03% 3.40% 1.00% -1.57% 0.01%
Level3 4.59% 6.14% 1.94% -4.07% 0.00%
Level4 7.33% 11.04% 3.38% -5.46% 0.04%

Level5 11.95% 15.38% 4.86% -10.31% 0.00%
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5.2.2.2 Corrosion Damage at South Girder Bottom Flange

For this analysis, damage was introduced to the bottom flange of the south girder, the entire width
of the bottom flange and six inch from sensor B-SG-BF-H (elements 4051 and 4052 shown in Fig.
5.14). Three levels of corrosion were simulated by changing the thickness of the elements from
1.50in. to 1.25in., 1in., and 0.75in., and they are indicated as Corrosion1, Corrosion2, and Crosion3
accordingly. FEA results show that only sensors B-SG-BF-H and B-NG-BF-H were affected by the
simulated corrosion damages, and their strains associated with all the damage levels are shown in
Fig. 5.15. Similarly, Table 5.4 summarizes the extreme event strains for these two sensors and the
percentage change with damage. As the corrosion causes cross section loss, the maximum event

strain increases while the minimum strain decreases for both sensor B-SG-BF-H and B-NG-BF-H.

Table 5.4 Maximum and minimum strain for damage affected sensors and change percentages

Thickness of bottom Max strain (L&) O _max (%)
flange (in.) B-SG-BF-H B-NG-BF-H B-SG-BF-H B-NG-BF-H
1.50 (No damage) 102.55 49.64 0.00% 0.00%
1.25 (Crossion1) 110.60 53.54 7.85% 7.87%
1.00 (Crossion2) 121.72 58.94 18.69% 18.75%
0.75 (Crossion3) 138.19 66.95 34.75% 34.88%
Min strain (ue) o _min (%)
1.50 (no damage) -29.05 -22.42 0.00% 0.00%
1.25 (Crossion1) -31.34 -24.19 7.87% 7.88%
1.00 (Crossion2) -34.49 -26.63 18.74% 18.77%

0.75 (Crossion3) -39.17 -30.24 34.85% 34.90%
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Figure 5.15 Comparison of the strains for affected sensors with different corrosion damages

5.2.3 The Synthetic Data Generation

After obtaining the FEA strain data for a particular damage condition, they were used along with the
field collected data (which represents the un-damaged bridge) to simulate/estimate the strain
responses of the damaged bridge. Two major steps were involved in the synthetic data generation
procedure :1) calculate damage induced strain change (as a percentage) for each sensor from the
FEA results, and 2) multiply field collected data by the percent change to estimate the damaged
condition response data sets. For example, as shown in Tables 5.1 and 5.2, when a one inch crack

happens between sensor C-SG-CB(1)-V and C-SG-CB(2)-V, the maximum strain for C-SG-CB(1)-V
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reduced 4.04%. The synthetic data were generated by multiplying the baseline data collected by C-
SG-CB(1)-V with 95.96% (0.9596). The procedure was repeated for all sensors. The synthetic data

were used in the following damage detection discussions.

5.3 Damage Detection Method One (one-to-one model, direct evaluation method)

As described before, the developed SHM system includes 48 strain sensors, among them, 40 were
distributed along the girders, floor-beams and stringers, and they are primarily installed for
monitoring bridge performance. For such a system, 1600 one-to-one model can be created among
the 40 sensors. The models then, in turn, were used to calculate a 40x40 residual matrix for each
truck event, which is the basic format of the damage indictor used in the damage detection

approaches described in this section and in Section 5.4.

For the approach described here, the residual matrix was further simplified into a forty degree
vector, so that, each sensor is associated with a single element of the vector, and one control chart
can be created for each sensor. The control chart results, thus, directly indicate not only the
occurrence of damage but the general damage area. Three residual matrix simplification methods
were studied. In the first two simplification methods, the residual matrix was summed either row-
wisely or column-wisely to generate a row-sum-residual or a column-sum-residual vector. The third
method was developed by subtracting the column-sum-residual from row-sum-residual and, thus,
creating a combine-sum-residual vector. The dimensions of the three sum-residual vectors are all

equal to the number of sensors.

The one-to-one model creation, residual calculation, residual simplification, control chart
construction, and the control chart result interpretation and discussion will be presented in the

following.

5.3.1 One-to-One Models and Residual Calculation

It was shown in Chapter 4 that generally linear relationships exist between the extreme event
strains (both maximum and minimum strains) of any two sensors when some truck and truck
position variations have been eliminated. If the extreme strains are utilized in the one-to-one
prediction model creation, four models (e.g. max-max model, max-min model, min-max model, and

min-min model) can be obtained. As an example, Fig. 5.16 presents the four models created
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between sensor B-SG-BF-H and C-SG-CB(1)-V using the data produced by right-lane, five-axle semi
truck events. The model can be mathematically expressed as Eq.5.1, in which, sensor B-SG-BF-H is
called the control sensor, and C-SG-CB(1)-V is called the response sensor. The coefficients, a, and

a, , were determined from the training data by a standard least square linear regression algorithm.
The residual, as defined in Eq.5.2, is the difference between the predicted and the recorded strain of

the response sensor.
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Figure 5.16 Example of the relationship of maximum and minimum event strain of two sensors

Eq.5.1

gc-SG»CB(l)-V,max/min,predict = aO + algB—SG—BF—H,max/min

Eq.5.2

Re Sldual = gC—SG-CB(1)-V,max/min,monitor - gC-SG—CB(l)-V,max/min,predict

inwhich, &, o gy omin AN € e sk maymin @F€ the extreme event strain values of sensor B-SG-BF-

H and B-NG-BF-H ;

a, and a, are coefficients;
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Generalizing the control sensor (B-SG-BF-H) and response sensor (C-SG-CB(1)-V) in Eg. 5.1 & 5.2 into
any sensor within the system, the equations can be rewritten as Eq.5.3a and Eq.5.3b, respectively.
To be more intuitive, the matrix format of the residual is shown in Eq.5.3. Eq.5.3a can be any of the
four prediction models (max-max, max-min, min-min, and min-max). There is no simple qualitative
way to determine which model is the best in terms of the damage sensitivity. However, the FEA
results showed that a crack near a sensor can cause the event maximum strain to decrease while the
minimum strain increases. Therefore, the event strain range (max-strain — min-strain) will decrease
due to the damage, and the decrease combines the changes in both the maximum strain and
minimum strain. Intuitively therefore a strain range model may be more sensitive to damage than
extreme strains alone. Figure 5.17 presents the relationship of event strain range between B-SG-BF-
H and C-SG-CB(1)-V. The linear pattern of the relationship is evident. Therefore, the linear regression
method used to construct the extreme strain models is applicable for strain range prediction model
creation as well. The strain range model obtained from heavy trucks, light trucks and all trucks
(trucks are used here and later refer to right-lane, five-axle semi) are also shown in Fig. 5.17. The
slight differences of the three models indicate that classifying the trucks into weight groups is

necessary, the simulation results and further discussions about this issue will be presented in

Section5.2.4.
Spea; = f(S)) =a,,+a, xS, Eg.5.3a
Ri=S~S,q;=5—(ay;+0a,,%S,) Eq.5.3b
Ry, Ry, Rism S S S,
R, R; R |=| S S, S,
Ry, Ruo; Ruso | | Sio S S0
Oy 11 Gy 0o 140 a5 a,; O [|S, O O .. O
= Ao, Oy Ogigo || Oy - Gy = O |0 0S5 . 0
Qg 401 o 40/ 4 4040 0, 401 0y 40, Oas0 |0 0O .. 0 S,
Eq.5.3

in which, i,j=1,..,40;
R; is the residual when use the data of the j-th sensor to predict the data of the i-th

sensor. Wheni=j, R =0;
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Sj can be the event based max-strain, min-strain, or the strain range for the j-th sensor;

Uy

and a, ; are the coefficients obtained from linear regression.
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Figure 5.17 Example of the relationship of event strain range of two sensors

5.3.2 Residual Matrix Simplification

5.3.2.1 Row Summation

140

If damage affects the strain response of the p-th sensor (S, ) only (the change is high lighted by the

red frame and green frame at the right side of Eq.5.4), it will cause all the elements in the p-th row

(red frame at the left side of Eq.5.4) and the p-th column (green frame at the left side of Eq.5.4) of

the residual matrix to change, except for R

which always equals 0.

pp’
Rfﬂ

0 1p R140 51 51 s1

R, |[Ro: 0 Roaf |=|[S, S, S,

R401 . R40p O SAD 540 540
a0,11 a0,1p a0,140 al,ll al,lp
aO,pl aO,pp aO,p40 + a1,p1 b al,pp
a0,401 . a0,40p a0,4040 a1,401 . a1,40p

A0 |[S2 O O 0
3,40 || 0 0 |S, 0
a 0 0 0 S,

1,4040

Eq.5.4
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Notice that S can be either strain range or extreme strain (e.g. maximum or minimum strain). When
different data (strain range or extreme strains) are used, and when the relative location of the

sensor and the damage are different (sensor near to the damage or over the damage), S, can be
either decreased or increased due to the damage, and thus, elements of R, (the p-th row of the

residual matrix) can either decrease or increase as well; nevertheless, in any of the cases, elements

of the R share the same change trend as S, . Therefore, the summation of R, is thought to enlarge

the damage effect.

During implementation, it should be noted that if the absolute value of a, _ is large, the change

1,ap

of S, can lead to a significant change of S and which in turn, results in remarkable change

pred,qp ?

of row _sum_rsd, . In this case, damage would be indicated not only for the p-th sensor but the g-th

sensor. In this scenario, the damage location is not correctly determined. To avoid this, the elements
in the residual matrix were standardized using Eq.5.5. The mean and standard deviation of each
element of residual matrix was determined from the training data sets. After the standardized

residual matrix is obtained, each row can be summed up to get the row _sum __rsd vector (Eq.5.6).

In the rest of this section, for simplicity, residual matrix refers to the standardized residual matrix.

R, —u;
std = ———— % (i, j=1t040)
' o Eq.5.5

i

R

in which, R, is the element located at i-th row and j-the column in residual matrix;
4; isthe meanof R, ;

UI

o is the standard deviation of R,j .

40
row _sum_rsd, = ZR
j=1

isa (i=11040) Eq.5.6

5.3.2.2 Column Summation

As mentioned before, when damage affects S, it affects not only the elements of R, but the
elements of R, (see Eq.5.4, the p-th column of the residual matrix). The change trend (increase or
decrease) of elements of R, is not only related to the change of S, but a, . If a, , are all positive

or negative, all elements of R, show the same change trend. For a linear structural system, the
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Figure 5.28 Control charts obtained from different evaluation matrix simplification algorithms

Table 5.12 POD for sensor C-SG-CB(1)-V with different evaluation matrix simplification methods

Damage Level Row-sum Column-sum Combine-sum

Level O

(false alarm) 0.00% 0.00% 0.00%
Level 1 0.00% 0.00% 0.00%
Level 2 0.00% 0.00% 0.00%
Level 3 0.81% 0.41% 0.41%
Level 4 21.86% 9.72% 15.39%
Level 5 85.83% 55.87% 74.49%

Table 5.13 POD for sensor C-SG-CB(2)-V with different evaluation matrix simplification methods

Damage Level Row-sum Column-sum Combine-sum

Level O

(false alarm) 0.41% 0.00% 0.41%
Level 1 0.41% 0.41% 0.41%
Level 2 1.22% 0.81% 0.81%
Level 3 16.60% 4.45% 8.91%
Level 4 68.83% 28.75% 53.44%
Level 5 100.00% 93.93% 100.00%

5.4.2 Comparison of the Two-Level Evaluation Method and the Improved Previous Method
The row summation based two-level evaluation method is conceptually close to the damage
detection which was originally proposed in the previous research (Doornink, 2006). For easy
comparison, the previously developed method was re-implemented in the control chart format.
During the re-implementation, the following improvements were made:

1) Instead of using all types of trucks during the damage evaluation, the improved method only

uses right-lane, five-axle, heavy, semis.
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2) Using the residual as damage indicator enabled the mathematical control limits selection

procedure, which is more reliable than defining control limits manually.

3) The in-direct matches used in the previous method were removed by the perfectly defined

event based extreme strains.

4) The strain range is more damage sensitive than the extreme strains used in previous method.
Although significantly improved, the previous method still shows a lower POD than the two-level
evaluation approach. Table 5.14 and the examples of the control charts shown in Fig. 5.29 all
indicate as much. With the two-level evaluation approach the first level fail evaluations were
differentiated into “1” (larger than UCL) and “-1” (smaller than LCL), however, in the improved
previous approach, all the fail evaluations were taken as “1”. So essentially, the POD improvement is

resulted from the different evaluation matrix creation rule.
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Figure 5.29 Control charts obtained from different evaluation matrixes

Table 5.14 POD for sensor C-SG-CB(1)-V and C-SG-CB(2)-V



111

Improved previous method  Two-level evaluation method

Damage Level C-SG-CB(2)-V  C-SG-CB(1)-V  C-SG-CB(2)-V  C-SG-CB(1)-V

Level O

(false alarm) 0.00% 0.00% 0.41% 0.00%
Level 1 0.00% 0.00% 0.41% 0.00%
Level 2 0.00% 0.00% 1.22% 0.00%
Level 3 0.00% 0.00% 16.60% 0.81%
Level 4 0.00% 2.02% 68.83% 21.86%
Level 5 54.25% 48.18% 100.00% 85.83%

5.4.3 Comparison of the Two-Level Evaluation Method and the Direct Evaluation Method

The discussion presented in Section 5.3 and Section 5.4.1 indicate that the combined summation
and row summation achieve the best damage detection results for the direct evaluation method and
the two-level evaluation method, respectively. The PODs for these two approaches are compared in
Table 5.15. It can be seen that for Level5 damage, both methods can achieve a 100% detection rate.
For relatively small damages, such as Level3 damage, the POD associated with the direct evaluation
method is 49.8% for C-SG-CB(2)-V. For the two-level evaluation method, however, it is only 16.6%.
Apparently, using the evaluation matrix in the two-level evaluation method can cause information
loss which in turn results in its insensitivity to small damages. With the direct evaluation method,
the small changes in the residual matrix can be summed up into a damage signal. However, when
they are replaced by first level control chart evaluation results, these small changes can be masked
and be replaced with “0”; and, as such, no signal will be created. In conclusion, compared to the

one-to-one model direct evaluation method, the two-level evaluation method is not as sensitive to

small damage.

Table 5.15 POD for sensor C-SG-CB(1)-V and C-SG-CB(2)-V with different damage detection methods

Direct evaluation method Two-level evaluation method
(combine_sum) (row_sum)
Damage Level C-SG-CB(2)-V  C-SG-CB(1)-V C-SG-CB(2)-V  C-SG-CB(1)-V
Level O

(false alarm) 0.00% 0.00% 0.41% 0.00%
Level 1 1.62% 0.00% 0.41% 0.00%
Level 2 9.72% 2.43% 1.22% 0.00%
Level 3 49.80% 13.77% 16.60% 0.81%
Level 4 87.05% 68.02% 68.83% 21.86%

Level 5 100.00% 97.17% 100.00% 85.83%
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5.5 Method Three (many-to-one model method)

As discussed above, the methods which use the one-to-one models always result in a complicated
residual matrix which needs significant effort to handle. In this section, a different prediction model,
named the many-to-one model, is discussed. With the new model, the dimension of the obtained
residual matrix always equals the number of sensors. Many-to-one models, as implied by the name,
use data of all other sensors to predict the performance of the remaining one sensor (Eq.5.9). As
strain ranges have been shown to be the most damage sensitive performance measurement, they
are utilized here to construct the many-to-one models. In the same way as the construction of the

one-to-one model, 1000 training data sets were employed to calculate model coefficients (a; in

Eqg.5.9) with the standard least squares linear regression approach. After the models were obtained
for all sensors, the residual matrix can be calculated as Eq.5.10. As the dimension of the residual
matrix equals the number of sensors, one control chart can be created for each sensor directly.
Observations show that the distribution of each element in the residual matrix is near to normal
(selected examples are shown in Fig. 5.30). And, as such, the UCL and LCL of the control charts are

determined to be the mean plus/minus three times the standard deviation (Eq.5.11).

Spreai = f(51,5,,-:5;::S40) = G,y +0,,S, +0,S, +...+0,S, +...+0,,,S,, (0, =0 when i = j) Eq.5.9
(R[S ] ([ao] | O « a; - au]lSs ]
0
Ro1=1S ||| apn || 91 - a;, . Qg S, Eq.5.10
. . 0 .
_R4o_ _540_ _0400_ _0401 . a40j . 0 ] _540_
In which, R; is the residual associated with the i-th sensor
S, is the strain range for the i-th sensor
a, are coefficients.
{UCL, = i + 30, Eq.5.11
LCL, = 4 — 3o,

in which, £ is the mean of R, calculated from training data, and

0, is the standard deviation of R, calculated from training data.
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selected to be 10 in the discussion in Section 5.2 to Section 5.4. The selection will be justified in the

following.
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Figure 5.32 The combine-sum-residual distributions and control limits for sensor C-SG-CB(1)-V

with different group sizes

For slight damages, larger group size can improve the POD dramatically, which in turn, leads to a

smaller damage delay (n__ ). On the other hand, for relatively large damage, the improvement is

group
not significant. This can be seen from Tables 5.17 and 5.18, which summarize the PODs for C-SG-
CB(1)-V and C-SG-CB(2)-V with different group sizes and different damage levels. For Level2

damage (slight damage), when the group size is reduced from 200 to 10, the POD for sensor C-SG-
CB(2)-V decreased from 58.33% to0 9.72%. On the other hand, for Level5 damage (relatively large
damage), 100% POD can be achieved for both group size of 200 and a group size of 10. As another
example, Fig. 5.33 shows the relationship between detection rate and the number of monitoring
periods (one monitoring period is equivalent to one truck group) for sensor C-SG-CB(2)-V. Level3
damage (Fig. 5.33 a) is selected to represent slight damage, while Level5 damage (Fig. 5.33 b)
represents relatively large damage. For slight damage (Fig. 5.33 a), to allow the detection rate to
reach 99% the required number of monitoring periods is small when the group size is large. (i.e. 3
monitoring periods are required by a group size of 100, and 4 monitoring periods are required by a
group size of 50). As the group size decreases, the required monitoring periods increase dramatically.
It increases to 14 for a group size of 5, and more than 100 for a group size of 1. However, for Level5
damage (Fig. 5. b), when the group size is larger than one, the damage can always be detected with

only one monitoring period.
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Table 5.17 POD for C-SG-CB(2)-V with different group sizes and different damage levels

LevelO

Group Size  (False Alarm) Levell Level2 Level3 Leveld Level5

1 0.08% 0.32% 0.93% 3.71% 14.82% 66.45%

5 0.20% 0.61% 3.84% 28.69% 76.57% 99.39%

10 0.00% 1.62% 9.72% 49.80% 87.05% 100.00%
20 0.00% 2.44% 16.26% 65.04% 95.12% 100.00%
30 0.00% 4.88% 23.17% 70.73% 100.00% 100.00%
40 0.00% 4.92% 26.23% 78.69% 100.00% 100.00%
50 0.00% 4.08% 26.53% 77.55% 100.00% 100.00%
60 0.00% 7.32% 26.83% 73.17% 100.00% 100.00%
70 0.00% 11.43% 34.29% 80.00% 100.00% 100.00%
80 3.33% 6.67% 40.00% 80.00% 100.00% 100.00%
90 0.00% 7.41% 37.04% 77.78% 100.00% 100.00%
100 4.17% 12.50% 37.50% 87.50% 100.00% 100.00%
125 0.00% 10.53% 36.84% 89.47% 100.00% 100.00%
150 0.00% 18.75% 31.25% 87.50% 100.00% 100.00%
175 0.00% 21.43% 42.86% 92.86% 100.00% 100.00%
200 8.33% 25.00% 58.33% 100.00% 100.00% 100.00%

Table 5.18 POD for C-SG-CB(1)-V with different group sizes

and different damage levels

LevelO
Group Size  (False Alarm) Levell Level2 Level3 Leveld Level5
1 0.24% 0.32% 0.53% 1.41% 6.42% 24.59%
5 0.20% 0.20% 1.41% 8.89% 50.71% 91.92%
10 0.00% 0.00% 2.43% 13.77% 68.02% 97.17%
20 0.00% 0.81% 4.88% 26.02% 83.74% 99.19%
30 0.00% 2.44% 9.76% 29.27% 92.68% 98.78%
40 0.00% 0.00% 8.20% 39.34% 96.72% 100.00%
50 0.00% 0.00% 4.08% 42.86% 100.00% 100.00%
60 0.00% 0.00% 7.32% 46.34% 97.56% 100.00%
70 0.00% 0.00% 8.57% 45.71% 97.14% 100.00%
80 0.00% 0.00% 13.33% 53.33% 100.00% 100.00%
90 0.00% 0.00% 11.11% 48.15% 100.00% 100.00%
100 0.00% 0.00% 12.50% 54.17% 100.00% 100.00%
125 0.00% 0.00% 21.05% 52.63% 100.00% 100.00%
150 0.00% 0.00% 18.75% 62.50% 100.00% 100.00%
175 0.00% 0.00% 28.57% 64.29% 100.00% 100.00%
200 0.00% 0.00% 33.33% 66.67% 100.00% 100.00%
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Figure 5.33 The relationship between detection rate and the number of monitoring periods

In practice, users care more about the detection delay in terms of number of trucks (n,,,, ) instead

of the number of monitoring periods (or number of truck groups, ngmup) discussed above. Converting

Nyroup tO Ny 1S NOL difficult, and it is shown in Eq.5.15. The equation indicates that
ntrucks = group Size X ngroup Eq.5. 15
Ny 1S NOt ONly related to n,,,, but the group size. For slight damages, as discussed before, larger

group sizes lead to smaller n__ . However, since the group size is larger, the n, ., which is the

group

is not necessarily small. For heavy damages, n is almost the

product of the group size and n group

group ’

same for most group sizes, so smaller group size can result in smaller n, . . Figure 5.34 shows the
relationship between the detection delay (n,, . when DR is not smaller than 99%) and the group

sizes for Levell to Level5 damages. It can be seen that for each damage level, there is a minimum

n,.. (highlighted by a red circle in the figure). The group size associated with the minimum n,,,. is

taken as the optimal group size. For Levell damage, the optimal group size is 70. Even with the
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optimal group size, 2500 trucks are required to achieve the 99% detection rate. On average, 100

right-lane, five-axle, heavy trucks pass the demonstration bridge per day, so Levell damage can not

be reliably detected until 25 days after it occurred. With the long detection delay, the damage can

evolve into a higher level damage before being detected. For Level2 damage, the optimal group size

is 10 and the corresponding n

trucks

can be determined as 460 from Fig. 5.34 b. Figure 5.34c shows

that the group size of 10 is optimal for Level3 damage as well, and the associated minimum n,,,.

70. For damage Level4 and Level5, the optimal group sizes are determined to be five. However, if

group sizes of 10 are used, the n

trucks

from the minimum value of 20 to 30, for Level5 damage, n,,,.

will not increase too much. For Level4 damage, it increases

increases from 5 to 10. Detecting

IS

small damages earlier is the objective of the SHM, therefore the group size of 10 is recommended

for the system.

6000

Detection Delay (n
w N I
a o 15
o o o
o o o

3000

2500
0

trucks)
w AN
a o o
S S ©

w
o
o

N
(el
o

Detection Delay (n

C-SG-CB(2)-V Levell

[l

|

|
— 4

|

|

|
|
- === === 4+ -+ —-=F-=l
|
|

| | | |

1 1 1 1 1 |
40 60 80 100 120 140 160 180 200
Group Size

a. Levell damage

C-SG-CB(2)-V Level3

40 60 80
Group Size

c. Level3 damage

i
I
|
100 120 140 160 180 200

trucks

Detection Delay (n

trucks)

Detection Delay (n

5000

4000

w
o
o
o

n
o
o
o

1000

C-SG-CB(2)-V Level2

ob - - -

0 1 1 1 1
0O 20 40 60 80 100 120 140 160 180 200
Group Size
b. Level 2 damage
C-SG-CB(2)-V Level4
200
180
160
140
120
100
80
60
40
20 >4 1 1 1 1 1 1 1 1 1 |
0 20 40 60 80 100 120 140 160 180 200
Group Size

d. Leveld damage



121

200

-
(o))
o

-
o
o

Detection Delay (n"ucks)

(o))
o

[

|

|

|

|
0 1 1 1 1
0 20 40 60 80 100 120 140 160 1
Group Size

e. Level5 damage

Figure 5.34 The relation between detection delay (n, . ) and group size for each damage level

5.6.2 Application for Other Type of Damages

Although fatigue cracks in the cut-back area was the primary reason the proposed damage detection
algorithm was developed, the application of the algorithm is not limited to this type of damage. The
one-to-one model used in the algorithm involves all sensors equally in the performance cross
prediction procedure. So as long as there is a sensor within the damage influence area, the damage
detection approach is thought to be virtually equally effective no matter where the damage occurs.
To verify this, the direct evaluation method was applied in the detection of the simulated corrosion
damage. As discussed in Section 5.2, the damage was simulated by reducing the thickness of the
bottom flange elements of south girder. The sensor B-SG-BF-H is located on the boundary of the
damage. FEA results show that the damage affect B-SG-BF-H and B-NG-BF-H. Reviewing the control
chart analysis results can find that alarms were created only by these two sensors also. As an
example, control charts for B-SG-BF-H at different corrosion levels are shown in Fig. 5.35. The PODs
for sensor B-SG-BF-H and B-NG-BF-H at different corrosion levels are summarized in Table 5.19. The
table indicates that for the same corrosion level, the POD associated with sensor B-SG-BF-H is
always higher than B-NG-BF-H. So the sensor nearer to the damage can detect it earlier than other
sensors. To be clear, Fig. 5.36a&b present the relationship between the number of trucks and the
detection rate for sensor B-SG-BF-H and B-NG-BF-H, respectively. As can be seen, with the same
number of trucks and the same corrosion level, sensor B-SG-BF-H always show higher detection rate

than B-NF-BF-H.
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Table 5.19 The PODs for sensors B-SG-BF-H and B-NG-BF-H

. POD
Corrosion Level
B-SG-BF-H B-NG-BF-H
CorrossionO 0.41% 0.00%
Corrossionl 62.35% 1.22%
Corrossion2 100.00% 4.86%
Corrossion3 100.00% 40.89%
B-SG-BF-H
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Figure 5.36 The detection rate for sensor B-SG-BF-H and B-NG-BF-H

5.7 Summary

In this work, a novel strain based damage detection approach was developed. The residuals
calculated from linear prediction models were used as the basic format of the damage indictor, and
it was shown to be more damage sensitive than using strain directly. Studies also indicated that the
strain range is more damage sensitive than event extreme strains. Simulation results showed that
among the studied methods, the one-to-one model direct evolution method is the most effective in

terms of both the damage occurrence and damage location detection. With the unique one-to-one
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model, the developed damage detection approach can be applied for virtually all types of steel

bridges and can detect all types of damage.
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CHAPTER 6 SUMMARY, CONCLUSIONS AND FUTURE WORK

6.1 Summary

In a previous project, a FOS SHM system was developed that enables bridge owners to remotely
monitor bridges for gradual and sudden damage formation. However, the correlation between the
data analysis results and damage was not objectively defined; bridge owners need to interpret the
results according to their experiences, which might be subjective. To improve the existing SHM

system, a statistical damage detection method was proposed and analytically evaluated.

The basic idea of this method is that the response of a normal structure is different from that of the
damaged structure. To define the difference mathematically, Shewhart X control chart analysis was
carried out over a strategically defined damage indicator. Compared to use the strain directly, it was
found that the residual calculated from cross prediction models is more sensitive to structural
damage and immune to load condition variations. With different prediction models and different
damage indicator calculation procedures, three damage detection methods (one-to-one model
direct evaluation method, two-level evaluation method, and many-to-one model method) were
studied. Each method has its advantages and disadvantages. The first method (e.g. one-to-one
model direct evaluation method) was shown to be the most damage sensitive and the most
effective in damage location detection. However, its implementation is relatively complicated and
the simplified residual matrix does not have a clear physical meaning. For the second method (e.g.
two-level evaluation method), which uses the simplified evaluation matrix as the damage indicator,
the physical meaning of the indicator is clear (i.e. the number of failed first level evaluation).
However, this method is not sensitive to small damage due to the loss of important information
inherent to this process. The advantages of the third method (e.g. many-to-one model method) are
obvious; the implementation procedure is simpler than the other two methods and its damage
sensitivity is comparable to the first method. However, the simulation results indicated that this
method is not effective in terms of the damage location detection. As a result of the overall study,

the one-to-one model direct evaluation method is recommended.

For the recommended damage detection method, studies were carried out to compare the

performance matrix selection, the truck group selection, and residual matrix simplification
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procedure selection. The simulation results showed that the strain range is the most damage
sensitive performance measurement, and it was utilized in the one-to-one model creation. It was
also verified that using right-lane, five-axle, heavy trucks can achieve better damage detection
results than using light trucks or using all trucks as a single group. Among the three residual matrix
simplification approaches (row summation, column summation, and combined summation), the

combine summation was found to be the most damage sensitive.

The recommended damage detection approach was developed with the following three major steps.

Step 1, data preprocessing. The strain variance caused by determinable factors, such as the thermal
effect, vibration produced by vehicles and the interaction between vehicles and the bridge,
and the variance caused by different truck types, were removed from the raw data. The
unique truck parameter detection/calculation method developed in this research allows for
truck selection which improves the sensitivity of the damage detection method significantly.

Step 2, system training. In the training procedure, one-to-one linear regression prediction models
are trained with field collected undamaged structural data. Using the prediction models, a
40x40 residual matrix is calculated for each truck event. The combine summation
simplification approach is then employed to simplify the residual matrix into a 1x40 combine-
sum-rsd vector, so that one baseline control chart is created for each sensor. As the
distributions of the elements of combine-sum-rsd are roughly normal, the control limits are
settobe u+30.

Step 3, structural monitoring. During the monitoring stage, the current structural state is
determined by comparing the current performance with that of the undamaged structure
using the control charts developed in Step 2. For each preprocessed monitoring data set, the
same residual matrix calculation and simplification procedure used in Step 2 is repeated to
calculate the combine-sum-rsd vector. The comparison is accomplished by plotting the
elements of combine-sum-rsd onto the corresponding baseline control charts established
during system training. Out-of-limits points indicate structural damage and the position of the
associated sensor indicates the general damage location.

The above outlined damage detection approach was evaluated with FEA simulation data. The results

of the evaluation indicated that:

1. Using a group size of 10 can achieve the earliest detection for slight damages while keeping

the detection delay reasonable for relatively large damage.
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For the demonstration bridge, C-SG-CB(2)-V can always detect the simulated fatigue cracks
earlier than C-SG-CB(1)-V does. By controlling the false alarm rate to around 0.3% using a
group size of 10, the POD for Level2 damage is 9.72%, and on average the damage detection
rate can achieve 99% with 460 trucks passing the bridge; for Level3 damage the detection
delay was reduced to 70 trucks. When Level5 damage occurs, it can be detected after 10
trucks passing. Not surprisingly, severe damage can be detected sooner than slight damage.
The detection delay for Levell damage is long, and the damage can evolve into higher level
damage before being detected.

Study of the detection of corrosion damage indicated that with a 0.3% false alarm rate and a
group size of 10, the POD is 62.35% for Corrossion1 and 100% for Corrossion2, and the

corresponding detection delay is 50 and 10 trucks, respectively.

6.2 Conclusions

Reviewing the various aspects of this research, the following conclusions can be made about the

developed truck detection sub-system and the damage detection approach:

1.

The developed strain based truck detection sub-system can detect truck events and
calculate relevant parameters including the number of axles, axle spacings, speed, event
start and end time, and weight group autonomously in a near-real-time fashion. The sub-
system has been integrated into the existing SHM system successfully. The truck parameter
detection function allowed for a successful data selection procedure. Using a single truck
type during the structural evaluation improved the performance of the system significantly.
By using the uniquely one-to-one cross prediction model, sensors in the SHM system can be
used as both TS and NTS; and the developed damage detection approach can be applied for
virtually all types of bridges.

Using the simplified residual as the damage indicator enabled reliable mathematical control
limits selection. The control chart analysis results can show not only the damage occurrence
but the damage location. The strategically defined damage indicator significantly improved
the damage detection power of the method.

The damage sensitivity (measured by POD and detection delay) and the damage location
detection ability of the recommended one-to-one model direct evaluation method were
evaluated using the synthetic data. The optimal group size was recommended based on the

simulation results.
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6.3 Future Work

In future, additional effort is required to further verify and improve the developed damage

detection method:

1.

Verify the recommended damage detection method with field collected data. The POD and
detection delay information obtained from field collected post-damage data is more reliable
than the simulation results.

Schewart control chart concepts were used in the developed damage detection method. In
the future; the CUSUM control chart should also be investigated. CUSUM charts, while not
as intuitive and simple to operate as Shewhart charts, have been shown to be more efficient
in detecting small shifts in the mean of a process. So, theoretically, a more damage sensitive
method may be achievable by using CUSUM charts.

Comparing the performance of the Schewart charts based method and CUSUM charts based

method using the field collected data.
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APPENDIX A TRUCK WEIGHT CALCULATION

Early in the project it was postulated to be possible to calculate the truck weight using weight in
motion (WIM) concepts. Although FEA results showed the feasibility, controlled test results were
not satisfactory. This indicated that the WIM concept is not applicable for the selected
demonstration bridge. The global strain effects produced by different axles of a truck are not
completely decomposable. Nevertheless, the utilized WIM concept and the verification procedure

are summarized in the following.

1. WIM Concept

Many WIM algorithms have been studied in the literature. The one used in this project was first
proposed by Moses (1979). The algorithm was field verified on a three span bridge, which has six
continuous steel girders and no skew. Theoretical influence line was used in the verification, and it

was claimed to be effective for any beam-slab bridge.

In the proposed approach, the influence line for a selected sensing point was calculated from the
strain responses produced by field testing. The field calibrated influence line is considered to be
more accurate than the theoretical one. The truck speed, event start time, and axle distances were
known, so the position of each truck axle could be computed for any time instance. With the truck
axle positions and the influence line known, the theoretical strain response can be calculated for any
truck location. At the same time, the monitoring strain response is available as well. Thus, the
weights of individual truck axles could be determined by minimizing the difference between the
calculated and the monitoring strain responses. The total truck weight is simply the summation of

the axle weights.

In short, implementing the WIM concept needs two key steps: 1) obtain the influence line, and 2)
calculate the axle weight by minimizing the difference between the monitoring and calculated strain

responses.

2. FEA feasibility study

2.1 Influence line generation
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The finite element structural and load models introduced in section4.2.2.1 were used here. To
calculate the influence line for the point where sensor B-SG-BF-H was installed, FEA was carried out
using a single dump truck but with three different load levels. Two percent normal distributed
random noises were added to the FEA strain results to simulate the monitoring data. The geometry
and axle weights of the three dump trucks are shown in Fig A.1 a&b. The simulated strain responses
are plotted in Fig A.1c. When the first axle of the truck is located at a point ( P in Fig A.2), the total

strain R,(P) can be expressed as the sum of each axle weight of i-th truck times the influence line
value at the axle position. The coefficients of W, and R;(P)in (A.1) are known, and they defined an

independent and consistent linear system. Therefore the influence line instance I(P) can be uniquely
solved from the system. The weights of two axles of the tandem group were assumed to be the
same, |(P) can be solved from any two equations of (A.1) . When the first and the last equations are
used, the solution is shown in (A.2). Repeating the simultaneous equations solving procedure for all

truck positions we can obtain the entire influence line, which is shown in Fig A.2.

Dump Truck w1 W2 W3 D1 D2
(k) (k) (k) (ft)  (ft)
W3 W2 W1 Runl 5.6 7.89 7.89 14 4.5
D2 D1 Run2 448 473 473 14 4.5
L'y Run3 3.92 2367 2.367 14 4.5

a. Truck configuration b. Truck axle weights and axle distances

80

—— Response3

70 A4
/ \ —— Response2
60
/ \ —— Response1
50

© N
5 ) //““\

10 A \
0 . . . . . - :
500 1000 W 3000 3500 4000

-10

-20

-30
First Axle Position (inch)

c. The strain response of the truck at different load levels
Figure A.1 The strain data used for influence line generation
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Figure A.2 The influence line calculation

W, W, W, I(P) R.(P)
W, W, W, I(P_Dl) = Rz(P) (A1)
W,, W,, W, | I(P-D,-D,)| [R;(P)

W,,R, (P)—W,,R,(P) (A.2)
M/32M/11 _VV12W31

I(P)=

In which, W, is the weight of the j-th axle of the i-th truck;

I(P), I(P-D1), I(P-D2) are the influence line values at the point of P, P-D1, and P-D2;

R;(P) is the response produced by i-th truck when its first axle is located at point P.

2.2 Truck weight calculation

By extending the three axle dump truck case shown in (A.1) to an n-axle truck case, the theoretical
strain response, when the first truck axle is located at position P, can be calculated as (A.3). The
corresponding monitoring response data was simulated by adding 2% random noises to the FEA
strain results. The axle weight of the truck was then calculated by minimize the objective function of

(A.4) using the least square error optimization method.
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(p) 1(P—-D,) I(P—D,-D,)... .. I(P—D,—..—D,,) _3 =R_caculated(P,W,,W,,...,W,) (A.3)

n

(A.4)
objective function =R _calculated(P,W,,W,,....,W,)—R _monitoring(P)

As discussed before, the dump truck (Fig A.1) Runl and Run3 data were used to generate the
influence line. So the data of Run2 can be used to verify the weight prediction results. As presented
in Table A.1, the axle weight prediction error is smaller than 10%, and the total weight prediction
error is no more than 5%. In this verification the target truck has the same geometry configuration
as that used in influence line generation. The weight prediction results of two trucks with different
geometries than influence generation trucks are shown in Tables A.2 and A.3. It can be seen that the
prediction errors are as good as that shown in Table A.1. The results indicated that once the

influence line was calculated, it can be applied to calculate the weight of any type of trucks.

Table A.1 Dump truck weight prediction using FEA data(D1 = 14ft, D2 = 4.5ft)

Actual Predicted Error
W1 (k) 8.96 8.80 -2%
W2 & W3 (k) 9.46 10.24 8%
W Total (k) 27.88 29.28 -5%

Table A.2 Dump truck weight prediction using FEA data (D1 = 18ft, D2= 4ft)

Actual predicted  Error
W1 (k) 10.00 9.42 -6%
W2 & W3 (k) 14.00 14.10 1%
W Total (k) 38.00 37.62 -1%

Table A.3 Five-axle semi truck weight prediction using FEA data
(D1 = 10ft, D2 = 4ft, D3 = 22ft, D4 = 4ft)

Actual Predicted Error
W1 (k) 12.00 10.76 -1%
W2 & W3 (k) 13.00 13.48 4%
W4 & W5 (k) 15.50 15.22 -2%
W Total (k) 69.00 68.16 -1%

The FEA concluded that the WIM concept may be applicable for the demonstration bridge. To

simplify the influence line computation and reduce the required data amount, trucks with fewer
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axles are more desirable for influence line generation. Once the influence line was computed, it is
applicable for any truck type. Observations show that the prediction error of gross vehicle weight

(GVW) is smaller than that of axle weights.

3. BDI testing data study

3.1 Influence line generation

The BDI strain data produced by Dump4 and Dump?2 (Table 4.1) were used to generate the influence
line. In Fig A.3, the influence line is compared with that obtained from FEA results. Although the
overall shapes are similar, the maximum magnitude difference can be as large as 28%. A number of
factors contribute to the difference. They include: 1) the weights of the two tandem axles are not
exactly same; 2) the dynamic effects were not completely removed by the digital filter; 3) the field
data unavoidably contained noises and strains caused by other vehicles; 4) the bridge structure
system does not perform exactly the same as the finite element model, and the axle strain effects
are not completely decomposable for the demonstration bridge. Among these, the last one is

considered to be the most significant.
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Figure A.3 Comparison of the influence line calculated from BDI data and FEA results

3.2 Truck weight calculation

Following the same optimization procedure introduced in the FEA feasibility study, the truck weights

were calculated using the data obtained from the BDI test. Examples of the calculation results for
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dump and semi trucks are listed in Tables A.4 and A.5 respectively. As shown, errors of the total
weight calculation are less than 10% for dump trucks. However, for 6-axle semi trucks, the errors are
found to be between 10% and 25%. The considerable difference between the truck weight
prediction qualities for different truck types indicated that the real bridge structure system can not

completely decouple the effects of individual axles.

Table A.4 Weight prediction results for a dump truck from control testing data

Calculated Calculated Calculated Calculated

Actual 1 ) 3 4
W1 (k) 13.60 11.78 9.79 11.56 12.10
W2 & W3 (k) 19.39 20.37 21.19 22.16 21.97
Total Weight(k) 52.38 52.52 52.16 55.88 56.04
Error W1 -13.38% -28.04% -15.01% -11.00%
Error W2&W3 5.07% 9.27% 14.29% 13.30%
Error Total Weight 0.28% -0.42% 6.68% 6.99%

Table A.5 Weight prediction results for a six-axle semi truck from control testing data
Calculated Calculated Calculated  Calculated

Actual 1 ) 3 4
W1 (k) 44.76 48.58 -6.58 -35.43 -33.16
W2 & W3 (k) 35.98 25.18 39.43 51.25 49.59
W4-6 (k) 12.41 18.908 19.56 16.78 16.67
Total Weight(k) 153.96 155.66 130.94 117.42 116.03
Error W1 8.53% -114.70% -179.16% -174.09%
Error W2&W3 -30.00% 9.58% 42.45% 37.83%
Error W4-6 52.28% 57.54% 35.18% 34.30%
Error Total Weight 1.10%* -14.95% -23.74% -24.63%

*The good total weight prediction result is not reliable since the truck changed speed on the bridge
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APPENDIX B PSEUDO CODE FOR At CALCULATION

Input: Data,,, Data,,, Data,,, Data,, \*deck-bottom sensor data*\
Output:At

fori=1to2 \*lineindex*\
forj=11to 2 \*sensorindex*\
UB; = mode(Data;>0) \*UB, is the upper bound
of zero readings for the ith line jth sesnor*\

end

end

fori=1to 2
forj=1to2

StrongPeak; = Peak (Data,

ij’

3) \*Peak(x,y ) is the peak detection sub-function,
x:input data, and y:threshold*\

WeakPeak, = Peak(Data;, UB,)
end
end
fori=1to2
forj=1to2
PSensor; = StrongPeak; U WeakPeak;
end
end
fori=1to2
PLine, = PSensor,UPSensor,
end
Num =0
MaxNum =0

while 0.4sec <t < 2sec
fori=1to length(PLine,)
for j=1to length(PLine,)
if |T_PLine2(j) - (T_PLinel(i)+t)| < 2*TimeStep \* TimeStep is
1/data collection frequency; T_Pline is the time stamp of the peak*\
Num =Num+1
end
end
end

if MaxNum < Num
MaxNum = Num
At=t

end

Num =0
t= t+TimeStep
end
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APPENDIX C SPECIFICATIONS FOR FOSS IN THE US30 SHM SYSTEM

Channel FOS Name Grating length Central Package
(mm) Wavelength(nm) dimension
A-NS-WB-V 10 1577.5 210x20x1mm
A-SS-WB-V 10 1582.5 210x20x1mm
B-NG-BF-H 10 1517.5 210x20x1mm
B-NS-BF-H 10 1522.5 210x20x1mm
B-SS-BF-H 10 1527.5 210x20x1mm
Channell B-SG-BF-H 10 1532.5 210x20x1mm
C-SG-BF-H 10 1537.5 210x20x1mm
C-FB(SS)-BF-H 10 1542.5 210x20x1mm
C-SS-WB-V 10 1547.5 210x20x1mm
C-SG-CB(5)-V 5 1552.5 220x20x1mm
C-SG-CB(4)-V 5 1557.5 220x20x1mm
C-SG-CB(3)-V 5 1562.5 220x20x1mm
C-SG-CB(2)-V 5 1567.5 220x20x1mm
C-SG-CB(1)-V 5 1572.5 220x20x1mm
D-SG-BF-H 10 1517.5 210x20x1mm
D-SS-BF-H 10 1522.5 210x20x1mm
D-NS-BF-H 10 1527.5 210x20x1mm
D-NG-BF-H 10 1532.5 210x20x1mm
C-NG-BF-H 10 1537.5 210x20x1mm
Channel2 C-FB(NS)-BF-H 10 1542.5 210x20x1mm
C-NS-WB-V 10 1547.5 210x20x1mm
C-NG-CB(5)-V 5 1552.5 220x20x1mm
C-NG-CB(4)-V 5 1557.5 220x20x1mm
C-NG-CB(3)-V 5 1562.5 220x20x1mm
C-NG-CB(2)-V 5 1567.5 220x20x1mm
C-NG-CB(1)-V 5 1572.5 220x20x1mm
E-NG-BF-H 10 1517.5 210x20x1mm
E-NG-CB(5)-V 5 1522.5 15x20x1mm
E-NG-CB(1)-V 5 1527.5 15x20x1mm
E-NS-WB-V 10 1532.5 210x20x1mm
E-FB(NS)-BF-H 10 1537.5 210x20x1mm
Channel3 E-FB(SS)-BF-H 10 1542.5 210x20x1mm
E-SS-WB-V 10 1547.5 210x20x1mm
E-SG-CB(5)-V 5 1552.5 15x20x1mm
E-SG-CB(1)-V 5 1557.5 15x20x1mm
E-SG-BF-H 10 1562.5 210x20mm
F-SG-BF-H 10 1567.5 210x20x1mm
F-SS-BF-H 10 1572.5 210x20x1mm
F-NS-BF-H 10 1577.5 210x20x1mm
F-NG-BF-H 10 1582.5 210x20x1mm
DB1 10 1522 210x20x1mm
DB2 10 1527 210x20x1mm
DB3 10 1532 210x20x1mm
Channel4 DB4 10 1537 210x20x1mm
DB5 10 1542 210x20x1mm
DB6 10 1547 210x20x1mm
DB7 10 1552 210x20x1mm

DB8 10 1557 210x20x1mm




