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The term "composite" refers to a three-dimensional combination of two or more 

chemically different materials with a distinct interface separating the components.  

A combination of hard, inorganic filler particles bonded to soft dimethacrylate 

polymer was introduced in the 1960s. As a consequence of the bonded filler phase, these 

materials had mechanical properties that approached the properties of dentin and enamel 

better than unfilled resins. 

Originally intended for use in anterior Class 3, Class 4, and Class 5 restorations 

where esthetics are important, improvements have included light curing, bonding to tooth 

structure, and reduced wear. Continued development in wear resistance, dentin bonding, 

and reduced polymerization shrinkage has led to their increased use in posterior 

restorations. 

It is important for the color of all esthetic restorative materials to remain stable 

over a long period in the oral environment. Dental composites are known to be 

susceptible to varying degrees of discoloration after prolonged exposure to the oral 

environment because of the nature of the materials in the composite formulations. In 

recent years, increased esthetic awareness and the demands of patients and the dental 

profession have made dental bleaching procedures popular. In accordance with this surge 

of interest, various bleaching materials have been developed. Since most of these 

materials are effective, the resulting tooth shade is often lighter than the lightest Vita 

shade (B1). To match the shades of extremely white teeth, numerous manufacturers have 
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begun producing bleach shade composites. These materials lack the in vitro and in vivo 

evaluations necessary to determine their color stability. Previous studies have reported 

color changes of regular dental composites resulting from accelerated aging, exposure to 

various energy sources, and staining solutions, but few studies have investigated the color 

stability of bleach shade composites. 
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In 1978 Powers et al.1 made one of the first attempts to test the color stability of 

composites. The color stability of seven commercial composite resins, an unfilled resin, 

and three glazes was evaluated under conditions of accelerated aging by reflection 

spectrophotometry and visually with Munsell color tabs. After aging for 900 h, most of 

the resins had lower values of luminous reflectance and excitation purity and higher 

values of dominant wavelength and contrast ratio compared with values at baseline. 

In 1980 Powers et al.2 evaluated the color stability of seven commercial 

composite restorative materials under conditions of accelerated aging using reflection 

spectrophotometry at baseline and at 300 h, 600 h, and 900 h. During early aging the 

composites generally became darker, more chromatic, and more opaque. Changes in 

color of the conventional composites during aging were influenced by erosion of the resin 

matrices and exposure of filler particles. Color stability of the microfilled composites 

under the in vitro conditions tested was better than that of the conventional composites 

and did not appear to be influenced as much by erosion. 

 
COLOR STABILITY OF LIGHT-CURED 
VS CHEMICALLY CURED COMPOSITES 
 

Also in 1980, Miyagawa et al.3 studied the color stability of five commercial 

composites evaluated according to a proposed modification of ADA Specification No. 

27.  After exposure of 24 h to a sunlamp, light-cured composites showed greater changes 

in color than conventional and microfilled composites. 
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In 1990 Chang et al.4 investigated the color stability of seven visible light-cured 

and three chemically-cured composite resins while being subjected to UV light 

irradiation and storage in an aqueous environment at elevated temperatures. Color shift 

was evaluated visually and by colorimetric measurements. Significant correlation was 

found between visual scoring and colorimetric readings. When subjected to UV light, a 

wide deviation in color change existed from brand to brand in light-cured composite 

resins. The color shift of chemically cured composite resins was less than, but fell within 

the range of, light-cured composite resins. When stored in water at elevated temperatures, 

light-cured resins exhibited better color stability than the chemically cured composite 

resins. 

In 2003 Schulze et al.5 investigated the color and microhardness changes of five 

chemical and five light-cured composites as a function of accelerated aging from light 

exposure. For each material, five composite specimens were embedded in epoxy resin 

prior to determining the Knoop microhardness of the surface. For analyzing the color 

with a spectrophotometer, three disks per composite were prepared. After measuring the 

baseline for hardness and color, the same specimens were exposed to a xenon arc light 

and water in a Weather-Ometer machine for a total radiant energy of 150 kJ/m2 and 122 

h. The microhardness and the color were again determined following aging treatment. 

Each material showed a significant increase in hardness after aging. Comparing the 

hardness changes (in %) of the light-cured materials with the chemically cured materials, 

no significant difference could be found. Perceptible color differences could be observed 

for all the materials. Three brands showed small differences with ∆E* = 1.6-2.2 (∆E is 

the total color change), while four composites had ∆E* ranging from 6.2 to 15.5. A 
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significant correlation between hardness values and color changes could not be 

established. The findings suggested that given the light-cured materials’ greater 

resistance than chemically cured materials to color changes after accelerated aging by 

light and water, the light-cured materials could be more esthetically acceptable. Color 

changes were not correlated with surface hardness changes of the materials after aging. 

 
THE EFFECT OF EXPOSURE TO ULTRAVIOLET 
LIGHT ON LIGHT-CURED COMPOSITES 
 

In 1985 Wozniak et al.6 evaluated the ultraviolet light color stability of seven 

commercial composite resins after 1 day, 8 days, and 15 days of exposure. Color 

differences between exposed and unexposed specimens stored for identical time periods 

were determined. Samples exposed to ultraviolet light showed large changes in Munsell 

hue and chroma with smaller but significant changes in value. Unexposed samples 

showed small changes in the Munsell components, in some cases opposite to those 

observed for the exposed samples. Statistical analysis showed that although significant 

color changes were observed, brands of composite resins could not be distinguished by 

length of storage in the dark. Time of exposure was a significant variable at 24 h and 8 

days. At 15 days a number of composite resins did not undergo additional significant 

color change. Scanning electron microscopy (SEM) showed a significant roughening of 

the surface of exposed composites with resin breakdown and exposure of the composite 

filler. 

In 1997 Leibrock et al.7 evaluated the color stability of six visible light-cured fine 

hybrid composites after 24 h and 120 h of irradiation using a xenon lamp. Discoloration 

of four shades of each material (A1, A2, A3.5 and B2-Vita shade guide) was measured 
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using a reflection spectrophotometer with the CIE-L*a*b* system (CIELAB). The 

discoloration after 24 h of irradiation had values of between 0.7 and 3.8 ∆E* and was 

therefore clinically acceptable with the exception of Z100 (colors A1 and B2). The results 

showed the differences in color of all shades of Pekafill NF and Tetric tested were 

significantly less than those of the other products. All samples with the exception of 

Pekafill NF (A3.5 and B2) showed increased discoloration to values of 3.7 to 7.8 ∆E* 

after 120 h of exposure to UV light. In general, all the composites tended to become more 

yellow (b*), darker (L*) and slightly greener (a*). 

In 1998 Uchida et al.8 evaluated the color changes in composites as a function of 

shade through environmental effects such as ultraviolet light exposure. Five shades of 

two composites were subjected to ultraviolet light exposure at 37°C for 24 h after initial 

storage for 24 h in distilled water at 37°C. The lightness and chromaticity values of color 

were measured both before and after ultraviolet light exposure with a Minolta 

Chromameter. The total color change as well as changes in the lightness and chromaticity 

values were measured with the CIELAB scale and analyzed to monitor color degradation, 

if any. It was found that color degradation was a significant function of shade and 

occurred primarily as an increase in yellowness. Color changes increased with the 

lightness of the shade in both composite systems. It has been concluded that the lighter 

shades of composites were likely to be subject to higher color degradation through the 

environmental effects of ultraviolet light exposure.  

In 2005 Gaintantzopoulou et al.9 evaluated the color stability of the surface and 

in-depth (2 mm) layer of two resin composites, a laboratory second-generation resin 

composite and a compomer after 24 h and 360 h of water aging under dark and UV light 
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conditions. The influence of various polymerization techniques on color changes was also 

evaluated. Color differences (∆E*) showed higher color changes under UV light exposure 

than under dark storage, both at 24-h and 360-h evaluations. Color changes were 

significantly higher at the 360-h assessment in both conditions of maintenance. The 

compomer was the least color-stable of the materials tested. Additional polymerization 

significantly decreased the color change of both composite resins. 

In 2006 Lu et al.10 tried to determine the differences in color and color parameters 

such as lightness, chroma, and hue of composite resins created by varying the amount of 

UV component of a pulsed-xenon source that is conditioned to approximate the 

Commission Internationale de l'Eclairage (CIE) standard illuminant D65. 

A spectrophotometer, in which the UV component of a daylight simulator could 

be adjusted, was developed. Eight light-polymerized dental composite resins, A3 shade, 

were studied. Five disk-shaped specimens, 10 mm x 3 mm, were prepared for each 

material. The color of the specimen was measured on a reflection spectrophotometer over 

a white background relative to three illuminations, which had the same spectral power 

distribution of the CIE standard illuminant D65 in the visible range, but a different UV 

component. The D65 indicated the illumination for which the UV component of the 

pulsed-xenon source was adjusted, the CIE standard illuminant D65, by using a UV 

adjustment tile. The UV-EXC indicated the illumination for which the UV component of 

the source was excluded with a UV filter. The UV-INC indicated the illumination for 

which the UV component was included.  

It was found that color differences (∆E*) by the amount of UV component in the 

illuminations ranged between 0.3 and 1.4 for D65 and UV-EXC, between 0.3 and 0.5 for 
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D65 and UV-INC, and between 0.2 and 1.6 for UV-EXC and UV-INC. Based on the 

repeated-measures analysis of variance (ANOVA), lightness was not influenced by the 

amount of the UV component in the illumination; however, chroma and hue were 

influenced by the amount of UV component. 

 It was concluded that though there were significant differences in color and color 

parameters by the amount of the UV component in the D65-simulated xenon source, 

color difference caused by the UV component was lower than 1.6, which is in the 

visually acceptable range. 

In 2006 Lee et al.11 evaluated the changes in opalescence and fluorescence 

properties of resin composites after accelerated aging for 24 hours. Changes in 

translucency and masking effect were also determined. Color and spectral distribution of 

seven resin composites (A2 shade, 1-mm thick) were measured in the reflectance and 

transmittance modes under ultraviolet light (UV)-included and excluded conditions. The 

opalescence parameter (OP) was calculated as the difference in yellow-blue (∆b*) and 

red-green (∆a*) coordinates between the reflected and transmitted colors under UV-

included and excluded conditions. For the fluorescence evaluation, color differences (FL-

Ref and FL-Trans) by the inclusion or exclusion of the UV-component of the standard 

illuminant D65 in the reflectance and transmittance modes were calculated. Under UV-

included and excluded conditions, the translucency parameter (TP) was calculated, and 

the masking effect (ME) was calculated as the color difference between a specimen over 

a black tile and black tile itself. It was found that OP values in UV-included and excluded 

conditions did not change significantly after aging. FL-Ref and FL-Trans, TP values and 

ME values in UV-included and excluded conditions changed significantly after aging 
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 (p < 0.05). The ranges of changes after aging in ∆E units were: OP, -0.50 to 0.74; FL,     

-1.19 to 0.15; TP, -1.37 to 0.13; and ME, -0.49 to 0.33. Therefore, the opalescence of 

resin composites did not change, but fluorescence was not detected after accelerated 

aging with 150 kJ/m2. Translucency and masking effect changed significantly after aging. 

 
THE EFFECT OF STAINING SOLUTIONS 

 In 1989 Satou et al.12 published a study that tested the color stability of 

composites after immersing them in different solutions. The adsorption of staining 

materials to resin restoratives was considered to be influenced by the physico-chemical 

properties of the resin-based monomers. To study the effects of the surface characteristics 

of resins on staining, they prepared five visible-light-cured experimental resins without 

fillers. Staining of these resins was colorimetrically measured. The staining solutions 

used were Oil Orange and Food Red 3. With the Oil Orange solution, the materials with 

higher hydrophobicity showed higher staining. With the Food Red 3 solution, the 

materials with higher water sorption showed higher staining. 

In 1994 Dietschi et al.13 evaluated the color stability of modern light-cured 

composites when subjected to various physico-chemical and staining conditions. Ten 

brands of light-cured composites were evaluated including hybrids, microfine hybrids 

and microfilled composites. Some universal shade samples underwent only staining tests, 

while others were subjected to one of the following experimental conditions: 

thermocycling, post-curing, polishing or a 1-wk immersion in saline, prior to staining. 

The coloring solutions used for the staining tests were: coffee, E 110 food dye, vinegar 

and erythrosin. A colorimetric evaluation according to the CIELAB system was 

performed after experimental periods of 1 wk and 3 wk. It was found that erythrosin 
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caused the greatest color change for the composites tested. A reduced susceptibility to 

staining was observed where surfaces had been polished. Low water sorption, a high 

filler-resin ratio, reduced particle size and hardness, and an optimal filler-matrix coupling 

system were related to improved composite resistance to discoloration. It was concluded 

that the resistance of modern composites to discoloration still depends on their structure 

and manipulation. 

 
COLOR CHANGE BEFORE 
AND AFTER LIGHT CURING 
 

In 1990 Seghi et al.14 evaluated three shades of nine light-cured composites to 

determine the colorimetric changes that occur as a result of the photo-polymerization 

reaction. A photo-electric tristimulus colorimeter was used to measure the color of a 0.5-

mm-thick sample of composite on two different backgrounds before and after the 

polymerization process had been initiated. The results showed that each of the photo-

initiated composites tested produced a visually significant change in color as a result of 

the polymerization reaction, regardless of the shade of the backing. In general, the light-

cured composites produced a characteristic chromatic shift toward the blue region of 

color space, which resulted in a perceived decrease in yellow chroma. Therefore, direct 

shade selection of a resin composite that is more yellow or more chromatic than the tooth  

being restored is recommended to compensate for this characteristic immediate color 

shift. 

In 1995 Eldiwany et al.15 tested the color stability of five composites after light-

curing and recommended post-curing using reflection spectrophotometry. Samples of the 

composites were prepared as disks 10 mm in diameter and 1 mm thick. The pre-cured 
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samples were prepared with a clear plastic sheet on the top and bottom of the disk, 

pressed between two glass slabs to the thickness of the mold, and then removed from 

between the glass slabs. The color of the samples was measured with the clear plastic 

sheets in place. The color of the composites before curing served as the control. It was 

found that light-curing caused barely perceptible to perceptible color changes for all the 

composites from the pre-cured shade. Clearfil and TrueVitality changed color 

significantly more than Charisma, Conquest C&B and Herculite XRV. Once the 

composites were light-cured, post-curing caused no further perceptible changes in shade.  

In 2002 Paravina et al.16 evaluated curing-dependent changes in color and 

translucency parameter (TP) values of composite bleach shades. Thirty bleach shades of 

microhybrid and microfill composites were analyzed. Specimens (n = 5) were made as 

disks, 10 mm in diameter and 2 mm thick, using cylindrical molds. Specimens were 

polymerized for 60 seconds using a light-curing unit. Data were collected before and after 

composite curing using a spectrophotometer and analyzed using the appropriate color-

difference metric equations. It was found that L*a*b* values (maximum minus minimum 

values) for microhybrids were 17.7, 2.91, and 7.97, respectively. Corresponding ranges 

for microfills were 14.4, 1.26, and 4.27, respectively. Curing-dependent color differences 

varied from 3.7 to 12.0 ∆E* units, whereas TP values of cured resin composites varied 

from 2.0 to 7.1. Light-curing caused an increase of microhybrid TP values (+0.7) and a 

decrease of microfill TP values (-0.7). Color differences were found to be acceptable for 

five of six composite pairs of the same shade designation (each of them made by the 

same manufacturer) in post-curing measurements against a white background. Curing-

dependent color and TP changes indicated that dentists should use cured composite for 
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matching of shade and translucency. Tested materials became less saturated, with 

microhybrids becoming darker and microfills becoming lighter after polymerization. 

Light-curing caused an increase in translucency of microhybrids and a reduced 

translucency in microfills. 

In 2006 Sidhu et al.17 evaluated color and translucency changes caused by light 

curing resin composite materials. The CIELAB parameters (L*, a* and b*) of disks of A2 

and opaque A2 shades of Charisma (Heraeus-Kulzer), Solare (GC) and Filtek Supreme 

(3M) were evaluated on the backings of black, white, and the material itself both before 

and after light curing to evaluate color and translucency changes (by means of calculating 

∆E* and the translucency parameter, respectively). It was found that Solare and Filtek 

Supreme showed significantly smaller color changes during light curing than Charisma 

(∆E was 1, 0.68, and 2.76 for Solare, Filtek Supreme, and Charisma respectively); 

however, the value of ∆E* of all the products/shades was still in the clinically 

unacceptable range. Regarding translucency changes during light curing, the A2 and 

opaque A2 shades of Charisma showed a statistically significant increase, although no 

difference was observed in the other products (translucency changes were 1.19, 0.84, and 

1.58 for Solare, Filtek Supreme, and Charisma respectively). It was concluded that Solare 

and Filtek Supreme tended to show less changes in translucency and color during light 

curing compared to Charisma. Nevertheless, the changes in color during light curing were 

still in the range of unacceptable color change. Therefore, direct shade matching of these 

materials for a precise shade match should be performed by using the cured material. 

Also in 2006, Kim et al.18 measured the color change of varied shades of dental 

resin composites after polymerization and determined the correlation among the 
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polymerization color changes and the changes in color parameters after polymerization. 

Eight light-curing resin composites, a total of 41 shades, were studied. The color of 

specimens (1 mm in thickness) was measured on a reflection spectrophotometer before 

and after polymerization over a white background. Changes in color (∆E*(ab)), and color 

parameters (∆L*, ∆a*, and ∆b*: [value after polymerization - value before 

polymerization]) were calculated. It was found that the range of changes in each shade of 

resin composite was 1.1-7.9 for color (∆E*(ab)); -7.5 to 2.3 for ∆L*; -0.9 to 1.2 for ∆a*, 

and -6.8 to 3.1 for ∆b*.  The ∆E*(ab), ∆L*, ∆a*, and ∆b* were influenced by the brand 

and shade of resin composites, and there was a significant interaction between two 

independent variables (p < 0.05). On the basis of the multiple regression analysis, in 

which ∆E*(ab) after polymerization was set as a dependent variable and ∆L*, ∆a* and 

∆b* as independent variables, the multiple correlation coefficient (r) was 0.842 and the 

included predictors were ∆L* [standardized partial correlation coefficient (beta) = -

0.760]. 

 This result indicated that the polymerization changes in color and color 

parameters were varied by the brand and shade of resin composites, and the 

polymerization color change was caused by the changes in lightness and chroma with a 

similar power of influence.  

 
THE EFFECT OF DIFFERENT CURING UNITS 

In 2005 Usumez et al.19 determined color changes in a composite cured with 

various types of curing units after two years. A hybrid (Clearfil AP-X) composite was 

cured with a conventional halogen, a high intensity halogen, a plasma arc, and a light 

emitting diode unit. The specimens were stored in light-proof boxes after the curing 
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procedure to avoid further exposure to light and stored in 37°C in 100-percent humidity. 

Colorimetric values of the specimens immediately after curing and after two years were 

measured using a colorimeter. The CIE 1976 L*a*b color system was used to determine 

color differences. Differences from baseline were calculated as ∆E*ab. The values varied 

significantly, depending on the curing unit used. The specimens cured with a plasma-arc 

curing unit induced significantly higher color changes than any other specimen and the 

color differences were also visually appreciable by the non-skilled operator (∆E*ab > 

2.5). The specimens cured with a high-intensity halogen curing unit produced the lowest 

color change; however, there were no statistically significant differences among the color 

changes of specimens cured with conventional halogen, high-intensity halogen, and the 

light-emitting diode unit, and the color changes were not clinically relevant (∆E*ab < 

2.5). The results of this study suggest that composite materials undergo measurable 

changes due to curing-unit exposure. The specimens cured with a plasma-arc light 

showed the highest color changes as compared with specimens cured with other curing 

units. The reason behind that could be the high intensity of plasma-arc light is available at 

lower wavelengths compared with the other light units, and therefore, less curing ability 

of composite is obtained. Subsequently more color change occurred.  

In 2005 Janda et al.20  investigated the influence of curing devices and curing 

times on the color stability of filling resins by measuring the CIELAB values after 

performing dry storage, water storage, and a sun test (EN ISO 7491). Eight samples each 

of Charisma (CH), Durafill (DU), Definite (DE), and Dyract AP (DY) were light cured 

by using Translux Energy (TE) (Quartz Tungsten Halogen Light) for 20 s, 40 s or 60 s, or 

by using Apollo 95E (AP) (Plasma Arc Light) for 3 s, 10 s or 20 s. Minor color changes 
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occurred for all dry stored materials, devices, and curing times. The TE-cured, water-

stored samples behaved similarly to the dry-stored ones, but the samples cured with AP 

revealed very strong color changes, mainly because of a drastic bleaching process. The 

bleaching of DU was significantly less than that of the other materials, but a strong white 

shift occurred. CH, DE, and DU showed very little (and even acceptable) discolorations 

after the sun test when TE-cured. DY showed a drastic discoloration. All samples cured 

using AP drastically bleached and shifted to white for DU and DY but to dark for DE. In 

conclusion, the extent of discoloration depended on 1) the material, 2) the test method, 3) 

curing time, and 4) the curing device. The halogen light-cured samples performed best.  

Some studies have indicated the amount of residual monomer in a composite resin 

could affect the color stability of the composite. In 2006 Filipov et al. 21 investigated the 

amount of residual monomer in a composite resin after light-curing with different 

sources, light intensities, and spectra of radiation. The resin specimens (4 mm in 

diameter; 2 mm thick) (n=5) were inserted in Plexiglass matrixes and light-cured with a 

halogen lamp, LED, and PAC units for 40 s, 40 s and 5 s, respectively. The polymerized 

specimens were ground and 25 mg of each specimen were immersed in 8 ml 96-percent 

ethanol for 24 h to extract the residual monomer. Data were analyzed statistically by 

variational dispersion analysis and a Tukey-Kramer test at a 5-percent significance level. 

It was observed the halogen lamp produced the smallest amount of monomer under 

sufficient light intensity. The spectrum of light radiation of the PAC was within the limits 

of 450 nm to 490 nm and was of extremely high intensity, but the amount of residual 

monomer recorded for the specimens cured with this device was statistically greater than 

the other two curing units. The LED unit had the best spectral radiation because it is in 
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narrower and more effective borders of light spectrum compared with the other two 

curing lights. An increase of light intensity was proved necessary. 

In 2007 Janda et al.22  investigated the influence of a halogen light-curing device 

used with constant or exponential polymerization mode on the color stability of 

contemporary resin-based filling materials. Eight samples of Charisma (CH), Durafill 

(DU), Definite (DE), and Dyract AP (DY) each were light-cured with constant power or 

with soft-start mode (Translux Energy) for 20 s, 40 s or 60 s. The CIELAB values (L*, 

a*, b*) were measured prior to and after performing dry aging, water aging or a sun test 

(EN ISO 7491) and ∆L, ∆a, ∆b, and ∆E values were calculated. Statistical analysis (GLM 

and repetition of measures) showed significant changes (p < 0.05) of the color values for 

each material's curing mode and time after each of the aging processes. Exponentially-

cured DU was the most color-unstable material after aging in water followed by the 20-s 

exponentially cured DE and CH samples. After the sun test, DY showed significant 

bleaching (negative ∆b) and the largest ∆E for all curing times and modes followed by 

the DE samples. DU and CH were the most color-stable materials in this test. So it was 

concluded that the extent of discoloration depends on the a) curing time, b) curing mode, 

c) aging condition, and d) material. For the constant curing mode, 40 s curing time for the 

exponential 60 s seems to be appropriate. 

 
COLOR STABILITY IN DIFFERENT CONDITIONS 

In 2000 Douglas23 evaluated and characterized the color stability of various new-

generation indirect resins (ceramic-polymers) when subjected to accelerated aging. Four 

new-generation indirect resin systems, one direct resin system, and one dental porcelain 

control were subjected to accelerated aging for a period of 300 h. Initial specimen color 
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parameters were determined in the Commission International de l'Eclairage Lab 

(CIELAB) color order system with a colorimeter. Color changes (∆E) were calculated 

between baseline color measurements and measurements made after 150 h and 300 h of 

accelerated aging.  It was found that after 300 h of accelerated aging, color changes of the 

indirect resins ranged between 0.62 and 3.40 ∆E units. Two of the products tested 

demonstrated color stability that was not significantly different from the porcelain 

control. It was concluded that all indirect resins tested demonstrated color stability at or 

below a quantitative level that would be considered clinically acceptable. Color changes 

of ceramic-polymers occurred because of changes in chroma, rather than alterations in 

lightness. 

In 2007 Sarafianou et al.24 evaluated the color changes and amount of remaining   

C = C bonds (% RDB) in three dental composites after hydrothermal- and photo-aging. 

The materials tested were Estelite Sigma, Filtek Supreme and Tetric Ceram. Specimens 

were fabricated from each material and subjected to L* a* b* colorimetry and FTIR 

spectroscopy before and after aging. Statistical evaluation of the ∆L,* ∆a,* ∆b,* ∆E and 

% ∆RDB data was done by one-way ANOVA and Tukey's test. It was found that no 

significant differences existed in ∆ L*, ∆ a*, ∆ E and % ∆ RDB among the materials 

tested. Tetric Ceram demonstrated a significant difference in ∆b*. All the materials 

showed visually perceptible (∆E > 1) but clinically acceptable values (∆E < 3.3). Within 

each material group, statistically significant differences in % RDB were noticed before 

and after aging (p < 0.05). Filtek Supreme presented the lowest % RDB before aging, 

with Tetric Ceram presenting the lowest % RDB after aging (p < 0.05). The % ∆RDB 

mean values showed statistically significant differences among all the groups tested. No 



20 
 

correlation was found between ∆E and % ∆RDB. Subsequently, we can conclude that the 

color changes are not affected by the amount of remaining C = C bonds.  

After reviewing the literature, it is apparent that researchers have evaluated the 

change in color of different shades of composite after curing, accelerated aging, or 

immersing in different solutions. Some researchers have measured the change in the color 

of the composite after exposure to visible light, UV light, Xenon light, halogen light, 

plasma-arc light, and sunlight. 

The results of the reported studies support the belief that curing composites using 

a light-curing unit (LED, PAC, or QTH) will result in a color change that is not 

perceptible clinically (∆E < 3.3).The major color change that can be detected clinically 

(∆E ≥ 3.3) is a result of different aging or storing conditions (sunlamp, thermocycling, 

water immersion). Most studies were done on regular-shade composite resins, so that 

minimal evidence is available about the effect of different storing conditions on the color 

stability of bleach shade composites.  

In addition, the effect of the sunlight on the color of these composites has not 

been thoroughly studied.  More studies should be done on the color stability of these 

composites under different conditions. The hypothesis for the present study was that 

current commercial bleach shade composites activated by a high-intensity quartz-

tungsten-halogen light source would show clinically perceptible color changes (∆E ≥ 

3.3)25 when aged in different conditions. 
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Twenty-six current commercial bleach shade composites were used in this study. 

These composites were: Point 4 (Kerr) shades (XL1, XL2, XL3); TPH (Dentsply/Caulk) 

shades (BW, XL, L); Filtek Supreme Plus (Filtek SP, 3M ESPE) shades (WE, WD, 

XWD, WB,  XWB); Durafill VS (Kulzer) bleach shades (SL, SSL, SLO; Miris (Coltene-

Whaledent) shades (WR, WB, NT, NR, IR); Tetric EvoCeram (Ivoclar Vivadent) shades 

(BL, BXL, BI, BM); Tescera (Bisco) shades (bleach 1, bleach 2, and bleach 3). 

Specifications of these composite brands are summarized in Table I. 

For each test material, nine specimens were prepared at 22.0o–22.5oC (room 

temperature) and at a relative humidity of 50 percent. A white wax-coated cement-mixing 

pad was used to provide a consistent reflective background, and a strip of Mylar sheet 

with a white backing (Type D, DuPont Co., Wilmington, DE) was laid on top of the pad. 

A polyacetyl mold (diameter 9 mm, height 2 mm) was placed on the top of the Mylar 

sheet. The uncured composite paste was inserted into the open end of the mold. After 

slightly overfilling, a glass plate (26 x 77 x 1 mm, Fisher Scientific, Norcross, GA) was 

used to flatten the material to force the composite to adapt to the mold dimensions and 

thereby express excess material.  

A high-intensity tungsten halogen (QTH) light (Optilux, Demetron Research 

Corp., Danbury, CT) with intensity of 900 mW/cm2  to 1020 mW/cm2 and an 11-mm 

light guide was used to cure the specimens. The specimens were irradiated from one side 

and in one step in constant polymerization mode for 60 s. The intensity of the curing unit 

was measured using a laboratory-grade radiometer (Model 100, Demetron Research 
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Corp., Danbury, CT). This measurement was done every two hours during the curing 

process to make sure the curing light had the minimum intensity required to cure the 

composite according to the manufacturer’s guidelines. (Light intensity should be more 

than 800 mW/cm2) The curing tip of Optilux was held against the top of the glass slide 

centered over the specimen. The bottom surface of the specimen was marked after curing 

using a surgical scalpel to make all color measurements from the same top surface of the 

specimen, which was unmarked. After curing, all specimens were placed in a dry and 

dark plastic container. 

 Color measurements for all specimens were made after 90 minutes in this 

container to obtain baseline color values. The color measurements were made using a 

UV-VIS spectrophotometer (CM 2600 D, Konica Minolta Corp., Japan). After color 

measurement, nine specimens for each test material were subjected to different 

conditions; three specimens were placed in dark and dry storage using a dark plastic 

container that had been sealed and stored in an incubator at 37o C; three specimens were 

placed in distilled water in the dark using an amber glass bottle and stored in an incubator 

at 37o C, and three specimens were subjected to the sun test using a sunlamp of 275 watts 

(sunlamp style BM7, General Electric).  The sunlamp specimens were placed 7 inches 

from the light source for 24 h in a dry environment in accordance with American Dental 

Association Specification No. 80 for Color Stability. Color measurements were made 

after 1 day, 7 days, and 90 days of storage in different conditions, and after 24 h of 

exposure to the sunlamp test. Three measurements were made for each specimen, and the 

mean value was used. One operator obtained all the color readings. 
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The CIELAB color system was used to determine the size of the color shift that 

occurred as a result of different storing conditions. The color parameters L*, a*, b* were 

recorded for each specimen. The total color difference (∆E) was calculated as follows: 

∆E = [(∆L*) 2 + (∆a*) 2+ (∆b*) 2]1/2 

 

SAMPLE SIZE JUSTIFICATION 

It was found from reviewing the literature that the expected standard deviation for 

∆E was 0.2. Assuming two-sided tests each at a 5-percent significance level, and a 

sample size of three specimens per storage method-composite combination (243 total 

specimens), the study had 80-percent power to detect a difference in ∆E of 3.0 between 

any two storage methods for each composite at each time. 

 
STATISTICAL METHODS 
 

Repeated-measures ANOVA were used to evaluate the effects of storage method, 

composite, and time on the color changes. Terms for storage method, composite, time, 

and interactions among the three factors were included in the ANOVA, as well as effects 

to allow for correlations among the multiple times within a specimen. A 5-percent 

significance level was used for all comparisons. 
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Storing bleach shade composites in distilled water, dark and dry storage, or 

subjecting them to the sunlamp for 24 h resulted in a wide range of readings. The ∆E 

values for 1 day of dark and dry storage ranged from 0.23 for Durafill (SLO) to 2.30 for 

Point 4 (XL2) (Table II). Values for 7 days ranged from 0.30 for Miris (NT) to 3.79 for 

Point 4 (XL2). Values for 30 days ranged from 0.50 for EvoCeram (BM) to 3.97 for 

Point 4 (XL2). Storage in H2O for 24 hours resulted in ∆E that ranged from 0.43 for 

Miris (IR) to 2.57 for Point 4 (XL2) (Table III). Values for 7 days ranged from 0.31 for 

EvoCeram (BXL) to 3.22 for Point 4 (XL2). Values for 30 days ranged from 0.58 for 

Durafill (SL) to 3.65 for Point 4 (XL2). Sunlamp exposure resulted in a greater range of 

∆E compared with other storage methods. Sunlamp exposure for 24 hours resulted in ∆E 

that ranged from 1.30 for Miris (NT) to 9.29 for Tescera 1 (Table IV).  It can be said that 

∆E for a specimen subjected to a certain condition or storage is directly proportional to 

the time elapsed while the specimen was stored in that condition. 

The sunlamp exposure resulted in more composites with ∆E ≥ 3.3 than the other 

two storage methods. The following group-storage-time combinations had mean ∆E of 

3.3 or higher: 1)Sunlamp: EvoCeram (BL), EvoCeram (BM), EvoCeram (BXL), Tescera 

1, Tescera 2, Tescera 3. 2) Dark and dry 30 days: Point 4 (XL2); 3) Dark and dry 7 days: 

Point 4 (XL2); 4). H2O 30 days: Point 4 (XL2). 

On the other hand, comparing dark and dry storage with H2O storage for the same 

storage time resulted in inconclusive results; for example, some composites (Durafill [SL, 

SLO], Miris [NT, WB, WR], Point 4 [XL1, XL2]) when stored in dark and dry storage 
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for 1 day had significantly less change in ∆E than when stored in H2O for the same time 

period. However, other composites (EvoCeram [B1, BM], Filtek Supreme Plus [WB, 

WE, XWB, XWD], Miris [IR], Tescera 1, 2, 3, TPH [L, XL]) had significantly more 

change in ∆E (Table V and Table VIII). 

For 7 days, it was noticed that fewer composite shades (Durafill (SSL), EvoCeram 

(BM), Miris [NT, WB] showed less change in ∆E in dark and dry storage when compared 

with H2O storage, while others showed exactly the opposite (Durafill [SL], EvoCeram 

[BL, BXL], Filtek Supreme Plus [WB, XWD], Miris [IR, NR], Point 4 [XL1, XL2], 

Tescera 1, 2, 3, TPH [BW, L, XL]) (Table VI and Table IX). 

For 30-day storage, it was noticed that fewer composite shades (Durafill [SLO, 

SSL], EvoCeram [BI, BM], Miris [WB] showed less change in ∆E in dark and dry 

storage when compared with H2O storage while others (Durafill [SL], Filtek Supreme 

Plus [XWD], Miris [NT], Point 4 [XL1], [XL2], Tescera 1, 2, 3, TPH [BW, L, 

XL])showed exactly the opposite (Table VII and Table X). 

Time comparisons for specimens in the same storage medium did not yield 

conclusive results where it was found that some composites had significantly less change 

in ∆E when stored in dark and dry storage for 1 day than when stored in the same storage 

for 7 days (Durafill [SL, SLO, SSL], Miris [WR], Point 4 [XL1], [XL2], [XL3], Tescera 

2, 3, TPH [L]), while others did exactly the opposite (EvoCeram [BI, BL, BM] Filtek 

Supreme Plus [WB, WE, XWB, XWD], Miris [NR, NT]) (Table V, Table VI, and Table 

VII). 

Generally, it can be said that dark and dry storage in regard to any time 

comparisons (1:7), (1:30), (7:30) did not produce conclusive results. The same result 
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applies to storage in H2O.  Color difference (∆E) was found to be within an acceptable 

clinical range (∆E < 3.3) for 25 shades of the composites tested in dark and dry or in H2O 

except for Point 4 (XL2) in dark and dry storage for 30 days (Tables V through Table X). 

The color difference had more range and was above the threshold of 3.3 for 6 shades out 

of 26 shades tested after 24-h exposure of the sunlamp (Table XI). 
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TABLE I 

 
Composite brands, filler content, shades, and lot 
numbers used in the research 

 

      

Composite Brand/Filler Content (% by Weight) Shades Lot Number 
Point 4 (Kerr)/77% XL1 2955288 

XL2 2760903 
XL3 2787091 

TPH (Dentsply-Caulk)/Less than 80% BW 0706151 
XL 0709271 
L 070517 

Filtek SP (3M ESPE)/72.5%  WE 8BX 
WD 7BT 

XWD 7AY 
WB 8BP 

XWB 8BG 

Durafill (Heraeus Kulzer)/80.5% SL 010303 
SSL 010126 
SLO 010301 

Miris (Coltene-Whaledent )/80% WR 0111399 
WB 0106136 
NT 0135580 
NR 0118703 
IR 0152850 

Tetric EvoCeram (Ivoclar Vivadent )/82% BL J19095 
BXL J26850 
BI K15704 

BM K08667 

 
Tescera (Bisco)/Less than 80% 

Bleach 1 0800004127 
Bleach 2 0800006561 
Bleach 3 0800006562 
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TABLE V 

 
  ΔE for composite groups in dark and dry storage for 1 day,  
  ordered from smallest ΔE to greatest ΔE* 
 
 
 

Group                    ∆E 
            

 Durafill(SLO)                  0.23   
             Miris(WB)                       0.25 
            Miris(WR)                       0.38 
            EvoCeram(BXL)             0.51 
            Miris(NT)                        0.53 
            Durafill(SSL)                   0.78 
            Filtek SP(WD)                 0.84 
            Point4(XL1)                    0.86 
            EvoCeram(BM)               0.86 
            Miris(NR)                        0.94 
            Durafill(SL)                     1.10 
            Point4(XL3)                     1.13 
            Filtek SP (WE)                1.18 
            EvoCeram(BI)                 1.23 
            Filtek SP(XWB)              1.30 
            Miris(IR)                          1.31 
            EvoCeram(BL)                1.37 
            TPH(L)                            1.46 
            TPH(BW)                        1.48 
            Filtek SP(WB)                 1.61 
            TPH(XL)                         1.79 
            Tescera 1                         1.79 
            Tescera 3                         1.89 
            Tescera 2                         1.90 
            Filtek SP(XWD)              2.08 
            Point4(XL2)                    2.30 

 
 
 
* For the group comparisons, groups not connected by lines are considered to be 
significantly different. A 5-percent significance level was used for all comparisons. 
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     TABLE VI 
 
  ΔE for composite groups placed in dark and dry storage for 
  7 days, ordered from smallest ΔE to greatest ΔE 
 

Group                    ∆E 
              Miris(NT)                       0.30 
              Miris(WB)                      0.33 
              Miris(WR)                      0.56 
              EvoCeram(BXL)            0.61 
              Miris(NR)                       0.62 
              EvoCeram(BM)              0.68 
              Filtek SP(WD)                0.84 
              Filtek SP(WE)                0.85 
              Durafill(SLO)                 0.90 
              EvoCeram(BI)                0.92 
              Filtek SP(XWB)             0.99       
              EvoCeram(BL)               1.05 
              Durafill(SSL)                  1.05 
              Miris(IR)                         1.16 
              Durafill(SL)                    1.28 
              Filtek SP(WB)                1.35 
              TPH(BW)                       1.61 
              Filtek SP(XWD)             1.67 
              TPH(L)                            1.81 
              Tescera 1                         1.87 
              TPH(XL)                         1.93 
              Point4(XL1)                    1.94 
              Tescera 3                         2.05 
              Tescera 2                         2.21 
              Point4(XL3)                    2.22 
              Point4(XL2)                    3.79 
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TABLE VII 

     
  ΔE for composite groups placed in dark and dry  
  storage for 30 days, ordered from smallest ΔE to greatest ΔE 
 
 

Group                    ∆E 
 

            EvoCeram(BM)               0.50 
            Miris(WR)                       0.62 
            Filtek SP(WD)                0.74 
            Miris(WB)                       0.76 
            EvoCeram(BXL)             0.82 
            Filtek SP(WE)                 0.87 
            EvoCeram(BI)                 0.99 
            Filtek SP(XWB)              1.06 
            Durafill(SLO)                  1.07 
            Miris(NR)                        1.22 
            EvoCeram(BL)                1.23 
            Filtek SP(WB)                 1.28 
            Durafill(SSL)                   1.29 
            Miris(NT)                         1.29 
            Durafill(SL)                      1.34 
            TPH(BW)                         1.53 
            Miris(IR)                          1.55 
            TPH(L)                            1.80 
            Filtek SP(XWD)              1.83 
            Tescera 1                         2.02 
            TPH(XL)                         2.08 
            Point4(XL1)                    2.29 
            Tescera 3                         2.39 
            Point4(XL3)                    2.55 
            Tescera 2                         2.56 
            Point4(XL2)                    3.97 
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      TABLE VIII 
 
  ΔE for composite groups placed in H2O storage for 1 day,    
  ordered from smallest ΔE to greatest ΔE 
 

Group                    ∆E 

           Miris(IR)                         0.43 
            EvoCeram(BXL)             0.46 
           Filtek SP(WE)                0.48 
           EvoCeram(BL)               0.52 
           Filtek SP(WD)                0.60 
           Tescera 1                         0.61 
           EvoCeram(BM)              0.61 
           Durafill(SSL)                  0.79 
           Durafill(SLO)                 0.79 
           EvoCeram(BI)                0.80 
           Miris(NR)                       0.84 
           Miris(NT)                       0.86 
           Filtek SP(XWB)             0.90 
           TPH(L)                           0.93 
           TPH(XL)                        1.03 
           Miris(WB)                      1.05 
           Tescera 3                         1.07 
           Point4(XL3)                    1.09 
           Miris(WR)                       1.17 
           Filtek SP(WB)                 1.17 
           Point4(XL1)                    1.24 
           Filtek SP(XWD)              1.26 
           Durafill(SL)                     1.37 
           TPH(BW)                        1.40 
           Tescera 2                         1.47 
           Point4(XL2)                    2.57 
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TABLE IX 

 
  ΔE for composite groups in H2O storage for 7 days, ordered 
  from smallest ΔE to greatest ΔE 
 
 
          Group                    ∆E 

          EvoCeram(BXL)             0.31 
          Miris(NR)                        0.42 
          Tescera 1                         0.53 
          EvoCeram(BL)                0.55 
          Miris(WR)                       0.55 
          Miris(IR)                         0.68 
          Durafill(SL)                    0.69 
          Filtek SP(WE)                 0.74 
          Filtek SP(XWD)              0.74 
          TPH(XL)                         0.78 
          Durafill(SLO)                  0.80 
          Miris(WB)                       0.81 
          TPH(L)                            0.82 
          Filtek SP(WB)                0.82 
          Filtek SP(XWB)              0.83 
          EvoCeram(BI)                 0.84 
          Tescera 3                         0.87 
          EvoCeram(BM)               0.87 
          Miris(NT)                        0.90 
          Filtek SP(WD)                 0.98 
          TPH(BW)                        1.16 
          Tescera 2                         1.19 
          Point4(XL1)                    1.34 
          Durafill(SSL)                  1.53 
          Point4(XL3)                    2.33 
          Point4(XL2)                    3.22 
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     TABLE X 
 
   ΔE for composite groups in H2O storage for 30 days,   
   ordered from smallest ΔE to greatest ΔE 
 

Group                    ∆E 
  

            Durafill(SL)                    0.58 
             Filtek SP(XWD)              0.61 
            Tescera 1                         0.68 
            Miris(WR)                       0.70 
            Filtek SP(WD)                0.71 
            EvoCeram(BXL)             0.73 
            Filtek SP(WE)                 0.76 
            EvoCeram(BM)               0.76 
            Tescera 3                          0.77 
            Miris(NT)                         0.87 
            Filtek SP(XWB)               0.91 
            TPH(BW)                         0.97 
            TPH(XL)                          1.02 
            Miris(NR)                        1.06 
            TPH(L)                            1.07 
            EvoCeram(BL)                1.16 
            Filtek SP(WB)                 1.26 
            Tescera 2                          1.29 
            Miris(WB)                        1.30 
            Durafill(SLO)                   1.38 
            Miris(IR)                           1.40 
            EvoCeram(BI)                   1.73 
            Point4(XL1)                      1.93 
            Durafill(SSL)                    2.35 
            Point4(XL3)                      2.73 
            Point4(XL2)                      3.65 
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     TABLE XI 
 
   ΔE for composite groups subjected to sunlamp   
   for 24 hours, ordered from smallest ΔE to greatest ΔE 
 

Group                    ∆E 

               Miris(NT)                         1.30 
               Miris(WR)                        1.50 
               Filtek SP(WD)                  1.63 
               Filtek SP(XWB)               1.66 
               Miris(WB)                        1.66 
               TPH(XL)                          1.69 
               Point4(XL1)                     1.85 
               Durafill(SL)                      1.94 
               Miris(IR)                           1.98 
               Filtek SP(WE)                  2.02 
               Miris(NR)                         2.10 
               Filtek SP(WB)                  2.10 
               Point4(XL3)                      2.21 
               Durafill(SLO)                    2.56 
               TPH(L)                              2.62 
               EvoCeram(BI)                   2.77 
               Filtek SP(XWD)                2.85 
               TPH(BW)                          2.93 
               Point4(XL2)                      3.18 
               Durafill(SSL)                     3.21 
               EvoCeram(BM)                 3.33 
               EvoCeram(BL)                  4.06 
               EvoCeram(BXL)               4.52 
               Tescera 3                           8.80 
               Tescera 2                           9.27 
               Tescera 1                           9.29 
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The color space in the CIELAB system consists of three coordinates L*, a*, b*. 

The L* refers to the lightness coordinate and its value ranges from 0 for perfect black to 

100 for perfect white. The points a* and b* are chromatic coordinates in the red-green 

axis and the yellow-blue axis, respectively. Positive a* values cover the red range and 

negative values cover the green color range. Positive b* values cover the yellow color 

range while negative values cover blue color range. 

The results of the present study partially supported the hypothesis that 

commercial bleach shade composites will have a color change of ∆E ≥ 3.3 as a result of 

aging in different conditions. This study indicated that UV light exposure of bleach shade 

composites for 24 hours causes significant changes in their CIELAB color space 

coordinates (Table 11). This is in accordance with previous results of investigators who 

demonstrated regular shade composite discoloration on exposure to UV light.1, 2  

 A color difference ≥ 3.3 is detectable clinically.25 This study showed that for all 

bleach composite brands used in the study except Point 4 and TPH (XL3) shades, the 

color change (∆E) caused by exposure to the sunlamp for 24 hours exceeds any color 

change caused by storage in H2O or in a dark and dry container for 1 day, 7 days, and 30 

days. Point 4 bleach shades were more affected by dark and dry or H2O storage for 30 

days than the sunlamp exposure for 24 hours. 

 The least color-stable bleach shade composites with sunlamp exposure are 

Tescera (Bisco) shades. Exposure for 24 hours resulted in almost three times the 
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threshold that people can detect (∆E ≥ 3.3) with ∆E being 9.29, 9.27, and 8.80 for  

Tescera 1, Tescera 2, Tescera 3, respectively (Table 11). 

Three out of four shades of Tetric Evo-ceram (Ivoclar-Vivadent) exceeded the 

detectable threshold of ∆E ≥ 3.3. The color changes for BL, BM, and BXL were 4.06, 

3.33, and 4.52 respectively.  

Certain shades from other brands showed significant color change, although they 

didn’t reach the color change threshold of 3.3. The brands Filtek Supreme Plus (XWD), 

TPH (BW), Point 4 (XL2), and Durafill (SSL) showed color change (∆E) of  2.85, 2.93, 

3.18, and 3.21 respectively. These results show that certain brands are more susceptible 

to color change as a result of sun lamp exposure, and certain shades of other brands are 

susceptible to a lesser degree of a color change as well. 

Storage in H2O for 24 hours for 1 day or 7 days didn’t result in a clinically 

detectable color change (∆E ≥ 3.3) for any brand of composite tested (Table 8 and 9). The 

only composite that almost reached ∆E of 3.3 was Point 4(XL2), when storing this 

composite in H2O for 1 day and 7 days resulted in a color change ∆E of 2.57 and 3.22, 

respectively. Point 4 (XL3) was less affected when storage in H2O for 7 days resulted in 

∆E of 2.33. This is the only shade of composite other than Point 4(XL2) that resulted in a 

color change greater than 2 (∆E > 2) in 7 days of storage in H2O.  

Placing bleach shade composites in H2O for 30 days resulted in a detectable color 

change (∆E ≥ 3.3) for some bleach composite shades (Table 10). Storing Point 4 (XL2) in 

H2O for 30 days resulted in ∆E of 3.65, while placing Point 4 (XL3) in H2O for 30 days 

resulted in ∆E of 2.73. Aside from the XL2, the Point 4 (XL3) is the only composite 

shade that reached this degree of color change in 30 days of storage in water. The other 
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brands of composite showed significant color change, although they didn’t reach the 

threshold (∆E ≥ 3.3). Durafill (SSL), Point 4(XL1), and EvoCeram(BI) showed ∆E of 

2.35, 1.93, and 1.73 , respectively after immersion in H2O for 30 days.  

Storing bleach shade composites in dark and dry storage for 1 day didn’t result in 

a detectable color change (∆ E ≥ 3.3) (Table 5, 6, and 7), whereas storage for 7 days 

resulted in ∆E of 3.79 for Point 4 (XL2). Dark and dry storage for 30 days didn’t result in 

∆E ≥ 3.3, except for Point 4 (XL2), where ∆E was 3.97. For Point 4(XL3), the color 

change ∆E was 2.56. Although it didn’t reach the threshold of 3.3, it was the second 

highest color change after Point 4 (XL2). 

 Point 4 bleach shade composite in either dark and dry or in H2O storage for 30 

days resulted in significant color change for only one shade (XL2). Dark and dry storage 

for 30 days resulted in ∆E of 3.97 for Point 4 (XL2), while H2O storage resulted in ∆E of 

3.18 for this shade. Other Point 4 shades didn’t break the threshold (∆E < 3.3). These 

results show that certain brands are more susceptible to color change as a result of H2O 

storage or dark and dry storage; that certain shades from other brands are susceptible to a 

lesser degree of a color change as well, and that color change is directly proportional to 

storage time. 

 The color change (∆E) resulting from exposure to the sunlamp is mainly due to 

the increase in the b* coordinate. The increase in b* coordinate reflects a shift to a more 

yellow color range (farther away from the blue color range). The change in a* was 

relatively minor, and toward a lower a* value (green range) in most composite brands, 

and this shift didn’t contribute a lot in the resultant ∆E. The L* coordinate change was 

generally toward a lower value and a darker shade, with the exceptions of Durafill, Miris 
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(WR), Point 4(XL2), and Tescera 3, where ∆L* value was either stable or had a positive 

value (the color shifted to a brighter color). Tescera Brand showed the most change in 

value among all composite shades tested. Tescera 1, Tescera 2, and Tescera 3 showed ∆L 

of -2.2, -6.38, and 3.27 respectively (Table 4).  

Likewise, the color change (∆E) resulting from storage in H2O was mainly due to 

the increase in the b* coordinate (yellowness) with few exceptions. Filtek Supreme Plus 

(WD, WE, XWB) showed the only exceptions where a decrease in ∆b* was seen. The 

values for a* tended to increase slightly while those for L* tended to decrease with few 

exceptions (Table 3). 

The same thing can be said in the case of dark and dry storage where the b* value 

is the main player. A general trend was seen of values for b* increasing directly 

proportional to the time elapsed in dark and dry storage, except in the case of EvoCeram 

(BI, BXL), where the b* decreased.  The value for a* tended to slightly increase toward 

the red color range while the L* value tended to increase toward a lighter shade with few 

exceptions as well (Table 2). 

We can clearly see that certain brands do not have good color stability under the 

sunlamp, namely Tescera and EvoCeram (Table 4). On the other hand, a brand like Miris 

did very well under the same conditions. Some brands have good color stability for 

certain shades like Filtek Supreme Plus (WD, XWB, WE, WB), but the shade XWD has 

∆E of 2.85, which is relatively high. 

Storing these composites in H2O yielded less substantial performance, where we 

can see that no shade of Point 4 showed good color stability, but storing these composites 
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in dry and dark storage produced results showing Tescera and Point 4 were the lowest in 

terms of color stability (Tables 2 and 3). 

Camphorquinone (CQ) is a yellow-colored material and the most commonly used 

photoinitiator in dental restorative resins. Although used in very small amounts, it 

significantly influences the material’s color. In this study, all photoinitiator systems 

included CQ. Schneider et al. 26 evaluated the influence of the photoinitiator system on 

the yellowing of dental resin composites, and he found the yellowing effect increases as 

the photoinitiator concentration is increased, regardless of the photoinitiator system used. 

Other very important components of photointiator systems are tertiary aromatic or 

aliphatic amines, which act as so-called accelerators.27    Amines are known to form by-

products during photoreaction, and these by-products tend to cause yellow to red/brown 

discoloration under the influence of light or heat.28   This phenomenon could explain why 

certain materials had less color stability under the sunlamp. These materials could have 

more CQ, more amine by-products, or both. 

Some studies have shown the resin matrix content also influences color stability. 

In the case of greater matrix content, increased water sorption occurs, resulting in a 

whiter, opaque shade. In the case of less matrix content, the water sorption is less, 

making a smaller impact on the color.29, 30 This could explain why we see certain 

materials perform well in H2O storage in terms of color stability, while others do not. 

 The materials’ behavior during dry storage could be the result of nearly complete 

conversion of CQ to colorless products, and the formation of other yellow by-products 

from either the CQ or the aromatic amines dominating the shade.27 However, because the 
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exact composition of these products is unknown, a correlation cannot be made between 

the use of these materials and the potential for leaving a residual yellow color.  
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The present study yielded the following conclusions: 

1) The color stability of bleach shade composites depends on various factors, 

namely, the resin material, the shade of the resin material, the storage method, 

and the storage time.  

2) This study showed that for all bleach composite shades used in the study, 

except Point 4(Kerr) and TPH (XL3) shades, the color change (∆E) caused by 

exposure to the sunlamp for 24 hours exceeded any color change caused by 

storage in H2O or in a dark and dry container for 1 day, 7 days, and 30 days. 

3) The least color-stable bleach shade composites with sunlamp exposure were 

Tescera (Bisco) and Tetric Evo-ceram (Ivoclar-Vivadent) shades. Tescera 

shades when exposed to sunlamp for 24 hours resulted in almost three times 

the threshold that people can detect, while three out of four shades (BL, BM, 

BXL) of Tetric Evo-ceram (Ivoclar-Vivadent) exceeded the detectable 

threshold of ∆E ≥ 3.3.  

4) When subjected to the sunlamp, certain composite shades showed statistically 

significant color change, although they didn’t reach the color change threshold 

of 3.3. Those were Filtek Supreme Plus (XWD), TPH (BW), Point 4 (XL2), 

and Durafill (SSL). 

5) Point 4 (Kerr) bleach shade composites were the least color stable when 

placed either in H2O or in dark and dry storage. Two out of three shades 

(XL2) and (XL3) exceeded the detectable threshold of ∆E ≥ 3.3 when placed 
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in H2O for 30 days, whereas all Point 4 shades had the least color stability 

when placed in dark and dry storage for 30 days compared with all other 

shades in this study. 

6) Certain composite shades showed statistically significant color change when 

placed in H2O, although they didn’t reach the threshold (∆E ≥ 3.3). Those 

were Point 4(XL1), Durafill (SSL), and EvoCeram (BI). 

7) Certain composite shades showed statistically significant color changes when 

placed in dark and dry storage, although they didn’t reach the threshold (∆E ≥ 

3.3). Those were Tescera 1, 2, 3, TPH (XL), and Filtek Supreme Plus (XWD). 
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COLOR STABILITY OF LIGHT-ACTIVATED 

  BLEACH SHADE COMPOSITES 

 

 

 

by 
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OBJECTIVE: This study evaluated the color stability of bleach shade composites 

when activated by a high-intensity quartz-tungsten-halogen (QTH) light source after 1 

day, 7 days, and 30 days of exposure to different conditions.  

HYPOTHESIS: The current commercial bleach shade composites activated by a 

high-intensity quartz-tungsten-halogen light source would show clinically perceptible 

color changes (∆E ≥ 3.3) when aged in different conditions. 

MATERIALS AND METHODS: Twenty-six bleach shade composite specimens 

were polymerized using a QTH light source for 60 s. All materials contained a 

camphorquinone photoinitiating system. After curing, color measurements were made for 

all specimens. The specimens were divided into three groups. The first group was placed 

in dry and dark storage. The second group was placed in water storage. The third group 

was subjected to a sunlamp test. All groups were subjected to the different conditions at 
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37o C. The specimen color parameters were recorded L*, a*, and b* and color differences 

(∆E*) were determined to measure the effect of storage in different conditions on the 

color of the specimens.  

RESULTS: Storing bleach shade composites in distilled water, dark and dry 

storage, or subjecting them to the sunlamp for 24 hours resulted in a wide range of 

readings. The sunlamp exposure resulted in the most values with ∆E ≥ 3.3 than the other 

two storage methods. The following group-storage-time combinations had a mean ∆E of 

3.3 or higher:  

Sunlamp: EvoCeram(BL), EvoCeram(BM), EvoCeram(BXL), Tescera 1, Tescera 

2, Tescera 3. 

Dark and dry for 30 days: Point4 (XL2). 

Dark and dry for 7 days: Point 4 (XL2). 

H2O for 30 days: Point 4 (XL2). 

CONCLUSION: The color stability of bleach shade composites depends on 

various factors, namely, the resin material, the shade of the resin material, the storage 

method, and the storage time.  
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