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1. Introduction

This paper combines two topics of recent research on Weyl fermions in condensed matter. The
first topic is the search for the chiral magnetic effect in equilibrium [1-11]. The second topic is
the search for Landau levels in a superconducting vortex lattice [12-15]. What we will show is
that the lowest Landau level in the Abrikosov vortex lattice of a Weyl superconductor supports the
equilibrium chiral magnetic effect at the universal limit of (e/h)?, unaffected by any renormalization
of the quasiparticle charge by the superconducting order parameter. Let us introduce these two
topics separately and show how they come together.

The first topic, the chiral magnetic effect (CME) in a Weyl semimetal, is the appearance of an
electrical current I along lines of magnetic flux @, in response to a chemical potential difference
s — u— between Weyl fermions of opposite chirality. The universal value [16-18]

a e
o = ﬁ(u+—u,) (1.1)
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Fig. 1. Cross-section through a heterostructure of alternating topological insulator layers and superconducting spacer
layers. A perpendicular magnetization 8 separates a pair of Weyl cones of opposite chirality along k,. Each Weyl cone is
twofold degenerate in the electron-hole degree of freedom, mixed by the superconducting pair potential Ay. The mixing
leaves the Weyl cones gapless, as long as the pair potential A, remains smaller than S.

follows directly from the product of the degeneracy (e/h)® of the lowest Landau level and the
current per mode of (e/h)(u+ — p—). A Weyl semimetal in equilibrium must have pu, = u_,
hence a vanishing chiral magnetic effect — in accord with a classic result of Levitov, Nazarov, and
Eliashberg [19,20] that the combination of Onsager symmetry and gauge invariance forbids a linear
relation between electrical current and magnetic field in equilibrium.

Because superconductivity breaks gauge invariance, a Weyl superconductor is not so con-
strained: As demonstrated in Ref. [10], one of the two chiralities can be gapped out by the
superconducting order parameter. When a magnetic flux & penetrates uniformly through a thin
film (no vortices), an equilibrium current

dl ee*

o = ke (12)
appears along the flux lines, of a magnitude set by the equilibrium chemical potential . of the
ungapped chirality. The renormalized charge e* < e determines the degeneracy (e*/h)® of the
lowest Landau level in the superconducting thin film.

The second topic, the search for Landau levels in an Abrikosov vortex lattice, goes back to the
discovery of massless Dirac fermions in d-wave superconductors [21,22]. In that context scattering
by the vortex lattice obscures the Landau level quantization [23-25], however, as discovered
recently [15], the chirality of Weyl fermions protects the zeroth Landau level by means of a
topological index theorem. The same index theorem enforces the (e/h)® degeneracy of the Landau
level, even though the charge of the quasiparticles is renormalized to e* < e. Does this topological
protection extend to the equilibrium chiral magnetic effect, so that we can realize Eq. (1.2) with e*
replaced by e? That is the question we set out to answer in this work.

The outline of the paper is as follows. In Section 2 we formulate the problem of a Weyl
superconductor in a vortex lattice. We then show in Section 3 that a flux bias of the superconductor
can drive the quasiparticles into a topologically distinct phase where one chirality is exponentially
confined to the vortex cores. The unconfined Landau bands contain electron-like or hole-like Weyl
fermions, while the vortex-core bands are charge-neutral Majorana fermions. The consequences
of this topological phase transition for the chiral magnetic effect are presented in Section 4. We
support our analytical calculations with numerical simulations and conclude in Section 5.

2. Formulation of the problem

We consider a multilayer heterostructure, see Fig. 1, composed of layers in the x-y plane of
a magnetically doped topological insulator (such as Bi,Ses3), separated in the z-direction by a
normal-insulator spacer layer. The tight-binding Hamiltonian is [26]

Ho(k) = Z T,0; t; sink;a; + Btoo;

i=x,y,z
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Fig. 2. Panel (a) shows a square vortex lattice in a Weyl superconductor, panels (b) and (c) show a circuit to measure
the chiral magnetic effect (current I parallel to an external magnetic field B). The current exists in equilibrium because
Weyl fermions having one of the two chiralities are confined to vortex cores by a flux bias (panel b) or a current bias
(panel c).

+ 1400 Z t/(1 — cos kia;) — 7000, (2.1)

i=x,y,z

where t;, t/ are nearest-neighbor hopping energies, a; are lattice constants, and y is the chemical
potential. For simplicity we will equate a; = ap and t; =t/ =to fori =x,y, z.

The Pauli matrices o; (i = x,y,z, with i = 0 for the unit matrix) act on the spin degree of
freedom of the surface electrons in the topological insulator layers. The 7, = £1 index distinguishes
the orbitals on the top and bottom surfaces. Magnetic impurities in the topological insulator layers
produce a perpendicular magnetization, leading to an exchange splitting 8. A Weyl point with a
linear dispersion appears at k = (0, 0, £8/agty). For ease of notation we will set ag, ty, and h to
unity.

Following Meng and Balents [27], the spacer layer may have a spin-singlet s-wave pair potential
A = Age'®. The pair potential induces superconductivity in the top and bottom surfaces of the
topological insulator layers, as described by the Bogoliubov-De Gennes Hamiltonian

_ H()(k — eA) Aoei¢
o= < Age®  —ayHi(—k — eA)oy ) (2.2a)

We have introduced a vector potential A and take the electron charge e > 0. For definiteness we
also fix the sign B > 0. The Fermi velocity v = apto/h is unity for our chosen units.

As shown in Fig. 2, the heterostructure can be placed in either a flux-biased or a current-biased
circuit. We seek the current [, in equilibrium, parallel to the external magnetic field B=V x A in
the z-direction.

The superconductor has length L parallel to B, while the dimensions in the perpendicular
direction are W x W, large compared to the London penetration length A. This is the key difference
with Ref. [10], where W < X\ was assumed in order to prevent the formation of Abrikosov vortices.
For W > A > I, > & (with I, = /h/eB the magnetic length and & = hvg/A, the
superconducting coherence length) we are in the vortex phase of a strong-type-II superconductor,
where the magnetic field penetrates in the form of vortices of magnetic flux @q = h/2e. The vortex
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lattice has two vortices per unit cell, we take the square array (lattice constant dy) indicated in
Fig. 2.
In the gauge with V - A = 0 the superconducting phase is determined by

V x Vg(r)=212) 8(r —Ry), V-V¢=0. (2.3)

The first equation specifies a 2;r winding of the phase around each vortex core at R,,, and the second
equation ensures that the superconducting velocity

my; = 1V — eA (2.4)

has vanishing divergence. Since the vortex cores occupy only a small fraction (£y /I, )* of the volume,
we may take a uniform pair potential amplitude |A| = Ay and a uniform magnetic field strength
|B| = By. The dominant effect of the vortex lattice is the purely quantum mechanical scattering of
quasiparticles by the superconducting phase [24].

The vector potential contains a constant contribution A, = A/e in the z-direction controlled by
either the flux bias or the current bias [28]:

(e/L)Pbias (flux bias),
epo(A/W)lias  (current bias).

(2.5)

3. Chirality confinement in a vortex lattice

In the absence of a vortex lattice, for W < A, it was shown in Ref. [10] that a flux bias or current
bias confines Weyl fermions of one definite chirality to the surfaces parallel to the magnetic field,
gapping them out in the bulk. Here we consider the opposite regime W >> X in which a vortex
lattice forms in the Weyl superconductor. We will show that effect of the A bias is qualitatively
different: both chiralities remain gapless in the bulk, but one of the two chiralities is confined to
the vortex cores.

The analytics is greatly simplified if the magnetic field is along the same z-axis as the separation
of the Weyl cones. The corresponding vector potential is

A(r) = (B()y, 07 A/e)a A= (e/L)quiaS’ (31)

where for definiteness we take A > 0. This is the flux-biased geometry of Fig. 2b. Numerical
simulations indicate that the current-biased geometry of Fig. 2c, with B along the y-axis, is
qualitatively similar — but we have not succeeded in obtaining a complete analytical treatment
in that geometry.

3.1. Landau bands

We have calculated the eigenvalues and eigenfunctions of the tight-binding Hamiltonian (2.2)
using the Kwant code [29] as described in Ref. [15]. We take parameters 8 = tg, Ag = 0.5ty, u = 0.
We arrange h/2e vortices on the square lattice shown in Fig. 2a. The lattice constant dy = Nag of
the vortex lattice determines the magnetic field By = (h/e)d, 2. In the numerics the full nonlinear
k-dependence of #(k) is used, while for the analytical expressions we expand near k = 0.

The zero-field spectra in Fig. 3a and b reproduce the findings of Ref. [10]: For small A and
provided that Ay < 8 one sees two pairs of oppositely charged gapless Weyl cones, symmetrically
arranged around k, = 0 at momenta Ky and —K.. given by

Ke=,/(B+ AP — A2 (3.2)

The pair at |k,| = K_ is displaced relative to the other pair at |k,| = K, by the flux bias A, becoming
gapped when A is in the critical range

A€ (B — Ao B+ Ad)=(Acr, Aca). (33)
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Application of a magnetic field in Fig. 3c and d shows the formation of chiral zeroth-order Landau
bands: a pair of electron-like Landau levels of opposite chirality and a similar pair of hole-like
Landau levels. The Landau bands have a linear dispersion in the z-direction, along the magnetic
field, while they are dispersionless flat bands in the x-y plane.

For k, near K. the electron-like and hole-like dispersions are given by [15]

Eelectron(k) = (_PL - kz + K+)C059,

34a
Enotel) = (10 + k, — K_) cos, B42)

and similarly near —K.. the dispersions are
Eetectron(k) = (—p + k; +K_)cos 0, (3.4b)

Enole(k) = (1 — k; — K;)cos 6.

The k,-dependent factor cos # renormalizes the charge and velocity of the quasiparticles, according
to [10,30]

k
cosO(k) = ﬂ
A2+ K2
o (35)
AZ
- [1-— m = x4 when |k;| - K.

The degeneracy of a Landau band is not affected by charge renormalization [15], each electron-
like or hole-like Landau band contains

No= 1@/ = (e/h)® (3.6)

chiral modes, determined by the ratio of the enclosed flux ® = ByW? and the bare single-electron
flux quantum h/e.

While the dispersion of a Landau band in the Brillouin zone changes only quantitatively with the
flux bias, it does have a pronounced qualitative effect on the spatial extension in the x-y plane. As
shown in Fig. 4, the intensity profile |.(x, y)|* of a zeroth-order Landau level at |k,| = K, peaks
when r = (x, y) approaches a vortex core at R,,. The dependence on the separation ér = |r — R,|
is a power law [15],

[ e |? oc ST+, (3.7)

When A enters the critical range (3.3) this power law decay applies only to one of the two
chiralities: the two Landau bands at k, = K, and k, = —K, with dE/dk, < O still have the power
law decay (3.7), but the other two bands with dE/dk, > 0 merge at k, = 0 and become exponentially
confined to a vortex core. As we shall derive in the next subsection,

|lﬁvortex|2 o< exp(—dr /lcont),

Lo 1 1 (3.8)
conf = 3 A—,B—I—A()’,B—A—}—Ao .

These two vortex-core bands are separated spatially, one in each of the two vortices in the unit cell.
They form unpaired Majorana fermions, in contrast to the two Landau bands that overlap spatially
and as a pair constitute a Dirac fermion.

All of this applies to magnetic fields in the regime W > A > I, > & of a vortex lattice. At
weaker fields, when I, > min(W, A), no vortices can form and the analysis of Ref. [15] applies: The
bands with chirality dE/dk, > 0 are pushed out of the bulk and confined to the surfaces along the
z-direction.
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(a)eA. = 0.25/ay (four cone regime) (v)yeA: = 1.05/ay (two cone regime)
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Fig. 3. Dispersion relations of a Weyl superconductor at two values of the flux bias A, (left and right column), without
and with a magnetic field B (top and bottom row). In zero field and at a small value of the flux bias (panel a), there are
four cones in the spectrum. As the flux bias increases the electron-like cones (red) are shifted to positive k,, whereas
the hole-like cones (blue) are shifted to negative k,. At the critical value eA, = 8 — A9 = 0.5/a, two cones of opposite
chirality meet at k, = 0, a gap opens and the system transitions into the two-cone regime (panel b). When a magnetic
field is applied, each Weyl cone gives rise to a chiral zeroth Landau level (panel c). In the two-cone regime (panel d) a pair
of chiral Landau levels forms charge-neutral Majorana modes (green). The spectra were calculated for the tight-binding
Hamiltonian (2.2), with 8 = ty, A = 0.5tp, and u = 0. The B # 0 data is for a square vortex lattice with lattice constant
dy = 18ay. For an electron-like Landau level marked with a square and for a Majorana mode marked with a circle we
show the spatial probability density in Fig. 4. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

3.2. Vortex core bands

To demonstrate the exponential confinement in a vortex core of the 7, = +1 chirality we expand
the Hamiltonian (2.2) to first order in ky, k, at k, =0, u =0,

[ keox + kyoy 0 (B — Ao, Age'®
= < 0 —kyox — kyoy + Age™® (B — Ao, ) (3.9)

The applied magnetic field does not contribute on length scales below I,;, so we only need to include
the constant eA, = A term in the vector potential. The winding of the superconducting phase is
accounted for by the factor e/, in polar coordinates (x, y, z) = (r cos ¢, r sin g, z) centered on the
vortex core.

In view of the identity

d +idy = €¥ (8 +ir~'9,), (3.10)
with d; = 9/9q, the Hamiltonian (3.9) reads
_ ((B— Ao, —D Agel?
" ( 20e™ (B~ A +D)’ G.112)
_ 0 e (io, +r719,)
D= (e“ﬂ(iar 3 0 } (3.11b)

We seek a solution #H¥ = 0 of the form

W = (¢1(r), €4ea(r), e “ps(r), pa(r)), (3.12)
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Fig. 4. Spatial distribution of the probability density for an electron-like Landau band (panel a) and for a Majorana
vortex-core band (panel b). Panel ¢ shows both probability distributions as a function of the distance r from the vortex
core, measured along the dashed white line in panels a, b. In the insets in panel ¢ the same data is presented using a
log-log scale (for the zeroth Landau level) and log-linear scale (for the vortex-core band). The Landau band is spread over
the magnetic unit cell, with an algebraic divergence at the vortex cores, whereas the vortex-core band is exponentially
localized at the vortices. The profiles were calculated for the same set of parameters as the spectra in Fig. 3, with the
Landau band corresponding to the state marked with a square, and the vortex-core band corresponding to the state
marked with a circle. To improve the spatial resolution, we used a larger ratio dy/ap = 102.

and denote @ = (¢1, P2, ¢3, ¢4). This produces the ordinary differential equation

0 —i(B — A) 0 iAo
do i — A) r1 iAg 0 o
Tdr 0 —iAg r1 i(p— A)
—iAg 0 —i(B — A) 0
= (My+17'Mp) @. (3.13)

In the critical regime A.; < A < A, the two positive eigenvalues of the matrix M; are A — Ay
and A — A. At large r, the normalizable solution of Eq. (3.13) decays o e™*", with « the smallest
positive eigenvalue of My:

o= mm(A — A, Ay — A) (314)

The confinement length I.,ns = 1/2« is thus given by Eq. (3.8).
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4. Chiral magnetic effect
4.1. Charge renormalization

We summarize the formulas from Ref. [10] that show how charge renormalization by the
superconductor affects the CME.
The equilibrium expectation value I, of the electrical current in the z-direction is given by

a
L=1Y [ S e (41)

The sum over n is over transverse modes with energy E,(k,) = E at longitudinal momentum k;,
weighted by the Fermi function f(E) = (1 4 ef/*sT)~1 at temperature T. The factor 1/2 corrects for
a double-counting of states in the Bogoliubov-De Gennes formalism. The expectation value of the
current operator j, = —dH/dA; in the state with energy E equals

(iz)e = —(9H/0A;)p = —0E/3A,, (4.2)

according to the Hellmann-Feynman theorem. Two other expectation values that we need are those
of the velocity operator v, = dH/dk, and the charge operator Q = —edH/du, given by

(v2)p = 0E/dk,, (Q)p = —e€IE/Ip. (4.3)
Following Ref. [10] we also define the “vector charge”
(o )E

Q = (QX5 Qyﬂ QZ)5 Wlth QD!( ) ’ (44)

<va)E
which may be different from the average (scalar) charge Qy = (Q)g because the average of the
current as the product of charge and velocity may differ from the product of the averages.

The CME is a contribution to I, that is linear in the equilibrium chemical potential x, measured
relative to the Weyl points. We extract this contribution by taking the derivative 9,1, in the limit
u — 0. Two terms appear, an on-shell term from the Fermi level and an off-shell term from energies
below the Fermi level,

8,uIZ = Jon shell T Joft-shell = Jtotal, (4.5a)
dk
Tonshell = Z [ Ser®Qete. (45b)

Toteshel = — 3 Z | St (450)

At low temperatures, when —f’(E) — §(E) becomes a delta function, the on-shell contribution
Jon-shell iNVolves only Fermi surface properties. It is helpful to rewrite it as a sum over modes at
E = 0. For that purpose we replace the integration over k, by an energy integration weighted with
the density of states:

Tonshel = — Z / e ®| E| e (46)
In the T — 0 limit a sum over modes remains,
QQ; , .
Jon-shell = >h g 2 (Slgn (Uz)) En:O’ (4.7)

where we have restored the units of h = h/2rx.
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4.2. On-shell contributions

We apply Eq. (4.7) to the vortex lattice of the flux-biased Weyl superconductor. Derivatives with
respect to A, are then derivatives with respect to the flux bias A. According to the dispersion relation
(3.4a), the electron-like Landau band near K, has renormalized charges

oK e
=eKy, =e— = —, 438
Q + & oA~ xs (4.8)
in the limit k, — K, u — 0. The charge renormalization factors cancel, so this Landau band with
sign (v;) < 0 contributes to Jon-shey an amount —%e/h times the degeneracy Ny = (e/h)®, totaling

1 2
—5(e/h)y ®.
Similarly, for the hole-like Landau band near —K_ Eq. (3.4a) gives
oK, e
= —€K4, =—l— = ——, 49
Qo Ky, Q A P (4.9)

for the same contribution of —%(e/h)zd‘l. The total on-shell contribution for this chirality is

Jon-sheii(Ikz| = Ky) = —(e/h}®. (4.10)

We can repeat the calculation for the electron-like band near K_ and the hole-like band near
—K_, the only change is the sign (v,) > 0, resulting in

Ton-shen([kz] = K_) = (e/h)*®. (4.11)

We conclude that the Dirac fermions in the Landau bands of opposite chirality give identical
opposite on-shell contributions #(e/h)?® to d,1;. The net result vanishes when A is outside of the
critical region (A¢q, Ac2). When Ay < A < Ag, one of the two chiralities is transformed into
unpaired Majorana fermions confined to the vortex cores. The vortex-core bands have Q; = 0 at
E = 0, so they have no on-shell contribution, resulting in

0 if A¢(Ac, Ac2),

(e/h)Z(p if Ae (AC], Acz). (412)

Jon-shell = {
The coefficient (e/h)? contains the bare charge, unaffected by the charge renormalization.
4.3. Off-shell contributions

Turning now to the off-shell contributions (4.5c), we note that the Landau bands do not
contribute in view of Eq. (3.4):

2
9 E(k) = j:i cosf(k) = 0. (4.13)
dAI A
For the vortex-core bands, off-shell contributions cancel because of particle-hole symmetry.

This does not exclude off-shell contributions from states far below the Fermi level, where our
entire low-energy analysis no longer applies. In fact, as we show in Figs. 5 and 6, we do find a
substantial off-shell contribution to 9,1, in our numerical calculations (see Appendix for details).
Unlike the on-shell contribution (4.12), which has a discontinuity at A = Ay, Ac,, the off-shell
contribution depends smoothly on the flux bias and can therefore be extracted from the data.

5. Conclusion

In summary, we have demonstrated that a flux bias in a Weyl superconductor drives a confine-
ment/deconfinement transition in the vortex phase: For weak flux bias the subgap excitations are all
delocalized in the plane perpendicular to the vortices. With increasing flux bias a transition occurs
at which half of the states become exponentially localized inside the vortex cores. The localized
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Fig. 5. Numerical calculation of 9,1, at u = 0.05¢t in the tight-binding Hamiltonian (2.2). The solid curves are the total
current, while the dashed curves show only the off-shell contribution (4.5c). The vertical dashed lines mark eA, = Ay, Aq
- the values of the flux bias which correspond to a topological phase transition into and out of the two-cone regime.
The horizontal dashed lines mark the universal CME value of (h/e)*®. As the size N = d/ay of the magnetic unit cell
increases, the numerically calculated value of the on-shell contribution approaches the universal value, which jumps at
the topological phase transition.

states have a definite chirality, meaning that they all propagate in the same direction along the
vortices. (The sign of the velocity is set by the sign of the external magnetic field By.)

As a physical consequence of this topological phase transition we have studied the chiral
magnetic effect. The states confined to the vortex cores are charge-neutral Majorana fermions,
so they carry no electrical current. The states of opposite chirality, which remain delocalized, are
charged, and because they all move in the same direction they can carry a nonzero current density
j parallel to the vortices. This is an equilibrium supercurrent, proportional to the magnetic field By
and to the chemical potential « (measured relative to the Weyl point).

We have calculated that the supercurrent along the vortices jumps at the topological phase
transition by an amount which for a large system size tends to the universal limit

e

=45 Bop. (5.1)
Remarkably enough, the proportionality constant contains the bare electron charge e, even though
the quasiparticles have a renormalized charge e* < e. This electromagnetic response is generated
by the axion term (e/h)* [ dt [ dr 6(t)E,B, in the Lagrangian, where 6(t) = ut is the axion angle.
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Fig. 6. Same numerical calculation as in Fig. 5, but now for a fixed flux bias eA, = 1.05/ay in the two-cone regime,
showing the contributions to 9,1, from different momenta k, along the magnetic field. We distinguish between the total
current and the off-shell contribution. The difference between the two is the on-shell contribution, which peaks at the
momenta where the Fermi level crosses the chiral Landau bands. The vortex-core bands at k, = 0 have vanishing on-shell
contribution.
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Fig. 7. Bottom: momentum-resolved current response Al (u,k;), as defined in Egs. (A.2) and (A.3), in the four-cone
regime at eA, = 0.25/ao (panel a) and in the two-cone regime at eA, = 1.05/ao (panel b). Top: low-energy dispersion
relation for the corresponding system. The on-shell contribution to the current response, which is the difference between
the total and off-shell contributions, only appears at momenta for which a band crosses the Fermi energy. In the four-cone
regime four peaks are present, the contributions of which cancel out. In the two-cone regime the vortex-core band at
k, = 0 has a vanishing on-shell contribution, whereas the contribution of the other two Landau levels remains unchanged.
The plots were obtained for a system size N = 18.

The chiral fermions confined in the vortex cores are a superconducting realization of the
“topological coaxial cable” of Schuster et al. [31], where the fermions are confined to vortex lines
in a Higgs field. There is one difference: the chiral fermions in the Higgs field are charge-e Dirac
fermions, while in our case they are charge-neutral Majorana fermions. The difference manifests
itself in the physical observable that serves as a signature of the confinement: for Schuster et al.
this is a quantized current dI /dV = e?/h per vortex out of equilibrium, in our case it is a quantized
current dI /du = %e/h per vortex in equilibrium.
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Fig. 8. The current response AL (u), as defined in Egs. (A.2) and (A.3), in the two-cone regime at eA, = 1.05/qy for a finite
chemical potential u. The colored data points give the total response, as well as the off-shell and on-shell contributions.
The dotted line pe?® /h? is the theoretical prediction (4.12) for the on-shell contribution to first order in 1w, which is
a good approximation to the numerical result for small p. The plots were obtained for a system size N = 18. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Appendix. Details of the numerical calculation

The numerical calculation was performed on a square lattice with two h/2e vortices in a
magnetic unit cell, using the discretization described in Ref. [15]. We calculate separately the total
induced current response

aul = Jon-shell + Joff-shell = Jtotal> (A1)

and the off-shell contribution Jyst.snen. The defining equations (4.1) and (4.5¢) are rewritten in terms
of finite differences,

dk, . .
Jrotal = 5 _)0 W Z/ - [ Kz, 1)) (iz) Enthz ) — f (En(kz. _M))UZ)E,,(kZ,—u)]

1 1
= — lim — [ dk, A%, k;) = lim — AR (p), A2
211%02“[ (1. k) = lim -+ AT ) (A2)
dk, . .
Toteswen = 5 lim o Z 5 f (Bl 10 = 0)) | Gty = et
1 lim i dk AIOff_Shdl(M k ) — lim lAIOff—Shell(’u) (A 3)
2 u—>020 2T T n—0 W z ' '
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We computed the values of the expressions on the right-hand-side at finite w. The k,-integral
was estimated from 256 values of k,, equally spaced in the [—, 7] interval. For the sum over
transverse modes n we averaged over 4 values of both k. and k,. To smoothen the integrand we
took a small nonzero temperature T = 0.01 in the Fermi function — much smaller than the energy of
the first Landau level (which was > 0.2 for the parameters we considered). In Fig. 7 we present the
results prior to integration over k,, for two different values of A,. For u = 0.05 the finite differences
have converged to the derivative — see Fig. 8.
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