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Proof: We first show part 1. Let

A = Wi \ ({ai(C)C: C E xd U {,8i(C)C: C E Xi});

B = Wi \ ({,8i(Z)Z: Z EYi} UYi);

o = Wi \ {X E Wi: ai (X) = 0 or ,8i (x) = O};

D = {rz: Z E Yi, r E (0, ,8i(Z))}

E = Wi \ ({ai(x)x: x E WJ U {,8i(X)X: x E Wi})'

Let Al = {ai(C)C: C E Xi}, let A 2 = {,8i(C)C: C E Xi}, let B1 = {,8i(Z)Z: Z E Yi}, let B2 = Yi, let

0 1 = {x E Wi: ai(X) = O}, let O2 = {x E Wi: ,8i(X) = O}, let E1 = {ai(x)x: x E Wi}' and let

E2 = {,8i(X)X: x E Wi}. It is clear that 0 1 ~ B 2 ~ Al ~ E1 ~ 0 1, Now, if x E O2 , then we have

which implies that ,8i(Z)Z E A2 . Thus B 1 ~ A2 • Then it is clear that O2 ~ B 1 ~ A2 ~ E2 ~ O2 ;

and so it follows that A = B = 0 = E.

Let x E Vi, then x = rc for some C E Xi, and some r E (ai(c),,8i(C)), Thus

Then rc = (r - ai(c)) . (ai(c)c) ED. Thus Vi ~ D. Let xED. Then x = rz for some Z E }i, and

some r E (0, ,8i(Z)), So

Also, (,8i(z)/2)z E Xi, so X = (r - ,8i(z)/2) . ((,8i(z)/2)z) E Vi. Thus Vi = D.

If x E Vi, then x = rc for some C E Xi and some r E (ai(c),,8i(C)), We thus have

ai(x) = ai(c) - r i= 0, and ,8i(X) = ,8i(C) - r i= O. Thus x tJ- 0 1 U O2 , so x E O. So Vi ~ O. Now
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let x E C. Then ai(x) =I- 0, and fJi(X) =I- O. Let r = (ai(x) + fJi(x))/2. Then C = rx E Xi. Also

(ai(c),fJi(C)) = (ai(x),fJi(X)) - r. Since ai(x) =I- 0, and fJi(X) =I- 0, so 0 E (ai(x),fJi(X)), and so

-r E (ai(x), fJi(X)) - r = (ai(c), fJi(C)), Then x = (-r)(rx) E Vi. Thus Vi = C. Part is 1 proven.

For part 2, let c E Xi' By part 3 of Lemma III.3.1, we have fJi(C) - ai(c) 2: 0". Since

ai(c) = -fJi(C), we have ai(c) =I- 0, and fJi(C) =I- O. So C E C = Vi.

Part 3 follows immediately from part 1 and part 2 of Lemma III.3.1. Part 4 follows from

part 1 and part 5 of Lemma III. 3.1. Part 5 follows from part 1 and part 6 of Lemma III.3.2.

For part 6, let x E ZC. Then x E Wj for some j E {I, ... , N}. So ai(x) = a(x) < 0 <

fJ(x) = fJi(X). Therefore x E Vj.

For part 7, let {xn} be a sequence in Vi n zc that converges to x for some x E ZC. Since

Vi ~ Wi, we see that x E Wi. Since x E ZC, ai(x) =I- 0 and fJi(X) =I- O. So x E Vi, D

Lemma 111.3.5. Let i,j E {I, ... , N}. Then 1fi(Vi n Vj) is closed in Xi'

Proof: We only need to show that 1fi(Vi n Vj) is closed in Xi; the other statements follows from

symmetry. If Vi n Vj = 0, then we are done. So assume that Vi n Vj =I- 0.

Let {wn} be a sequence in 1fi(Vi n Vj) that converges to some W E X. Since Xi is compact,

W E Xi' Choose Xn E Vi n Vj such that 1fi(Xn) = W n. But Vi n Vj ~ Wi n Wj , which is compact,

so Xn has a subsequence, say {Yn}, that converges to some Y E Wi n Wj . We claim that

Suppose that (ai(y),fJi(Y)) n (aj(Y),fJj(Y)) = 0. But 0 E [ai(y),fJi(Y)] n [aj(y),fJj(Y)]'

so either fJi(Y) = aj(Y) = 0 or ai(Y) = fJj(Y) = O. First assume that fJi(Y) = aj(Y)' Then we

have fJi(Yn) - aj(Yn) --t fJi(Y) - aj(Y) = O. Now, Yn E Vi n Vj, so fJi(Yn) > 0 and aj(Yn) < 0

for all n 2: 1. Then fJi(Yn) - aj(Yn) > 0 for all n 2: 1. For each n 2: 1, let Zn = aj(Yn)Yn'

Then R(zn) ::; fJi(Yn) - aj (Yn) --t 0, which contradicts the fact that R 2: 0". Similarly, we get a

contradiction if we assume fJj (y) = ai (y). Therefore (ai (y), fJi (y)) n (aj (y), fJj (y)) =I- 0.

Let r E (ai(Y), fJi(Y)) n (aj (y), fJj (y)). Then ry E Vi n Vj. Now, Yn --t Y, so ai(Yn) --t ai(Y),

and fJi(Yn) --t fJi(Y)' Passing to a subsequence if necessary, we can assume that r E (ai(Yn), fJi(Yn))

for all n 2: 1. Then rYn E Vi for all n 2: 1, and so 1fi(rYn) --t 1fi(ry). But 1fi(rYn) = 1fi(Yn) --t W, so

W = 1fi(ry) E 1fi(Vi n Vj). We have shown that 1fi(Vi n Vj) is closed in Xi' D
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Notation 111.3.6. We fix the following notation for the rest of the chapter. For each x E X, let

TX = {r E JR: rx E Z}. Then TX is an infinite discrete set, hence countable. So index T X as

... < a':-n < a':-n+l < ... < a':-l < a~ < aT < ... < a~_l < a~ < ....

Also note that for each nEZ, we have a~+1 - a~ ~ 0". For i E {I, ... , N} and for each x E Vi, let

The following lemma shows that the sets Vi are ordered in the correct order.

Lemma 111.3.7. Let k E {2, ... , N}, and let x E Vk. Suppose that T X n [ak(x), .8k(X)] contains 3

or more elements. Then zc n V: = U~,:}(V: n Vi) n zc.

Proof: Let T = TX n [ak(x),.8k(X)]. Then for some m,l E Z with m < l, there exist

T = {a~, a~+ l' ... , an. For each n E {m, m + 1, ... , l - I}, let Zn = a~x.

Then for each n E {m, m + 1, ... , l-I}, we have

We claim that for each n E {m, m + 1, ... , l - I}, there exists kn < k such that Zn E Yk n • So fix

nE{m,m+l, ... ,l-I}.

Now Yk = Yi,j for some 1 :'::: i :'::: nv and some 1 :'::: j :'::: nR. Also, Yi,j = Zi nzj ~ Zj = Ttj

for some 1 :'::: t j :'::: nR. See Lemma III.2.2, Notation III.2.3 and Notation III.2.5 for the definitions

of Zi, zj, Yi,j, Ttj and nR' If Y E Wk> then ak(Y)Y E Yk ~ Ttj, and

Then there exists some h with 1 :'::: h < t j such that R(zn) E (h~i)Q", ~~] , which implies that

Zn E T h . In particular, Th is not empty, hence it is relabeled as Zd for some d < j (see Notation
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111.2.3). So Zn E Yt,h for some 1 ::; t ::; nv. From the definition of Ys for s E {I, ... ,N} (see

Notation 111.2.5), it is clear that Yt,h = Ykn for some kn < k. This proves the claim.

Now, if y E V{ n zc, then there exists some r E (a;, a;+l) such that y = rx. Then

r - a; E (0, a;+l - a;) = (0, R(zn))' So we have

k-l

Y = rx = (r - a~)(a~x) = (r - a~)zn E Vk n ~ UVi.
i=l

o

Lemma 111.3.8. Let k E {2, ... , N} and let x E Vk n (U7~} Vi). Then

k-l

Zc n V{ = U(Vkx n Vi) n zc.
i=l

Proof: Note that T = T X n [ak(x),,Bk(X)] contains 2 or more elements. First suppose that T

contains only 2 elements. Since x E Vk, we see that 0 E (ak(x),,Bk(X)). Also (ak(x),,Bk(X))X ~ zc

by assumption, so we see that x = o· x E (ak(x),,Bk(X))' x ~ zc. Then we have (ak(x),,Bk(X)) ~

(a(x),,B(x)) ~ (ai(x),,Bi(X)) for every i E {l, ... ,N} such that x E Vi. Since x E Vi for some

1::; i < k, we have Vkx = (ak(x),,Bk(X))X ~ (ai(x),,Bi(X))X = Vix. Then we are done.

If T contains 3 or more elements, then we are done by Lemma 111.3.7.

111.4. Properties of Gi , F(k) and G(k)

o

Now we define the subspaces Gi of lR x X which will be used to define the components of

the stable recursive subhomogeneous decomposition of Az .

Notation 111.4.1. For each i E {I, ... , N}, let

(111.3)

For each k E {I, ... ,N - I}, let

(IlIA)

Note that by Lemma 111.3.5 the set F(k) is closed in X k+1. For each i E {I, ... , N} and each
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Note that Gi = Gi,Xi ' (Lemma 111.4.4 part 1.) For each k E {1, ... ,N -I}, let

G(k) G= k+l,F(k).

(III.5)

(111.6)

The subsets Gi of JR x X defined above are in fact subgroupoids of the transformation

groupoid JR x X. For each i, the subgroupoid Gi is contained in (JR x X)~, where (JR x X)~ is the

set of all elements of JR x X whose sources and ranges are both contained in Vi. Due to minimality

of the action, the subgroupoid (JR x X)~ is too large. The subgroupoid Gi , in some sense, is the

largest continuous piece in (JR x X)~. See [13] for more details about groupoids.

Recall that Gz = {(r,x): x E ZC,-r E (a(x),,8(x))}.

Lemma II1.4.2. G1 S;; Gz .

Proof: First of all, we know that Yl is closed in X. By Lemma 111.2.6, for all z E Y1, we have

R(z) = ,81 (z), and so by Lemma 111.3.4, we have

VI = {rz: z E Y1,r E (O,,8i(Z))} = {rz: z E Yi,r E (O,R(z))} = WI S;; ZC.

Then if (r,x) E G1, we have x E VI = WI S;; ZC and -r E (al(x),,81(X)) = (a(x),,8(x)), since

o

Lemma 111.4.3. Gz S;; U~1 G i ·

Proof: Let (r,x) E Gz. Then x E ZC, and -r E (a(x),,8(x)). So x E Vi for some 1 :::; i :::; N.

Then x E Zc n Vi implies that ai(x) :::; a(x) < -r < ,8(x) :::; ,8i(X). So (r, x) E Gi. o

Part 2 and part 3 of next lemma essentially show that Gi,F is a subgroupoid of JR x X for

i E {I, ... , N} and F S;; Xi.

Lemma 111.4.4. Let i E {I, ... , N}. Then the following hold:
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2. Let F ~ Xi' Let CI, C2 E F. Let rl, tl, r2 and t2 be real numbers that satisfy

and

Then (rl + r2, t2C2) E Gi,F, and (-rl' (t l - rl)cI) E Gi,F. Let s: 1R x X ---7 X be defined by

(r, x) f---+ x. Then Gi,F = Gi n s-I(7Til(F)) and Gi,F has compact closure.

3. If F ~ Xi, C E Xi, t E (ai(C), (3i(C)), and -r E (ai(c), (3i(C)) - t, then (r, tc) E Gi,F if and

only if C E F.

Proof: Part 1 is clear.

Now we show part 2. Since (rl' tlcd, (r2' t2C2) E Gi,F, we see that CI, C2 E F, that

h, t l - rl E (ai(cI), (3i(cd), and that t2, t2 - r2 E (ai(c2), (3i(C2)). Now h - rl E (ai(cI), (3i(CI))

implies that

-rl E (ai(cd, (3i(cd) - t l = (ai(hcd,{3i(hcd)

= (ai((t2 - r2)c2), (3i((t2 - r2)c2)) = (ai(c2), (3i(C2)) - (t2 - r2).

imply that (-rl, (t l - rl)cd E Gi,F.

To see that Gi,F is pre-compact, note that Gi,F ~ [-M, M] xX.

Let (r, tc) E Gi,F. Then c E F and t, t - r E (ai(c), (3i(C)). Also,



78

So Gi,F s:;; G i n S-l (1fil (F)). Let (r, x) E G i n S-l (1fil (F)). Then x E Vi and -r E (ai(x), ,8i(X)).

Therefore x = tc for some c E Xi and some t E (ai(c),,8i(C)). Thus 1fi(s(r, x)) = 1fi(tC) = 1fi(C) =

c E F. Since

we see that t - r E (ai(c),,8i(C)) - s, and so (r,x) = (r, tc) E Gi,F.

For part 3, (r, tc) E Gi,F implies that there exists c' E F and t', t' - r' E (ai(c), ,8i(C)) such

that (r, tc) = (r', t'c'). Then c = 1fi(tC) = 1fi(t'C') = c' E F. Thus (r, tc) E Gi,F implies that c E F.

The other direction is trivial.

Let F, F' s:;; Xi. Then

Gi,FUF' = Gi n s-l(1fil(F U F'))

= Gi n [s-1(1fi1(F)) U s-1(1fi1(F'))] = Gi,F U Gi,FI.

Also, since (r, tc) E Gi,FnFI if and only if c E F n F', if and only if (r, tc) E Gi,F n Gi,FI, part 4

follows. D

Corollary 111.4.5. For each i E {I, ... , N} and each F; s:;; Xi, if F is closed (open) in Xi, then

Gi,F is closed (open) in Gi.

Lemma 111.4.6. Let i E {I, ... , N}. Then Gi n Gz is closed in Gz .

Proof: Let {(rn,xn)} be a sequence in G i n Gz that converges to some (r,x) E Gz . Then

Xn E Vi n ZC for all n 2:: 1, and x E ZC. By part 7 of Lamma III.3.4, we have x E Vi. Since x E ZC,

and since (r,x) E Gz , we see that -r E (a(x),,8(x)) s:;; (ai(x),,8i(X)). Thus (r,x) E Gi, and so

Gi n Gz is closed in Gz . D

Lemma 111.4.7. Let k E {I, ... , N -I}. Then for all i E {I, ... , k}, we have GinG(k) = GinGk+l;

and Gz n Gi n G(k) is closed in G(k) n Gz , in Gi n Gz , and in Gk+l n Gz .

Proof: Fix k E {I, ... , N -I}, and fix i E {I, ... , k}. We first show that G i n G(k) = Gi n Gk+l'

The inclusion Gi n G(k) s:;; Gi n Gk+l is clear. Let (r,x) E Gi n Gk+l' Then by the definition of

sets Gi (Notation III.4.1), we have x E Vi n Vk+l. So 1fk+l(s(r, x)) = 1fk+l(X), which is contained

in 1fk+l(Vi n Vk+l) s:;; F(k). Thus (r,x) E G(k).
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Now we claim that if A is any topological space, and B, C, D ~ A are arbitrary subspaces

such that B is closed in C, then B n D is closed in C n D. To prove this, since B is closed in C,

there exists F closed in A such that F n C = B. Then B n D = F n C n D is closed in C n D. This

proves the claim.

is closed in C z. Then by the claim above,

is closed in Ci n C z . Similarly Ci n Ck+1 n Cz is closed in Ck+1 n Cz.

Then by the first statement of the lemma, Cz n Ci n C(k) is closed in Ci n Cz, and in

CHI n Cz . But then Cz n Ci n C(k) = (Cz n Ci n C(k)) n C(k) is closed in C(k) n Ck+1 n Cz =

C(k) n CZ.

Lemma 111.4.8. Let k E {I, ... , N -I}. Then

k k

C(k) n Cz = U(C i n C(k) n Cz ) = U(C i n Ck+1 n Cz).
i=I i=I

Proof: The last equality of the lemma follows from Lemma 111.4.7. Also it is clear that

k

U(C i n C(k) n Cz) ~ C(k) n Cz.
i=l

We will show that C(k) n Cz ~ U7=1(C i n C(k) n Cz).

Let (r,x) E C(k) n Cz. Then x E VHl n zc and -r E (o:(x),;J(x)). Now consider

D

We first check that Vk\l = Vk+1ll1rk~l (1rk+l(X)). It is clear that Vk\l ~ Vk+1 n 1rk~l (1rk+l(X)).

Let Y E VH1 n 1rk~l (1rk+1(X)) , let r x = ak+l(x)~'(h+l(X), let r y = ak+l(Y)~'(h+l(Y), let Cx = rxx,

and let cy = ryY. Then Cx = 1rk+l(X) and Cy = 1rk+l(Y)' By assumption, Cx = Cy. Part 3 of

Lemma III.3.1 implies that r x E (O:k+1(X),;Jk+l(X)) and r y E (O:k+l(y),;JHl(Y)), so we have

-rx E (O:k+1(Cx),;Jk+1(Cx)) and -ry E (O:k+1(Cy),;Jk+1(Cy)), Note that X,Y E Vk+1 implies that
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O:k+I(X) < 0 < Ih+I(X) and that O:k+I(Y) < 0 < f3k+I(Y)' Now, if r x - r y ~ f3k+I(X), we have

(O:k+I(X) + f3k+I(X)) - (O:k+I(Y) + f3k+I(Y)) ~ 2f3k+I(X), and so

O:k+I(Y) + f3k+I(Y) ::; O:k+l(X) - f3k+I(X) = O:k+I(Cx ) - f3k+I(Cx)

= O:k+I(ey) - f3k+I(Cy) = O:k+l(Y) - f3k+I(Y)'

Then f3k+1 (y) ::; 0, contradiction. Similarly, r x - r y ::; O:k+1 (x) implies that O:k+1 (y) ~ 0, also

a contradiction. So r x - r y E (O:k+I(X),f3k+I(X)), Thus Y = (rx - ry)(x) E Vk'+I' and Vkx+ I =

Vk+1n 1l"k~I(1l"k+I(X)), Also, note that if Y E Vkx+l' then Y = sx for some s E (O:k+I(X),f3k+I(X)),

and then

V!+I = (O:k+I(Y)' f3k+1 (y))y = (O:k+I(SX),f3k+I(SX))(sx)

= (O:k+I(X) - S,f3k+I(X) - s)(sx) = Vk'+I'

Now, (r, x) E C(k) implies that 1l"k+l (x) E 1l"k+1 (Vk+1n (U~=I Vi) ). Thus there exists

Y E Vk+1 n (U~=I Vi) such that 1l"k+I(X) = 1l"k+I(Y)' Then Y E Vk'+I' so V!+l = Vk'+l' But by

Lemma III.3.8, we know that zc n vt+l = zc n (U~=I V!+I n Vi) . So we have zc n Vk\1 =

zc n (U7=1 Vk'+1 n Vi) .Since x E Vk'+l n ZC, there exists i E {I, ... ,k} such that x E Vk'+l n Vi ~
Vk+1 n Vi. Then x E Vi n Zc, and then (o:(x),f3(x)) ~ (O:i(X),f3i(X)), and so -r E (O:i(X),f3i(X)),

Thus (r,x) E Ci . Hence

k

(r,x) E C(k) n Cz n Ci ~ U(Ci n C<k) n Cz ).
i=1

o

Lemma III.4.9. Let k E {I, ... , N - I}. Then Ck+1 \ C(k) ~ Cz .

Proof' Let (r, x) E Ck+1 \ C(k). First of all, if Vkx+I n (U~=I Vi) =I- 0, there exists

Then 1l"k+I(X) = 1l"k+I(Y) E F(k). Hence (r,x) E C(k). This contradicts our assumption that (r,x)

is not contained in C(k). Therefore Vk\1 n (U7=1 Vi) = 0.
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a contradiction. So V{+I ~ Z. That is, (ak+l(x),.8k+I(X))X ~ Z. Let

Since x E Vk+l, we have ak+l(x) < 0 < .8HI(X). SO W > O. Then [-w,w]x ~ Z. But

([-w,w]x) n Z ~ ([-CJ,CJ]x) n Z = {x}.

So, because the action is free, w = 0, which is a contradiction. Therefore

By Lemma III.3.7, the set TX n [ak+l(x),.8k+I(X)] contains only 2 elements, namely

ak+l(x) and .8k+I(X). Then for all s E (ak+l(x),.8k+l(X)), we have sx E ZC. So x E ZC (because

aHI(x) < 0 < .8k+I(X)), a(x) = ak+l(x), and .8(x) = .8HI(X). Since (r,x) E GHI , we have

-r E (aHI(x),.8k+I(X)) = (a(x),.8(x)), and so (r,x) E Gz. 0

Lemma III.4.10. Let i E {I, ... ,N}, and let F ~ Xi be closed. Then:

1. we have Gi,F = {(r,x) E 1ft x Wi: 1l"i(X) E F,-r E [ai(x),.8i(X)]}.

2. we have

Gi,F \ Gi,F = {(r,x) E Gi,F: ai(x) = O}

U {(r,x) E Gi,F: .8i(X) = O}

U {(r, x) E Gi,F: - r = ai(x)}

U Hr, x) E Gi,F: - r = .8i(X)}.

3. the set Gi,F \ Gi,F is closed in 1ft x X, and Gi,F is open in Gi,F.
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Proof- Let

A = {(T,X) E lR x Wi: 1ri(X) E F, -T E [ai(x)"Lh(x)]}.

We first show that A is closed. Well, if (Tn' Xn) E A, and (Tn' Xn) ---4 (T, X) for some (T, x) E lR x X,

then x E Wi and 1ri(X) E F, because F and Wi are closed in X, and because ai(Xn) ---4 ai(x),

f3i(Xn) ---4 f3i(X) , and -Tn ---4 -T. Since -Tn E [ai(Xn),f3i(Xn)] for all n 2': 1, we have -T E

[ai(x),f3i(X)], Hence (T,X) E A, and so A is closed.

Now let (T,X) E A. Let s = (ai(x) + f3i(x))/2, and let c = sx = 1ri(X) E F ~ Vi. Since

-T E [ai(x), f3i(X)], there exists a sequence {Tn} in (-f3i(X), -ai(x)) such that Tn ---4 T. Now since

ai(x) < f3i(X), we see that ai(x) < S< f3i(X), Since ai(x) ::::: 0, we see that ai(x) ::::: ai(x)/(2n) for

all n 2': 1; since f3i(X) 2': 0, we have f3i(x)/(2n) ::::: f3i(X) for all n 2': 1. Then

for all n 2': 1. Thus s/(2n) E (ai(x),f3i(X)) for all n 2': 1. Then (2~JX E Wi, ai((2~Jx) -I- 0, and

f3i((2"r')x) -I- a for all n 2': 1. Thus (2~)x E Vi for all n 2': 1. Since -Tn E (ai(X), (3i(X)) for all n 2': 1,

we have

-Tn - S/ (2n) E(ai (X), f3i (X)) - s/ (2n) = (ai ( ( 2:) X) , f3i ((2:) X) )

for all n 2': 1, so (Tn + s/(2n), (s/2n)x) E Gi for all n 2': 1. Since

1ri(S((Tn + s/(2n), (s/2n)x)) = 1ri(X) E F,

we have (Tn + s/(2n), (s/2n)x) E Gi,F for all n 2': 1. Since (Tn + s/(2n), (2~JX) ---4 (T,X), we see

that (T, x) E Gi,F. Thus part 1 holds.

Let Al = {(T,X) E Gi,F: ai(x) = a}, let A2 = {(T,X) E Gi,F: f3i(X) = a}, let A3 =

{(T, x) E Gi,F: - T = ai(x)}, let A4 = {(T, x) E Gi,F: - T = f3i(X)}, and let A = Al U"· U A4. To

show part 2, we only need to show that Gi,F n A = 0 and Gi,F U A = Gi,F. We first show that

Gi,F n Aj = 0 for all j E {I, ... , 4}.
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Note that

Gi,F = {(r,se) E JR x X: e E F,s,s -r E (CYi(e),,Bi(e))}

= {(r,x) E Gi : 1ri(X) E F}.

If (r, x) E Gi,F, then x E Vi, and so CYi(X) -I- 0 and ,Bi(X) -I- O. Then (r, x) tI- Al and (r, x) tI- A2 .

Thus A l n Gi,F = 0, and A 2 n Gi,F = 0. Also, (r,x) E Gi,F implies that -r -I- CYi(X) and

-r -I- ,Bi(X). Then (r, x) tI- A3 and (r, x) tI- A4 · Thus A3 n Gi,F = 0, and A4 n Gi,F = 0. Then

Gi,F nA= 0.

Now let (r,x) E Gi,F. Then x E Wi, 1ri(X) E F, and -r E [CYi(X),,Bi(X)]. Suppose that

(r,x) tI- A. Then CYi(X) -I- 0, ,Bi(X) -I- 0, -r -I- CYi(X), and -r -I- ,Bi(X). So x E Vi, -r E (CYi(X),,Bi(X)),

and (r, x) E Gi. Since 1ri(X) E F, we see that (r, x) E Gi,F. Thus Gi,F = AUGi,F, and part 2 holds.

Now let {(rn' xn)} be a sequence in Al that converges to some (r, x) E JR x X. Since Gi,F

is closed, we see that (r,x) E Gi,F. Then by continuity of CYi, we have CYi(X) = O. So (r,x) E A l ,

and so A l is closed in JR x X. Similarly, A2 is closed. Now let {(rn' Xn)} be a sequence in A3

that converges to some (r, x) E lR x X. Then (r, x) E Gi,F. Since rn = CYi(Xn) for all n ~ 1, since

CYi(Xn) -> CYi(X), and since rn -> r, we have CYi(X) = r. Thus (r,x) E A3 . So A3 is closed in JR x X.

Similarly A4 is closed in lR x X; and so A is closed in lR x X. Then Gi,F = Gi,F n Ac is open in

~,F' 0

Corollary 111.4.11. Let i E {I, ... , N}. Then

1. we have Gi = {(r,x) E JR x Wi: -r E [CYi(X),,Bi(X)]},

2. we have

Gi \ Gi = ((r,x) E Gi : CYi(X) = O}

U {(r, x) E Gi : ,Bi(X) = O}

U{(r,X)EGi : -r=CYi(X)}

U {(r, X) E Gi: - r = ,Bi (X)} ,

3. the set Gi \ Gi,F is closed in lR x X, and Gi is open in Gi.
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111.5. The C*-Algebra of Gi

In this section we will define *-algebra structures and C*-norms on CO(Gi) and Co(G(k)).

Let f, 9 E C(Gi,F), and let (r, x) E Gi,F. For each t E [-,8i(X), -ai(x)], (t, x) and (r - t, (-t)x)

are elements of Gi,F (by Lemma III.4.4), so we can define h: [-,8i(X), -ai(x)] ---; <C by h(t) =

f(t, x)g(r - t, (-t)x). Then h is certainly continuous, and hence in Ll ([-,8i(X) , -ai(x)]) , and so

J~~(~~) f(t, x)g(r - t, (-t)x)dt exists. Also, (-r, (-r )x) is also an element of Gi,F, so f( -r, (-r)x)

exists. Then we can define convolution on Gi,F by

and involution by

j
-ai(X)

(f * g) (r, x) = f( t, x )g(r - t, (-t)x) dt,
-f3i(X)

j*(r, x) = f( -r, (-r)x).

(III.7)

(III.8)

We verify through the next three lemmas that the above formulas make CO(Gi,F) into a *-algebra.

In fact, if we take the groupoid structure of Gi,F into consideration, the above formulas are the

ones used in the construction of groupoid C*-algebras in [13].

Lemma 111.5.1. Let i E {I, ... ,N}, let F -1= 0 be a closed subspace of Xi, and let f, 9 E C(Gi,F).

Then f *9 and 1* are continuous. That is f *g, j* E C(Gi,F).

Proof: It is clear that 1* is continuous.

Let {(rn' xn)} be a sequence in Gi,F that converges to some (r, x) E Gi,F. Let E> O. For

each n 2: 1, let hn : JR ---; <C be defined by hn(t) = f( t, xn)g(rn-t, (-t)xn) if t E [-,8i(Xn), -ai(xn)],

and hn(t) = 0 otherwise. Then hn is measurable for each n 2: 1. Define h: JR ---; <C by h(t) =

f(t, x)g(r - t, (-r)x) for t E [-,8i(X), -ai(x)], and hn(t) = 0 otherwise. Then h is measurable. Let

5 = min {81Ifll~llglloo' f3i(X)~ai(X)}. Then 5 > O. Since ai(xn) ---; ai(x), and ,8i(Xn ) ---; ,8i(X), there

exists M 2: 1 such that n 2: M implies that lai(xn) - ai(x)1 < 5, and l,8i(X) - ,8i(Xn)I < 5. Now, if

t E [-,8i(X) + 5, -ai(x) - 5], then t E [-,8i(Xn), -ai(xn)] for all n 2: M' , and t E [-,8i(X) , -ai(x)].

Therefore

hn(t) = f(t, xn)g(rn - t, (-t)xn) ---; f(t, x)g(r - t, (-r)x) = h(t).
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Since Ihn(t)1 :S IIfil001191100 for all n :::=: 1 and all t E [-J3i(X) + 0, -ai(x) - oj, and since

by the Lebesgue Dominated Convergence Theorem, we have

j
a i (X)-8

Ihn(t) - h(t) 1 dt ---} O.
-,Bi(X)+8

So there exists M' :::=: 1 such that n :::=: M' implies that

j
a i (X)-8

Ihn(t) - h(t)1 dt < t/2.
-,Bi(x)+8

Let M" = M' + M. Then if n :::=: M", we have

Ij

-ai(xn) hn(t) dt _ j-ai(x) h(t) dtl
-,Bi(X n ) -,Bi(X)

:S 201lhn ll 00 + 201lhll 00 + Ij-a
i
(xn)-8 (hn(t) - h(t)) dtl

-,Bi(xn )+8

< 4011f11001191/00 + t/2 :S t/2 + t/2

= t.

f *9 is continuous. o

Lemma III.5.2. Let i E {I, ... , N}, and let F i=- 0 be a closed subset of Xi. Let f,9 E CO(Gi,F).

Then f *9 E Co (Gi,F ) and 1* E Co (Gi,F ).

Proof: By Lemma III.4. 10, we have

U {(r, x) E Gi,F: J3i(X) = O}

U {(r,x) E Gi,F: -r = ai(x)}

U{(r,x)EGi,F: -r=J3i(x)}.
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Next we define four different subsets of Gi,p, which can be thought of as the faces of Gi,p. Define

Al = {(r,x) E Gi,P: ai(x) = a},

Az = {(r, x) E Gi,P: fJi(X) = a},

A 3 = ((r,x) E Gi,P: -r = ai(x)},

and

To show that j * g, 1* E CO(Gi,p), we just need to show that (j * g)IA j = a and 1*IA j = a for

jE{1, ... ,4}.

Let (r, x) E Al U Az. Either ai(x) = a or fJi(X) = O. Then for all t E [-fJi(X) , -ai(x)], we

have (t, x) E Al U Az. So j(t, x) = a for all t E [-fJi(X), -ai(x)], and so

j
-ai(X)

(j * g)(r, x) = j(t, x)g(r - t, (-t)x) dt = O.
-f3;(x)

Thus (j *9)IA,UA2 = O.

Let (r,x) E A3 U A4 . Then either (r,x) = (-ai(x),x) or (r,x) = (-fJi(X), x). So for all

t E [-fJi(X), -ai(x)], we have

or

and so (r - t, (-t)x) E A3 U A4 i and then g(r - t, (-t)x) = O. Therefore we have

j
-ai(X)

(j * g)(r, x) = j(t, x)g(r - t, (-t)x) dt = O.
-f3i(X)

Thus (j *g)I AaUA4 = 0, and so j *9 E CO(Gi,p).
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Next we consider 1*. Now (r,x) E Al U Az implies CYi(X) = °or fJi(X) = 0, which implies

that r = CYi(( -r)x) or r = fJi(( -r)x), which in turn implies that (-r, (-r)x) E A3 U A4 • Also,

(r,x) E A 3 U A4 implies that -r = CYi(X) or -r = fJi(X), which implies that CYi((-r)x) = °or

fJi(( -r)x) = 0, which means that (r, x) E Al U Az. Thus if (r, x) E Gi,F, then so is (-r, (-r)x),

and so 1*(r,x) = f(-r, (-r)x)) = 0. Therefore 1* E CO(Gi,F).

Lemma 111.5.3. The set C(Gi,F) is a *-algebra, and Co(Gi,F) is a *-subalgebra of C(Gi,F).

D

Proof: It is clear that C(Gi,F) is a linear space. Lemma 111.5.1 shows that convolution and

involution are well-defined.

Let f,g, h E C(Gi,F), let (r,x) E Gi,F, and let A E Co To simplify the notation, let

a = CYi(X) and b = fJi(X). It is clear that A(j * g) = (Ai) *9 = f * (Ag). Now, applying the Fubini

Theorem to interchange integrals, we check that convolution is associative:

[(j *g) * h](r, x) = [~a (j * g)(t, x)h(r - t, (-t)x) dt

= [~a ([~a f(s, x)g(t _ s, (-s)x) dS) h(r - t, (-t)x) dt

= j-a j-a f(s, x)g(t _ s, (-s)x)h(r _ t, (-t)x) dt ds
-b -b

= [~a [~:~s f(s,x)g(t,(-s)x)h(r-(t+s),(-(t+s))x)dtds

j
-a (j-ai«-S)X) )

= f(s,x) g(t,(-s)x)h((r-s)-t),(-t)((-s)x))dt ds
-b -!3i«-S)X)

= j-a f(s, x)(g * h)(r - s, (-s)x) ds
-b

Thus convolution is associative. It is clear that convolution is distributive. Now we check that
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involution is anti-commutative:

(f*g)*(r,x) = (f*g)(-r,(-r)x)

j
-O:i((-r)x)

= f(t, (-r)x)g( -r - t, (-r - t)x) dt
-,6i((-r)X)

j
-(O:i(x)+r)

= f(t, (-r)x)g( -r - t, (-r - t)x) dt
-(,6i(X)+r)

= £~a f(s-r, (-r)x) g(-s,(-s)x)ds

= j-a j*(r _ s, (-s)x)g*(s,x) ds
-b

= (g* * j*)(r, x).

So involution is anti-commutative. It is clear that involution is conjugate linear. It is also clear

that (f*)* = f for all f E C(Gi,F). Thus C(Gi,F) is a *-algebra. By Lemma III.5.2, CO(Gi,F) is a

*-subalgebra of C(Gi,F). D

Next, we will define a family of *-representations of Gi,F for each i = 1, ... , N, and each

F <;;; Xi. For each i E {I, ... , N} and for each x E Xi, let xf: JR ----7 JR be the characteristic function

of the interval (ai(x),,Bi(X)) <;;; JR, and define a projection in pf E B(L2 (JR)) by pf(~) = xf~. For

each i E {I, ... , N}, each nonempty closed subset F <;;; Xi, and each x E F, define

by, for f E CO(Gi,F), ~ E L 2 (JR), and r E JR,

l
,6i(X)

Af,F(f)(~)(r)= xf(r)xf(t)~(t)f(r - t, rx) dt.
O:i(X)

(III.9)

Notation 111.5.4. For the rest of the chapter, let Af denote Af x. for each i E {I, ... , N}, and, ,

let A(k),x denote Ak+1,F(k) for each k = 1, ... , N - 1.

Lemma 111.5.5. For each i E {I, ... , N}, each nonempty closed subset F <;;; Xi and each x E F,

the map Af,F is a *-homomorphism. Further, if f E CO(Gi,F), and if {xn } is a sequence in F that

converges to some x E F, then A~,F(f) ----7 Xi,F(f). Moreover, if f E CO(Gi,F) and x E F, then
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A'i,F(f) = 0 if and only if flH. = 0, where

Proof: Fix i E {I, ... , N} and F <;;; X closed for the entire proof.

Let x E F. Linearity of Xi,F is clear. Now let f,g E CO(Gi,F). Then for all ~ E L2(JR) and

all r E (ai(x),,Bi(X)), we have, applying the Fubini Theorem,

l

(3i(X)

A'f,F(f * g)(~)(r) = xHr)xf (t)~(t)(f * g) (r - t, rx) dt
ai(x)

l

(3i(X) (l-ai(rx) )
= xf(r)xf(t)~(t) f(s, rx)g(r - t - s, (-s + r)x) ds dt

ai(X) -(3i(rx)

l

(3i(X) (l(3i(rx) )
= xHr)xHt)~(t) f(-s,rx)g(r-t+s,(s+r)x)ds dt

ai (x) a'i (rx)

l

(3i(X) (l(3i(X) )
= xHr)xHt)~(t) f(r - s, rx)g(s - t, sx) ds dt

ai(x) ai(X)

l

(3i(X) l(3i(X)
= xf (r )xf (t)~(t)f(r - s, rx )g(s - t, sx) dt ds

ai(X) ai(X)

l

(3i(X) (l(3i(X) )
= f(r-s,rx)xHr) xHt)~(t)g(s-t,sx)dt ds.

ai(x) a;(x)

Now we show that for all s E JR, we have xHs)f(r - s, rx) = f(r - s, rx). If f(r - s, rx) = 0, then

we are done, so assume that f(r-s,rx) i- O. Then (r-s,rx) E Gi,F' So s-r E (ai(rx),,Bi(rx)) =

(ai(x), ,Bi(X)) - r, and thus s E (ai(x), ,Bi(X)). Then xHs) = 1. So xHs)f(r - s, rx) = f(r - s, rx)

for all s E R Then

l~W (l~W )A'f,FU *g)(~)(r) = Xf(s)2 f(r - s, rx)xHr) xf(t)~(t)g(s - t, sx) dt ds
a;(x) ai(X)

l~W (l~W )= xf(s)f(r - s,rx)xf(r) xHs)xHt)~(t)g(s- t, sx)dt ds
ai(X) ai(X)

l

(3i(X)

= xHs)f(r - s, rx)xf (r)A'f,F(g)(~)(s)ds
ai(X)

= Af,FU)[Af,F(g)(~)](r).
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If r tt (C¥i(X),,Bi(X)), then Af,F(f * g)(~)(r) = 0 = Af,F(f)[Af,F(g)(~)](r), Thus

for all ~ E L2 (1R), So A7,F(f * g) = Af,F(f)Af,F(g). Therefore Ai,F is multiplicative.

For all j E CO(Gi,F) and all ~,T) E L2 (1R), we have, applying the Fubini Theorem,

(Af,F(f*)(~),T)) = 1A7,F(f*)(~)(r)T)(r) dr

r (l(3i(X) )= Jm xf(r)xf(t)~(t)j*(r - t, rx)dt T)(r) dr
lR a,;. (x)

l

(3;(X) l(3i(X)
= xf(r)xf(t)~(t)j*(r - t, rX)T)(r) dr dt

ai(X) ai(X)

l

(3;(X) l(3i(X)
= xf(r)xf(t)~(t)j(t - r, tX)T)(r) dr dt

ai(X) ai(X)

l

(3;(X) l(3;(,C)
= ~(t)xf(t) xf(r)xf(t)j(t - r, tX)T)(r) dr dt

a;(x) ai(X)

1 (l

(3,(X) )
= ~(t) xf(r)xf(t)j(t - r, tx)T)(r) dr dt

lR a,(x)

= r ~(t)AfF(f)(T))(t) dt
JlR '

= (~, Ai,F(f)(T))).

So A7,F(f*) = Af,F(f)*· Thus A7,F is a *-homomorphism.

Let j E CO(Gi,F), and let {xn} be a sequence in F that converges to x E F. We now

show that IIA~,F(f) - Af,F(f) II ---. O. For each n :::: 1, let Xn: 1R2 ---.IR be the characteristic function

of (C¥i(Xn),,Bi(Xn)) x (C¥i(Xn),,Bi(Xn)) ~ 1R2
, and let x: 1R2

---. IR be the characteristic function of

(C¥i(X),,Bi(X)) x (C¥i(X),,Bi(X)) ~ 1R2
• Because,Bi is continuous on F and because Xn ---. x, we see

that the sequence {,Bi(Xn)} is bounded. Let D = sUPn~l ,Bi(Xn) and let XD: 1R2
---. IR be the

characteristic function of the square (-D,D) x (-D,D). Since C¥i(Y) = -,Bi(Y) for all Y E Xi,

we see that Xn ::; XD for all n :::: 1 and X ::; XD. For each n :::: 1, define hn : 1R2 ---. C by

hn(r, t) = j(r - t,rxn). Also define h: 1R2 ---. C by h(r, t) = j(r - t,rx).
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It is clear that for all n:::: 1, either Xn :::: X or X :::: Xn. Then either

or

But in either case fJR2 IXn - xl -) 0, and so

( )

1/2 ( ) 1/2

IIXn - xI12 = l2 IXn - xI2 = l2 IXn - xl -) O.

Therefore IIXnh - xhl1 2 ::; Ilhlloo ·IIXn - xI12 -) o. Also, for every n :::: 1, we have IXDhn - XDhl 2
=

XD ·Ihn - hl 2 ::; 4XDllfll~· Since 4XDllfll~ E L 1(JR2) and since hn converges to h point-wise, it

follows from the Lebesgue's Dominated Convergence Theorem that IlxDhn - XDhl1 2 -) o. Then

Thus we have
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Note that Xn(r, t) = X~n(r)X~n (t) and x(r, t) = xi(r)xi(t). So for each ~ E L 2(JR), we have

II(A~,F(f) - Af,F(f))(~)112

= ll(A~,F(f) - Af,F(f))(~)(rf dr

= lIAf,'F(f)(O(r) - Af,F(f)(~)(r)12 dr

l I1
f3i (xn)

= X~n(r)Xfn(t)~(t)f(r - t,rxn)dt
lII. Ui (x n )

f3i(X) 1

2

- r xf(r)xf(t)~(t)f(r-t,rx)dt dr
} Ui(X)

= III Xn(r, t)~(t)hn(r, t)dt -l x(r, t)~(t)h(r, t) d{ dr

= lll[xn(r, t)~(t)hn(r,t) - x(r, t)~(t)h(r, t)] d{ dr

= III ~(t)[Xn(r, t)hn(r, t) - x(r, t)h(r, t)] d{ dr

:S l [ll~(t)I.lxn(r,t)hn(r,t) - x(r,t)h(r,t)ldtf dr

[( )
1/2 ( ) 1/2] 2

:S l ll~(t)12dt . llxn(r, t)hn(r, t) - x(r, t)h(r, t)1 2dt dr

:S l [ll~(t)12dt] . [llxn(r, t)hn(r, t) - x(r, t)h(r, t) 12dt] dr

:S 11~112 ·llIXn(r, t)hn(r, t) - x(r, t)h(r, t)1 2dtdr

= II~IIZ . IIXnhn - xhll~·

Thus, IIAf,'p(f) - Af,F(f) II :s IIXnhn - xhllz ----l o.
Next we show that for all x E F, if ~ E LZ(JR) is continuous on (ai(x),f3i(X)) and

bounded, then Af,F(f)(~) is continuous on (ai(x),f3i(X)). Let x E F, and let ~ E LZ(JR)

be continuous on (ai(x),f3i(X)) and bounded. Suppose that rn ----l r in (ai(x),f3i(X)). Then

hn(t) = xi(t)xf(rn)~(t)f(rn - t, rnx) converges to

h(t) = xi(t)xf (r)~(t)f(r - t, rx)

pointwise on (ai(x),f3i(X)). Therefore, since Ihnl :s xfll~lloollflloo E £l«ai(x),f3i(x)), by the
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Lebesgue Dominated Convergence Theorem, we have

lim Af F(f)(~)(rn) = lim rxf(t)xf(rn)~(t)f(rn - t,rnx) dt
n----tOO l n----too JIR.

= l xf(t)xf(r)~(t)f(r - t, rx) dt = Af,F(f)(~)(r).

Thus Xf,F(f)(~) is continuous on (ai(x),,8i(X)).

Now, let f E CO(Gi,F), and let x E F. Suppose that Xf,F(f) = O. Let r E (ai(x), ,8i(X)).

Define ~: lR -> <C by ~(t) = f(r - t,rx) for t E (ai(x),,8i(X)), and zero otherwise. Then ~

is continuous on (ai(x),,8i(X)), and ~ is bounded. Therefore ).,i,F(f)(~) is continuous. Since

).,f,F(f)(~) = 0, we have

1 j
(3i(X)

o= ).,i,F(f)(~)(r) = xi(t)xi(r)lf(r - t, rx)1 2dt = If(r - t, rx)1 2dt.
IR Qi(X)

But t i--' If (r - t, rxWis continuous on (ai(x), ,8i(X)), so f(r - t, rx) = 0 for all t E (ai(x),,8i (x)).

This holds for all r E (ai (x), ,8i(X)), so f(r - t, rx) = 0 for all r, t E (ai (x), ,8i(X)). That is flH x = O.

It is clear that if flHx = 0, then ).,i,F(f) = o.

The following proposition is an immediate consequence of Lemma IIL5.5.

o

Proposition 111.5.6. For each i E {I, ... , N} and each nonempty closed subset F ~ X, define

If F = 0, put cPi,F = O. Then cPi,F is a *-homomorphism such that IIcPi,F(f) II = SUPxEF II).,i,F(f) II
for all f E CO(Gi,f)'

111.6. Stable Recursive Subhomogeneous Decomposition of Az

Notation 111.6.1. We fix the following notations for the rest of the chapter. Now for each

i E {I, ... , N}, and each closed F ~ Xi define a C*- norm II . Ili,F on Co (Gi,F ) by Ilflli,F =

SUPxEF II).,f,F(f) II· Note that Lemma III.5.5 ensures that 11·lli,F is a C*-norm. Let II· Iii = 11·lkxi ,

for each i E {I, ... , N}; and let II . II(k) = II . Ilk+l,F(k) for each k E {I, ... , N - I}. (If F(k) = 0,

let 11'II(k) be the obvious norm on CO(G(k)).) For each i E {I, ... , N} and each closed F ~ Xi, let
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Ai,F be the completion of CO(Gi,F) with respect to II . Ili,F. For each i E {I, ... , N} let Ai denote

Ai,x;, and for each k E {I, ... , N -I} let ACk) denote Ak+l,F(k). For each i E {I, ... , N} and each

nonempty closed subset F ~ Xi, let ¢i,F denote the map in Proposition IlL5.6. It is then clear

that ¢i,F is isometric and extends to an injective *-homomorphism from Ai,F into C(F, lK(L2 (lR))),

and we will also use ¢i,F to denote the extension. Let ¢i denote ¢i,X; for i E {I, ... , N}, and let

¢Ck) denote ¢k+l,F(k). For each i E {I, ... , N} and each nonempty closed subset F ~ X, let

Ki,F = {f E C(F, K(L 2 (lR))): pi f(x)pi = f(x) for all x E F}.

If F = 0, then let Ki,F = O. Let Ki denote Ki,x; and let KCk) denote Kk+l,F(k).

The C*-algebras Ai will be the components of a SRSH decomposition of A z . We proceed

to obtain a SRSH decomposition of A z as follows: We first identify Ai with C(Xi , lK) for each i E

{I, ... , N}. Note that Proposition IlL5.6 already shows that CO(Gi ) is isometrically *-isomorphic

to a *-subalgebra of C(Xi , lK). Thus we only need to identify the range of the map, and show that

the norm closure of the range is isomorphic to C(Xi,lK). Then we glue the *-algebras CO(Gi ) to

obtain Co(Gz). After the gluing, we extend the gluing to the Ai to obtain a decomposition of Az .

Finally, we use the identifications between the algebras Ai and the algebras C(Xi , lK) to obtain a

SRSH decomposition of Az.

The next lemma is a standard result in operator algebra.

Lemma III.6.2. Let H be a Hilbert space, let {an} be a sequence in B (H) that converges to some

a E B(H) in strong operator topology, and let {bn} be a sequence in K(H) that converges to some

b E K(H) in the norm topology. Then anbna~ -- aba* in the norm topology.

Lemma III.6.3. For each i E {I, ... N}, and for each nonempty closed subset F ~ X, let Ki,F

be as in III. 6.1. Then we have:

1. Ki,F is a C*-subalgebra ofC(F,K(L2 (lR))).

4. For each i E {I, ... , N}, and for each x E Xi, define Ui,x: L 2 (lR) -- L2 (lR) by Ui,x(~)(r) =

~(TIf3;Cx)) Th f h' {I N} d h X ' 't 'th * 'Cf3;Cx)J1/2' en Jor eac z E , ... , , an eac x E i, Ui,x zs a unz ary, wz ui,x gwen
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by ui,x(~)(r) = (f3i(X))1/2~(f3i(x)r). Further, for each i = 1, ... , N, if {xn } is a sequence

in Xi that converges to some x E Xi, then {Ui,xn} and {ui,xJ converge to Ui,x and ui,x,

respectively, in the strong operator topology.

5. Let I = (-1,1), let PI E B(L2(JR)) be the projection given by PI(~) = XI~, and let

be the canonical *-isomorphism. For each i E {I, ... , N}, and each closed subset F ~ Xi,

define <Pi,F: Ki,F -> C(F, K(L2(1))) by <Pi,F(f)(X) = D(ui,xf(x)ui,x). Then <Pi,F is a well

defined *-isomorphism for all i E {I, ... , N}, and all closed F ~ Xi. (If F = 0, take

C(F,K(L2(I))) = 0, and <Pi,F = 0.)

Proof: Part 1 and part 2 are clear.

Now we show that for each x E F, the set Sx = {¢i,F(f)(X): f E CO(Gi,F)} is dense in Tx =

{a E K(L2(JR)): piapi = a}. Let L;" = (ai(x), f3i(X)), Note that Tx = piK(L2(JR))pi = K(L2(If))

is C*-subalgebra of K(L2(JR)). Let~, TJ E Cc((ai(x), f3i(X)), Let E = {(r, tx) E JR x X: t, r-t Elf}.

Then E <:;;; Gi,F. It follows from Lemma III.3.2 that the map h: If x If -> E defined by h(r, t) =

(t - r, tx) is a homeomorphism. (The inverse is given by (r, tx) f---' (t - r, t).) Let 1": I x I -> C be

defined by 1"(r, t) = ~(t)TJ(r). Then 1" E Co(I x 1). Let 1': E -> C be defined by l' = 1" 0 h-1.

Then l' E Co(E), and 1'(r, tx) = 1"(t - r, tx) = ~(t)TJ(t - r). Now E is closed in Gi,F, so there

exists f E CO(Gi,F) such that fiE = 1'. Then for all r E JR and all (E L2(If) we have

¢i,F(f)(x)(()(r) = >-i,F(f)(()(r)

= l xi(r)xi(t)((t)f(r - t,rx) dt

= l xi(r)xi(t)((t)~(r)TJ(t) dt

= l ((t)~(r)TJ(t) dt

= ((,TJ)~(r).

For any Hilbert space H and any e, TJ' E H, we use the notation E' ® TJ' to denote the rank one

operator defined by ( f---' ((, TJ')e. Then ¢i,F(f)(X) = ~ ® TJ, and ~ ® TJ E Sx' Since Cc(If) is dense
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spans a dense subset of Tx, we see that Sx is dense in Tx.

Now we show that for all f E Ki,F, for all x E F, and for all f> 0, there exists an open

subset U ~ F containing x and 9 E CO(Gi,F) such that for all y E U, we have II¢i,F(g)(y)- f(y)11 <

f. Let f E Ki,F, X E F and f > 0 be given. Then, by the paragraph above, there exists 9 E Co(Gi,F)

such that II¢i,F(g)(X) - f(x)11 < f/2. Now the map y H II¢i,F(g)(y) - f(y)11 is continuous, so

U = {y E F: II¢i,F(g)(y) - f(y)11 < f} is an open set containing x. It is clear that for all y E U, we

have II¢i,F(g)(y) - f(y)11 < f.

Now we show that if f E CO(Gi,F) and h E C(F), then h¢i,F(f) E 1m ¢i,F. Define

h: Gi,F ----; <C by h(r,x) = h(1ri(X)). Then hE C(Gi,F), and hf E CO(Gi,F). So for all x E F, all

~ E L 2 (JR), and all r E JR, we have

¢i,F(hf)(x)(~)(r) = )..f,F(hf)(~)(r)

= ~ xf(r)xf(t)~(t)h(r - t, rx)f(r - t, rx) dt

= ~ xf(r)xf(t)~(t)h(x)f(r - t, rx) dt

= h(x) ~ xf(r)xf(t)~(t)f(r - t,rx) dt

= (h(X) ..f,F(f))(~)(r)

= (h(X)¢i,F(f)(x))(O(r).

Now we finish the proof of part 3. Let 9 E Ki,F, and let f > O. For each x E F, let

Vx ~ F be an open subset containing x, and let fx E CO(Gi,F) be such that for all y E Vx we

have II¢i,F(fx)(Y) - g(y)11 < f. The existence of Vx and fx are shown above. Then {Vx : x E F}

is an open cover of F, which is compact; so there exist Yl, ... ,Yrn such that F = U;:l VYj' Let

{hj : 1 ~ J' ~ m} be a partition of unity subordinate to {Vj: 1 ~ j ~ m}. By what is shown above,

we have hj¢i,F(fYj) Elm ¢i,F for each j E {l, ... ,m}. Then f = 'L?=lhj¢i,F(fYj) E 1m ¢i,F.

Now let x E F, and let 1 ~ j ~ m. If x tJ- Vyj , then hj(x) = 0 and hj (x)II¢i,F(fYj)(x) - g(x)11 = 0;
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m

Ilf(x) - g(x)11 = L hj(X)¢i,F(fYj)(X) - g(X)
j=l

m m

L hj(X)¢i,F(fyJ(X) - L hj(x)g(x)
j=l j=l

m

:::; Lhj(x)ll¢i,F(fYj)(X) - g(x)11
j=l
m

< L hj(X)E = E.

j=l

Part 3 proven.

Now we show part 4. It is clear that for each i E {l, ... ,N} and each x E Xi, Ui,x is a

unitary, and that ui,x is given by the formula in the statement. Fix i E {l, ... ,N}. Now we show

that if Xn ---> x in Xi, then Ui,xn ---> Ui,x in strong operator topology, and ui,x
n

---> Ui,x in strong

operator topology.

Let Xn ---> x in Xi, and let ~ E Cc (lR.). Since f3i (xn) ---> f3i (x), we have

for every r E R Suppose that supp ~ S;; [-b, b]. Since f3i is continuous and strictly positive on the

compact set Xi, it is bounded above by some real number M and below by some real number

L > O. Then

I
~(r/f3i(Xn)) _ ~(r/f3i(X)) /2 < 4· X[-Mb,Mbj(r) 'II~II~

f3i(Xn)l/2 f3i(X)l/2 - L '

for all r E R Since (4, X[-Mb,Mb] . II~II~) L -1 E L 1(JR), by the Lebesgue Dominated Convergence

Theorem, we have
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Now let ~ E L2 (lR.), and let 10 > O. Choose 'f) E Cc(lR.) such that 11'f) - ~II < 10(3. Let N ~ 1

be an integer such that n ~ N implies that IIui,xn ('f)) - Ui,x('f)) II < 10(3. Then for all n ~ N, we have

II Ui,xn(~) - Ui,x (~) II

::::; Ilui,xn (~) - Ui,xn('f)) II + Ilui,xn('f)) - Ui,x ('f)) II + II ui,x('f)) - ui,x(~)11

< II~ - 'f)11 + 10(3 + II~ - 'f)11 = E.

Thus Ui,xn - Ui,x in the strong operator topology. Since the strong and *-strong operator

topologies agree on the set of all unitaries in B(L2 (lR.)), we have ui x - ui x in the strong operator, n ,

topology as well. This proves Part 4.

Now we show part 5. Fix i E {I, ... ,N} and fix a nonempty closed subset F ~ Xi' Note

that for all x E F, we have u;piux = PI. Now define 1jJ: C(F,K(L2 (lR.))) _ C(F,K(L2 (lR.))) by

1jJ(f)(x) = u;f(x)ux. Continuity of i!-'(!) follows from the previous three paragraphs and Lemma

III.6.2. It is clear that 1/J is a *-isomorphism. We claim that 1/J(Ki,F) = C(F,PIK(L2 (JR))PI)' Let

f E Ki,F. Then

for all x E F. Thus 1/J(Ki ,F) ~ C(F,PIK(L2 (JR))PI)' Now let f E C(F,PIK(L2 (lR.))PI)' Then for

all x E F, we have f(x) = pf(x)p = u;piuxf(x)u;piux. Define g: F - K(L2 (lR.)) by g(x) =

piUxf(x)u;pf. Then 9 E Ki,F (continuity follows from the fact that if X n - x in F, then pfn - pi

in the strong operator topology), and 1/J(g) = f. Thus 1jJ(Ki,F) = C(F,PIK(L 2 (lR.))PI)'

Since for all f E Ki,F and all x E F, we have 1>i,F(f)(x) = n([V'(f)](x)), it is clear that

1>i,F is a well defined *-homomorphism. It is also clear that lJ?i,F is invertible. 0

Notation 111.6.4. For the rest of the chapter, let 1>i,F be the *-isomorphism from Lemma III.6.3.

Use lJ?i to denote lJ?i,X; for each i E {I, ... , N}, and use lJ?(k) to denote lJ?k+l,F(k) for all k with

l::::;k::::;N-l.

Lemma 111.6.5. For each k E {I, ... , N - I}, if G(k) =I- 0, define Rk: CO(Gk+l) - Co(G(k))

by Rk(f) = flo(k); if G(k) = 0, let Rk: CO(Gk+l) - Co(G(k)) be the zero map. Then for each

k E {I, ... , N -I}, the map Rk is a norm decreasing surjective *-homomorphism.
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Proof: Fix k E {I, ... , N - I}. Since C(k) is closed in CHI, the map Rk is a well defined

surjective linear map.

Let f, g E Co(Ck+I)' Note that if (r, x) E C(k), then (t, x), (r-t, (-t)x), (-r, (-r)x) E C(k)

for all t E (-(3i(X), -ai(x)). Then for all (r, x) E C(k), we have

j
-ai(X)

Rk(J *g)(r, x) = (J *g)(r, x) = f(t, x)g(r - t, (-t)x) dt
-f3i(X)

j
-ai(x)

= Rk(J)(t, X)Rk(g)(r - t, (-t)x) dt
-f3i(X)

= (Rk(J) * Rk(g))(r, x);

and

Rk(J*)(r,x) = j*(r, x) = f( -r, (-r)x) = Rk(J)( -r, (-r)x) = Rk(J)*(r,x).

Thus Rk is a *-homomorphism.

Let f E CO(Ck+I}. Then for each x E p(k), we have >..(k),X(Rk(J)) = >"k+I(J). Thus

IIRk(:r)ll(k) = sup 11>..(k),X(Rk(J)) II
xEF(k)

So Rk is norm-decreasing. o

Lemma III.6.6. Let k E {I, ... , N -I}. For each E > 0, and for each f E Co(C(k») with IIfll(k) < E,

there exists g E CO(Ck+l ) such that IlgllHI ~ E and Rk(g) = f, where Rk is the map defined in

Lemma III.6.6.

Proof: Fix k E {I, ... , N - I}. First note that for all f E Co(Ck+l) we have ¢(k) (Rk(J)) =

¢k+ I (J)' F(k) •

Let E > 0, and let f E Co(C(k»). Extend f to f' E CO(CkH)' Let
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Then U is an open set in Xi' If x E p(k), then

Thus p(k) ~ U.

Let h E Cc(Xi) satisfy 0 :::; h :::; 1, supp h ~ U, and hIF(k) = 1. Define hi E C(Gk+d

by h'(r,y) = h(7fk+l(Y))' Then 9 = h'f' E CO(Gk+1). Note that cPk+l(g) = hcPk+l(jI). Now, if

x E Xi \ U, then cPk+l(g)(X) = h(X)cPk+l(jI)(X) = 0; if x E U, then

IlcPk+l(g)(x)11 = Ilh(x)cPk+l(jI)(x)11 = IlcPk+l(jl) (x) II < Eo

Rdg)(r,x) = h'(r,x)j'(r,x) = h(7fk+l(x))f(r,x) = f(r,x).

o

Lemma 111.6.7. For each i E {1, ... ,N}, define Qi: Co(Gz) --7 CO(Gi) by Qi(j) = flc;rlc z '

Then Qi is a norm decreasing *-homomorphism for each i E {I, ... , N}.

Proof: We first show that Qi is a *-homomorphism. Let i E {I, ... , N}.

By Lemma III.4.6, the set Gi n Gz is closed in Gz . Thus we see that Qi(j) E Co(Gi nGz )

for all f E Co(Gz )· Since GinGZ is open in Gi, we see that Qi(j) E CO(Gi ). So Qi is well defined.

Linearity of Qi is clear.

Let f,g E Co(Gz). Note that if (r,x) E Gz n Gi, then (a(x),,B(x)) ~ (ai(x),,Bi(X)),

and so for all t E (-,B(x),-a(x)), we have (t,x) E Gz n Gi, (r - t,(-t)x) E Gi n Gz, and

(-r,(-r)x) E G i n Gz. Thus for all (r,x) E Gz n Gi and all t E (-,B(x),-a(x)), we have

Qi(j)(t, x) = f(t, x) and Qi(g)(r - t, (-t)x) = g(r - t, (-t)x). Then for every (r, x) contained in
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Gz n Gi , we have

Qi(f*g)(r,x) = (f*g)(r,x) = If(t,x)g(r-t,(-t)X)dt

j
-a(x)

= f(t, x)g(r - t, (-t)x) dt
-(3(x)

j
-a(x)

= Qi(f)(t, X)Qi(g)(r - t, (-t)x) dt
-(3(x)

j
-ai(X)

= Qi(f)(t,X)Qi(g)(r-t,(-t)x)dt
-(3i(X)

= (Qi(f) *Qi(g))(r,x).

Also, for all (r, x) E Gi n Gz , we have

Qi(f*)(r, x) = 1* (r, x) = f( -r, (-r)x) = Qi(f)(-r, (-r)x) = Qi(f)* (r, x).

Now we consider what happens if (r, z) E Gi \ (Gz n Gi ). Suppose that

for some (r, x) E Gi . Then for some t E (-,Bi(X), -ai(x)), we have (t, x) E Gi n Gz and

(r-t, (-t)x) E Gi n Gz. Thus, by the first statement in part 2 of Lemma III,4.4, we have

(r,x) = (r - t, (-t)x)(t,x) E Gi n Gz. So if (r,x) E Gi \ Gz, then (Qi(f) * Qi(g))(r,x) = 0;

and clearly Qi(f * g)(r, x) = 0 for all (r, x) E Gi \ Gz as well. Thus for all (r, x) E Gi ,

we have Qi(f * g)(r,x) = (Qi(f) * Qi(g))(r,x). Also, if (r,x) tJ- Gi n Gz, then (-r, (-r)x) =

(r,x)-l tJ- Gz n Gi . So (r,x) tJ- Gi n Gz implies that Qi(f*)(r,x) = 0 = Qi(f)*(r, x). Thus Qi is a

*-homomorphism.

Now we prove that Qi is norm-decreasing. Let x E Xi, let r E JR., and let t E R If

xz(t)xf(r)f(r - t,rx) = 0 = xf(t)xf(r)Qi(f)(r - t,rx).

If r, t E (ai(x), ,Bi(X)), then (r - t, rt) E Gi , and then Qi(f)(r - t, rx) = f(r - t, rx). Thus for each



102

x E Xi, each f E Co(Gz ), each ~ E L2 (n;t), and each r E n;t, we have

j
-ai(X)

)..f(Qi(j))(~)(r)= xf(r)xf(t)~(t)Qi(j)(r - t,rx) dt
-f:Ji(X)

j
-ai(x)

= xf(r)xf(t)~(t)f(r - t,rx) dt
-f:Ji(X)

j
-ai(x)

= xf (r) xf(t)~(t)f(r - t, rx) dt
-f:Ji(X)

j
-ai(x)

= xf (r) pf(~)(t)f(r - t, rx) dt
-f:Ji (x)

= xf(r)()..x(j)(pf(~)))(r)

= (pf)..x(j)pn(~)(r).

Qi is norm-decreasing. o

Lemma 111.6.8. Let H be a Hilbert space. For each nEZ, let Pn E B(H) be a projection.

Suppose that PmPn = 0 for all m i- n, and that LnEzPn converges to 1 in the strong operator

topology. Let a E B(H) satisfy Pnapn = apn for all n E Z. Then Iiall = sUPnEZ IIPnaPnll.

Proof: We first show that LnEZ Pnapn converges to a in the strong operator topology. Let

~ E H. Then limk-HX> L~=-k Pn(~) =~, so limk---+oo a(L~=_k Pn(~)) = a(~). Thus

k k

lim '" PnaPn(~) = lim '" aPn(~)
k---+oo L...J k---+oo L...J

n=-k n=-k

= lim a ( t pn(~)) = a(~).
k---+oo

n=-k

So LnEzPnaPn converges to a in the strong operator topology.

Now, let ~ E H. For each k ~ 1, let ~k = L~=-k Pn (~). Then by assumption, ~k -. ~' For

each k ~ 1, we have

n k

L (Pn(~),Pn(~)) = L IIPn(~)112.
n=-k n=-k
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Since (~k, ~k) -. 11~112, we see that 11~112 = L:nEZ IIPn(~)112. Thus for all ~ E H, we have 11~112 =

L:nEZ IIPn(~)112.

For each k 2: 1, let ak = L:~=-k PnaPn' Then we have shown that ak -. a in the strong

operator topology. Let R = sUPnEZ IIPnaPnll. For each nEZ, we have IIPnaPnl1 ::::; Iiall, so R::::; Iiall,

Now for each k 2: 1 and each ~ E H, we have

Ilak(~)112 = L IIPn(ak(~))112
nEZ

~ ~ Ilpn ctpmap..(<)) II'

~ ~ttPnPmapm(<) II'
k

= L IIPnaPn(~)112
n=-k

k

::::; L IIPnaPnI121IPn(~)112
n=-k

n

::::; R2 L IIPn(~)II2
n=-k

Thus for each k 2: 1, Ilakll ::::; R. Let B = {b E B(H): Ilbll ::::; R}. Now, ak E B for all k, and ak -+ a

in the strong operator topology. Since B is closed in the strong operator topology, we have a E B,

and so Iiall ::::; R. o

Notation 111.6.9. Recall from III.3.6 that for each x E X, the set TX = {r E JR: rx E Z} is

indexed by Z in the increasing order:

T X-{ x x x x x }- ... < a_n < a_n+1 < ... a_I < ao < a l < ... an < ... .

For each x E X and each nEZ, define a projection q;, E B(L2 (JR)) by q;,(~) = X(aii,a~+I)~'

Proposition 111.6.10. 1. Let r, t E JR, and let x E X. Suppose that (r - t, rx) E Gz . Then for

all nEZ, we have r E (a;', a;'+I) if and only if t E (a;', a~+I)' where a;' is as defined in

III. 6. 9.
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2. For all x E X, and for all n i- m, we have q::'nq;'. = OJ and 2:nEZ q;'. converges to 1 in strong

operator topology, where q;'. is as defined in III. 6. 9.

3. For all f E Co(Gz ), all x E X, and all nEZ, we have q;'.Ax(f)q;'. = Ax (f)q;'..

4. For all f E Co(G z ) and all x E X, we have IIAx (f)11 = sUPnEZ Ilq;'.Ax(f)q;'.ll, where Ax is as

defined by Equation (1.4).

Proof: Part 1: Suppose that r E (a;'., a;'.+l)' Then f3(rx) = a;'.+l - r, and a(rx) = a;'. - r. Since

(r - t, rx) E Gz, we see that t - r E (a(rx), f3(rx)) = (a;'. - r, a;'.+l - r). Thus t E (a;'., a;'.+l)' Thus

r E (a;'., a;'.+l) implies that t E (a;'., a;'.+l)' Now suppose that r t/:- (a;'., a;'.+l)' Then r E (a::'n, a::'n+l)

for some m i- n, whence t E (a::'n, a::'n+l) , and so t t/:- (a;'.,a;'.+l)'

Part 2: It is clear that q;'.q::'n = 0 if m i- n. For each k 2: 1, let qk = 2:~=-k q;'.. Then qk

is an increasing sequence of projections, hence converges in the strong operator topology to some

projection q (Theorem 4.1.2 in [6]). It is clear that qkq = qk for all k 2: 1. Suppose that q(~) = 0 for

aX 2
some~. Then qk(O = qkq(~) = 0 for all k 2: 1. So X(a"'-k,akl~ = 0 for all k 2: 1. That is Ja~k I~I = 0

for all k. So ~ = O. Thus q = 1.

Part 3: Fix f E Co(Gz ), x E X, and n E Z. Let Xn: JR ----t JR denote the characteristic

function of (a;'.,a;'.+l)' Now, ifr E (a;'., a;'.+l) , then

Xn(r)Xn(t)f(r - t,rx) = Xn(t)f(r - t,rx)

for all t E R If r t/:- (a;'., a;'.+l) , then

Xn(r)Xn(t)f(r - t,rx) = O.

If t E (a;'.,a~+l)' then by part 1, we have (r - t,rx) t/:- Gz , and so f(r - t,rx) = OJ then

Xn(r)Xn(t)f(r - t, rx) = 0 = Xn(t)f(r - t, rx). If t t/:- (a~, a~+l)' then

Xn(r)Xn(t)f(r - t, rx) = 0 = Xn(t)f(r - t, rx)

also. Thus for all r, t E JR, we have Xn(r)Xn(t)f(r - t, rx) = Xn(t)f(r - t, rx). Then for all r E JR
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we have

)..x(f)q~(~)(r) = Lq~(O(t)f(r - t, rx) dt

= LXn(t)~(t)f(r - t, rx) dt

= LXn(r)Xn(t)~(t)f(r - t, rx) dt

= Xn(r) LXn(t)~(t)f(r - t, rx) dt

= Xn(r) Lq~(~)(t)f(r - t,rx) dt

= Xn(r) ..x(f)q~(~)(r)

= q~)..(j)q~(~)(r).

So q~)..x(j)q~ = )..x(f)q~.

Part 4: This follows from part 2 and 3, and Lemma III.6.8.

Proposition III.6.11. Let Qi be the map defined in Lemma III. 6. 7. Define

N

Q: Co(Gz ) -4 E9 Co(Gi)
i=l

by Q(j) = (Q1 (f), Q2(f), ... ,QN(f)). Then Q is an isometric *-homomorphism.

Proof: Since each Qi is a *-homomorphism, so is Q.

o

Recall that II . Ilr denotes that reduced norm on Cc(lR. x X), which contains Co(Gz ) as

a *-subalgebra. We now show that IIQ(f)1I 2: Ilflir. Let f E Co(Gz ), let x E X, and let n E Z.

Let ro E (a~+l,a~). Then rox E Vi for some i E {l, ... ,N}. Let c = 1l"i(rOx) E Xi, let So =

(ai(rOx) + j3i(rox))/2, and let s = ro + So. Then c = (so + ro)x = sx. Let Xn: lR. -4 lR. be the

characteristic function of (a~,a~+l)' Define X(t) = Xn(t + s). We first show that xxi = X. Let

t E R First suppose that X(t) =I- O. Then t + s E (a~, a~+l)' and

So t E (ai(rOx) - so, j3(rox) - so) = (ai(c), f3i(C)). Thus xi(t) = 1. So xHt)x(t) = X(t). If X(t) = 0,

then X(t)xi(t) = a= X(t). Thus xxi = X·



106

Let p E B(L2(JR)) be the projection defined by p(~) = X~. Define v: L2(JR) --; L2(JR) by

v(~)(r) = ~(r + s). It is easily checked that v is a unitary with v* defined by v*(O(r) = ~(r - s).

Then for all ~ E L 2 (JR) and all r E JR, we have

[vq~Ax(f)q~V*](~)(r)= [q~Ax(f)q~v*](O(r + s)

= Xn(r + S)Ax(f)q~v*(~)(r + s)

= x(r) l q~(v*(~))(t)f(r + s - t, (r + s)x) dt

= x(r) l Xn(t)~(t - s)f(r + s - t,rc) dt

= x(r) l Xn(t + s)~(t)f(r - t, rc) dt

= x(r) l X(t)~(t)f(r - t, rc) dt

= x(r) l xHr)x(t)XHt)~(t)f(r - t, rc) dt

= x(r) l xHr)x(t)xW)~(t)Qi(f)(r - t, rc) dt

= x(r) l xHr)XHt)p(~)(t)Qi(f)(r - t, rc) dt

= x(r)AHQi(f))(p(~))(r)

= (pAHQi(f))P)(~))(r).

Thus Vq~Ax(f)q~V*= PA'j(Qi(f))p, and hence

Ilq~Ax(f)q~11 = Ilvq~Ax(f)q~v*11 = l/pA'j(Qi(f))p/1

:::; II Af(Qi(f))1I :::; IIQi(f)lli :::; IIQ(f)II·

This holds for all nEZ, so IIAx(f)11 = sUPnEZ Ilq~Ax(f)q~11 :::; IIQ(f)II. This holds for all x E X, so

Ilfllr = SUPxEX IIAx(f)11 :::; IIQ(f)II·

For IIQ(f)11 :::; IlfilTl we have shown in Lemma III.6.7 that IIQi(f)lli :::; Ilfllr for all i E

{I, ... ,N}. So IIQ(f)11 = sup{IIQi(f)lli: i = 1, ... ,N}:::; Ilfllr' Thus Q is isometric. 0

At this point, we are almost ready to glue the *-algebras CO(Gi ) together to form Co(Gz ).

Before we do that, let us recall some of the notation that we have used in this chapter so far, and

let us fix further notation for the rest of this chapter.
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Notation 111.6.12. For each i E {1, ... , N}, the set CO(Gi) (Gi is defined in Notation III.4.1)

is a *-algebra; Ai is the completion of CO(Gi) with respect to II . Iii (II . IIi is defined in Notation

III.6. 1);

K i = U E C(Xi ,K(L2(1R))): pf f(x)pf = f(x) for all x E Xd;

(/Ji: CO(Gi) ----+ K i is an isometric *-homomorphism with dense range (¢i is defined in Notation

III.6.1); Ai ~ K i via the extension of ¢i; and iI>i: K i ----+ C(Xi ,K(L2(I))) is a *-isomorphism,

where I is the interval (-1,1) (iI>i is defined in Notation III.6.4).

For each k E {1, ... , N - 1} the space Co(G(k)) is a *-algebra (G(k) is defined in III.4.1);

A(k) is the completion of Co(G(k)) = CO(Gk+l,F(k») with respect to II· II(k) (II· II(k) is defined in

Notation III.6.1);

¢(k): Co(G(k)) ----+ K(k) is an isometric *-homomorphism with dense range (¢(k) is defined in

Notation III.6.1); A(k) ~ K(k) via the extension of ¢(k); iI>(k): K(k) ----+ C(F(k),K(L2(I))) is a

*-isomorphism (iI>(k) is defined in Notation III.6.4); the restriction map Rk: CO(Gk+l) ----+ CO(G(k))

is a norm-decreasing surjective *-homomorphism such that an element with small norm lifts to

some element with small norm.

Let Qi be the map defined in III,6.7, and let Q be the map defined in III,6.11. Then

Qi: Co(Gz ) ----+ CO(G i ) is a norm-decreasing *-homomorphism, and Q: Co(Gz ) ----+ E9~l Co(Gi ) is

an isometric *-homomorphism.

The next statement is used in the decompostion of Co(Gz). The proof is easy and is

omitted.

Lemma 111.6.13. Let X be any locally compact Hausdorff space, and let Fl , ... , Fn be closed

subsets of X such that U~=l Fi = X. Let f: X ----+ C an arbitrary function. Also suppose that

flFi E CO(Fi ) for each i E {1, ... , n}. Then f E Co(X).

Proposition 111.6.14. Let E l = CO(Gl)' For each k = 2, ... , N, there exists a *-subalgebra

Ek ~ Co(Gd EEl··· EEl CO(Gk) and a *-homomorphism 'l/Jk-l: Ek- l ----+ CO(G(k-l)) such that
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1. 'l/Jk-l is norm decreasing.

3. If (il, ... ,fk) E Ek, then for all i E {l, ... ,k}, we have fi E CO(Gi n Gz ). (We treat

CO(Gi n Gz ) as a subspace ofCO(Gi).)

5. If (il, ... , fk) E Ek' then for all j E {1, ... , k - 1}, we have (il, ... , fj) E Ej .

Proof' This is a proof by induction. We first simplify the base case of the induction by making

the first algebra of the gluing process trivial. Fix some Xo E Xl. Let p(O) = {xo} and let

Go = G(O) = G1,F(O). It is clear that Go = G(O) is a closed subset of G I . Then by Lemma IIl.5.3, we

see that Co(Go) = Go(G(O») is a *-algebra with the involution and convolution given by Equations

IlL? and IlL8. Let Ro: CO(G I ) ---t Co(G(O») be the restriction map. Then an argument identical

to the one given in Lemma IIl.6.5 shows that Ro is a norm decreasing surjective *-homomorphism.

Now, instead of proving the statement of this lemma, we prove the following instead, which
~

is the same as the the statement of the lemma except that the index k ranges from 1 through n

instead of 2 through n. The statement of this lemma follows immediately.

Let Eo = Co(Go). For each k E {1, ... ,N}, there exists a *-subalgebra

and a *-homomorphism 'l/Jk-l: Ek- l ---t CO(G(k-I») such that

1. 'l/Jk-l is norm decreasing.

3. If (fO, ... ,fk) E Ek, then for all i E {O, ... ,k}, we have Ii E Co(Gi n Gz ). (We treat

CO(Gi n Gz ) as a subspace of CO(Gi).)

5. If (fa, ... , fk) E Ek' then for all j E {a, ... ,k - 1}, we have (fa, ... , iJ) E Ej .
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Induct on k. For the base case when k = 1, let 'l/Jo: Eo ----t Co(G(O)) be the identity map and let

E 1 = {(f,g) E Eo EEl CO(G1): 'l/Jo(f) = Ro(g)}. Then conditions 1 through 5 hold trivially. This

proves the base case.

Inductive step: Suppose that for 1 < k < N, there exist Ek and 'l/Jk-l that satisfy conditions

1 through 5 in the statement.

If F(k) = 0, then let 'l/Jk = 0, and let Ek+l = Ek ED CO(Gk+1 ). Then condition 1, 2, 4, and

5 are clear; and condition 3 follows from Lemma IlI.4.9.

Now assume that F(k) i- 0. Then G(k) i- 0.

Define 'l/Jk: Ek ----t Co(G(k)) by 'l/Jk (fo , ... , !k)(W) = Ji(w) if wE G i for some i = 0, ... , k,

and 0 otherwise. We first show that for all (fo, ... , ik) E Ek' "pk(fo, ... , !k) is a well defined

function. We only need to show that the definition does not depend on the choice of i. Let

(iI, ... , !k) E Ek' and suppose that wE G i nGj . If w ¢:. Gz, then Ji(w) = 0 = h(w) by condition

3 in the inductive hypothesis. So suppose that w E Gz . Then w E Gi n Gj n Gz , and then

Ji(w) = h(w) by condition 4 in the inductive hypothesis. Thus "pk(fo, ... , !k) is well defined.

Note that if (r,x) E G(k) \Gz , then for all i = O, ... ,k, we have (r,x) ¢:. GinGZ ; and

then 'l/Jk(fo, .. . ,!k) (r, x) = 0 by condition 3 in the inductive hypothesis and by the definition of

'l/Jk (fo , ... , ik)·

Next we show that if (fo, ... , ik) E Ek' then 'l/Jk(fo, ... , ik) E Co(Gz n G(k)). Now we

know, by Lemma IIl.4.8, that

k k

G(k) n Gz = UGi n G(k) n Gz = UGi n G(k) n GZ,

i=l i=O

and by Lemma IIl.4.7, that G i n G(k) n Gz is closed in G(k) n Gz . From the definition of

'l/Jk(fO,"" !k), we see that

Now G i n Gz n G(k) is closed in G i n Gz, by Lemma IIlA.7. By condition 3 in the inductive

hypothesis, each Ji is in CO(Gi nGz ). So Jiic;nGznGCk) E Co(Gi nGz nG(k)). By Lemma IlI.6.13,

we have 'l/Jk (fo , ... ,!k) E Co(Gz n G(k)) ~ Co(G(k)). Thus 'l/Jk is a well defined map.



no

Next we show that 'l/Jk is a *-homomorphism. Linearity is clear. Also, 'l/Jk preserves

the involution because (r, x) E Gi if and only if (-r, (-r)x) E Gi (by the first statement in

part 2 of Lemma III.4.4). Let (fo, ... ,fk),(go, ... ,gk) E Ek. Let hf = 'l/Jk(fo, ... ,fk), let hg =

'l/Jk(go, ... ,gk), and let h = 'l/Jk(fo * go,···, fk * gk). We only need to show that h = hf * hg. Note

that hg,hf,h E Co(Gz n G(k)). Let (r,x) E G(k). If

then for some t E (-,Lh+l(x),-ak+l(x)), we have (t,x),(r - t,(-t)x) E Gz. Then by the first

statement in part 2 of Lemma III.4.4, we have (r, x) E Gz. Thus if (r, x) t/:- Gz, then h(r, x) = 0 =

(hf*hg)(r, x). Now suppose that (r, x) E Gz. Then by Lemma III.4.8, we have (r, x) E GinG(k)nGz

for some i E {l, ... , k}. So h(r, x) = (fi * gi)(r, x). Also, we have

If t t/:- (-,B(x), -a(x)), then (t, x) t/:- Gz, and then hf(t, x) = O. So we have

j
-Cl:(X)

(hf * hg)(r, x) = hf(t, x)hg(r - t, (-t)x) dt.
-(3(x)

Now, (r,x) E Gi n Gz n G(k), so x E Vi n Vk+l n Zc. Then for all t E (-a(x),-,B(x)), we have

t E (-,Bi (x), -ai(x)), and t E (-,Bk+l (x), -ak+l (x)), since aj (y) :<::: a(y) < a < ,B(y) :<::: ,Bj (y) for all

j E {l, ... , N} and all y E zcnVj. Thus for all t E (-,B(x), -a(x)), we have (t, x) E GznGinG(k).

Then by Lemma III.4.4, (r - t, (-t)x) E Gz n Gi n G(k) for all t E (-,B(x), -a(x)). Thus we have

j
-Cl:(X)

(hf * hg)(r, x) = fi(t, x)gi(r - t, (-t)x) dt.
-(3(x)

Now, by condition 3 in the inductive hypothesis, fi vanishes outside of Gi n Gz. Then we have

j -Cl:i(X)

(hf * hg)(r, x) = fi(t, x)gi(r - t, (-t)x) dt = (fi *gi)(r, x) = h(r, x).
-(3i (x)

Therefore'l/Jk preserves convolution, and so 'l/Jk is a *-homomorphism.
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Next we show that 'l/Jk is norm decreasing. Let (fo, ... , ik) be an element of Ek, and let

h = 'l/Jk(fo, ... , fk)' Let x E F(k). Note that there exist m < n and a~, a~+l"'" a~ E lR such that

and 0k+l (x) = a~ < a~+l < ... < a~ = f3k+l(X). For each l = m, ... ,n -1, let Xl: lR ........ lR be the

characteristic function of (a'f, a'f+l)' and let ql be the projection in B(L2 (lR)) defined by ql(~) = Xl~.

It is clear that qlql' = 0 if l =/=l', and that L~==-~ ql = Pk+l' (Recall that Pk+l is the projection in

B(L2 (lR)) defined by Pk+l(~) = Xk+l~') Then it is clear that )..(k),X(h) = Pk+l)..(k),X(h)p~+l' We

claim that

II).. (k),x (h) II = sup{lIql)..(k),x (h)qtll : l = m, .. . ,n - I}.

Let l E {m, ... ,n - I}. Let r,t E R If (r - t,rx) t/:- Gz, then h(r - t,rx) = 0, and so

Xl(r)h(r-t, rx) = 0 = Xl(t)h(r-t, rx). Suppose that (r-t, rx) E Gz . By Proposition III.6.10 part

1, we have r E (a'f,a'f+l) if and only ift E (a'f,a'f+l)' Therefore Xl(t) = 1 if and only if Xl(r) = 1,

and Xl(t)h(r - t, rx) = Xl(r)h(r - t, rx). Thus Xl(r)h(r - t, rx) = Xl(t)h(r - t, rx) for all r, t E lR.

Then for all ~ E L 2 (lR) and all r E lR, we have

= XI(r) ..(k),X(h)(~)(r).

Thus )..(k),X(h)ql = ql)..(k),X(h) for alll E {m, ... ,n - I}. Then it is clear that

Now we show that for each l E {m, ... , n -I}, we have IIql)..(k),X(h)qlll :S II (fo, Jr, ... , fk) II·

Let l E {m, ... ,n-1}. Since x E F(k), there exists Xo E Vk+ln (U7=1 Vi) such that 1l"k+l(XO) =X.

Let ro E (a'f, a'f+l)' Then rox E zc n Vk'+l = zc n V:~l' Thus by Lemma III.3.8, there exists some

i with 1 :S i :S k such that rox E zc n Vi. Let So = (oi(rOx) + f3i(rox))/2, let c = (so + ro)x,
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and let s = ro + so. Then c belongs to Xi' We claim that for every real number r, we have

Xl(r + s)xi(r) = Xl(r + s).

Let r E R If Xl(r + s) = 0, then we are done. Suppose that Xl(r + s) =J. O. Then

r + s E (a'{,a'{+l)' and then

Because So E (ai (rox ), f3i (rox)), we have

So xi(r) = 1, and so Xl(r + s)xi(r) = Xl(r + s).

Define u: L 2 (JR) ----; L 2 (JR) by u(~)(r) = ~(r + s). Then u is a unitary with u* given by

u*(~)(r) = ~(r - s). For all ~ E L2 (JR), and for all r E JR, we have

[uqlA (k),x (h )qIU*] (~) (r)

= [qIA(k),X(h)qlu*](~)(r + s)

= Xl(r + S)[A(k),X(h)qIU*(~)](r + s)

= Xl(r + s) LXk+l(r + S)Xk+l(t)ql(U*(~))(t)h(r + s - t, (r + s)x) dt

= Xl(r + s)LXk+l(r + S)Xk+l(t)XI(t)~(t - s)h(r + s - t, (r + s)x) dt

= Xl(r + s) LXk+l (r + S)Xk+1 (t + S)XI(t + s)~(t)h(r - t, rc) dt

= Xl(r + s) LXl(t + s)~(t)h(r - t, rc) dt

= Xl(r + s)Lxi(r)xHt)XI(t + s)~(t)h(r - t, rc) dt.

Now for all r,t E (ai(c),f3i(C)), we have (r - t,rc) E Gi , so h(r - t,rc) = Ji(r - t,rc) for all

r, t E (ai(c), f3i(C)). Then, letting p be the projection in B(L2 (JR)) given by p(~) (r') = Xl (r' +s )~(r'),
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we have

[uqIA(k),X(h)qlu*l(~)(r) = Xl(r + s)1xHr)xW)p(~)(t)fi(r - t,rc) dt

= Xl(r + s)AiUi)(p(~))(r)

= [pAiUi)p](O(r).

l1qIA(k),X(h)qlll = IluqIA(k),X(h)qIU*11 = IlpAi(Ji)pll

~ II AiUi) II ~ Ilfilli ~ IIUo, ... fk)ll·

Thus IIA(k),X(h) II ~ IIUo, ... , fk) II for all x E F(k), and so

So 'l/Jk is norm-decreasing.

Now, let

Condition 5 is clear.

Now let Uo, ... , fk+l) E Ek+l . By condition 5 and inductive hypothesis (condition 3),

fi E CO(Gi n Gz ) for all i = a, ... ,k. To show that fk+1 E CO(Gk+1 n Gz ), we only need to

show that fk+1 vanishes outside Gz , since fk+1 E CO(Gk+I) and Gz n Gk+1 is open in Gk+I' Let

wE Gk+l \ Gz . Then by Lemma III.4.9, W E G(k), and

If W tJ- Gi for all i = a, ... ,k, then 'l/Jk (!I , ... , fk)(W) = a by the definition of 'l/Jk' Suppose that

W E Gi for some i E {a, ... ,k}. Then 'l/JkUo, ... ,fk)(W) = fi(W), But fi E Co(Gz nGi), so

fi(W) = a. Thus fk+1 vanishes outside of Gz , and so fk+1 E Co(Gz nGk+I)' So condition 3 holds.
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Now we show that condition 4 holds. Let (fa, ... , fk' fk+l) be an element of Ek+l' and let

i, j E {O, ... ,k + I}. Without loss of generality, assume that i < j. If j < k + 1, then by condition 4

in the inductive hypothesis and condition 5, fi IGznGinGj = fj IGznGinGj' So assume that j = k + 1.

Let wE GZnGinGk+l. By Lemma III,4.7, ifi ~ 1, then we have GZnGinGk+l = GZnGinG(k).

Also,

Gz n Go n Gk+l = G z n Go n G 1 n Gk+! = G z n Go n G 1 n G(k) = G z n Go n G(k).

Then

Lemma 111.6.15. For each k E {I, ... , N}, let Qk be the map defined in Lemma 111.6. 'l and

let Ek be the algebra defined in Proposition 111.6.14. For each k E {I, ... ,N}, define a map

Pk: Co(Gz) ----t EB~=1 C o(G i ) by Pk(f) = (Ql (f), ... ,Qk(f)). (Note that PN is the same as the map

Q defined in Proposition 111.6.11.) Then for each k = 1, ... , N, we have 1m Pk ~ Ek. Further, PN

is an isometric *-isomorphism from Co(Gz ) onto EN.

Proof· To show that 1m Pk ~ Ek' induct on k. This is clear when k = 1, since PI = Ql and

E 1 = C O(G 1 ) = CO(G 1 n Gz).

Let k satisfy 1 < k < N, and suppose that 1m Pk ~ Ek. Let f E Co(Gz ). Then Pk(f) E Ek.

Let 'l/Jk be the map defined in Proposition III.6.14. Let wE G(k). If w f- G z · Then 'l/Jk(Pk(f))(W) =

0= Rk(Qk+!(f))(W). Suppose that w E G z , then wE G z n G(k). By Lemma III.4.8, there exists

some i with 1 :s: i :s: k such that w E G i n G z n G(k). Then

and
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Next we show that PN is an isometric *-isomorphism. First of all, PN = Q is an isometric

*-homomorphism. So we just need to show that the range of PN is EN.

Let (II, ... , f N) E EN. Define f: Gz -t C by f (w) = fi (w) if w E Gin Gz. We first show

that f is well-defined. Well, we know that Gz = U~l Gz n G i by Lemma III,4.3, so f(w) exists.

Suppose that wE G i n Gj n Gz . By Proposition III.6.14, we have

Thus f is a well defined function. It is clear that flcinc z = filcznci E CO(Gi n Gz ).

Now G i n Gz is closed in Gz for all i E {l, ... , N} by Lemma III.4.6. Applying Lemma

III,6.13 to Gz, G1 n Gz,.·., GN n Gz, and f, we see that f E Co(Gz).

Finally, we check that PN(f) = (1I, ... ,fN). Let 1::; i::; N, and let w E Gi. Ifw 1:. Gz,

then fi(W) = 0 = Qi(f)(W); if w E Gz, then fi(W) = f(w) = Qi(f)(W). Thus fi = Qi(f) for all

i=l, ... ,N, and so

Hence PN is surjective.

This finishes the proof. o

The previous two lemmas give a recursive decomposition of Co(Gz ) with components

CO(Gi ). Next we use the fact that A z and Ai are closures of, respectively, Co(Gn ) and CO(Gi) in

C*(X, lR) to extend the decomposition to Az with components Ai. We need a technical lemma

first.

Lemma 111.6.16. Let B, D, and F be C* -algebras. Let A, C and E be dense *-subalgebras ofB, D,

and F, respectively. Let cPA: A -t E and cPc: C -t E be norm-decreasing *-homomorphisms. Let

G = A EElE C = {(a, c) E A EEl C: cPA(a) = cPc(c)}. Let cPB: B -t F and cPD: D -t F be continuous

extensions of cPA and cPc, respectively. Let H = B EElF D = {(b,d) E B EEl D: cPB(b) = cPD(d)}.

Suppose that cPc is surjective, and that for every E > 0 and every eE E with Ilell < E, there exists

cE C such that cPc(c) = e and Ilcll ::; E. Then G is a *-subalgebm of H, and G = H.

Proof: It is clear that G is a *-subalgebra of H. Let (b, d) E H, and let E > O. Since A is dense

in Band C is dense in D, there exist a E A and c E C such that Iia - bll < E/4 and lie - dll < E/4.
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Let e = ¢A(a) - ¢c(e). Then

Ilell ~ II¢A(a) - ¢B(b)11 + II¢D(d) - ¢c(e) II < E/2.

By assumption, there exists f E C such that Ilfll ~ E/2 and ¢c(f) = e. Then

¢c(f + c) = ¢df) + ¢de) = e + ¢c(e) = ¢A(a).

Thus (a, f + c) E G, and

Ilf + e - dll ~ lie - dll + Ilfll < E/4 + E/2 < E.

So II(a,e+ f) - (b,d)11 < E, and hence G is dense in H. D

Lemma 111.6.17. For each k E {I, ... N}, let R k : CO(Gk+l ) -+ CO(GCk) be the restriction map

defined in Lemma III.6.S. Let D l = AI, and let Rk : A k+l -+ ACk) be the continuous extension

of Rk. Then Rk is surjective. Moreover for each k E {2, ... , N}, there exists a *-subalgebra

k . ~

Dk ~ EBi=l Ai and a *-homomorphzsm Wk-l: Dk-l -+ ACk-l) such that

2. E k is a dense *-subalgebra of Dk.

3. .;,6'k-l!Ek_l = Wk-l, where the map Wk is the one defined in Proposition III.6.14 for each

k E {I, ... ,N - I}.

Proof: It is clear from Lemma III.6.5 that Rk is surjective for all k.

We prove other statements by induction on k. The base case is when k = 2. Let .;,6'1 be the

continuous extension of WI, and let D2 = {(a, b) E Dl ED A2 : .;,6'1 (a) = Rl (b)}. It is clear that E2 is

a *-subalgebra of D 2 . Condition 1 is clear, condition 2 follows from Lemma III. 6. 16 and Lemma

III.6.6, and condition 3 follows immediately from condition 2.

Suppose that result holds from some k. By the inductive hypothesis, Ek is dense in Dk,

so we can extend Wk: Ek -+ Co(GCk) continuously to .;,6'k: Dk -+ ACk). Let
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It is clear that Ek+1 is a *-subalgebra of Dk+1. Condition 1 is clear, and condition 2 follows from

Lemma 111.6.16 and Lemma 111.6.6. Condition 3 is also clear. D

Corollary 111.6.18. A z ~ DN as C* -algebras, where DN is the C* -algebra obtained in Lemma

111.6.17.

Proof' The map PN: Co(Gz ) ----. EN is an isometric *-isomorphism, Co(Gz ) is dense in Az , and

EN is dense in DN. So PN extends to a *-isomorphism from Az to DN. D

Lemma 111.6.17 and Corollary 111.6.18 give a recursive decomposition of Az . Now we use

the fact that each of the components Ai in the decomposition is isomorphic to the corresponding

C(Xi , lK) to obtain a stable recursive subhomogeneous decomposition of Az .

Theorem 111.6.19. Let K = K(L2 (( -1,1))). For each k E {I, ... , N - I}, let

Ik: C(Xk+1, K) ----. C(F(k), K)

be the restriction map. For k E {I, ... , N}} let ep k be the map defined in Notation 111.6.12. Let

B 1 = C(X1, K), and let 01: D1 ----. B 1 be given by 01 = ep1 0 cPl. For each k = 2, ... , N, there exists

a *-subalgebra of Bk ~ EB7=1 C(X i , K), a *-homomorphism Wk-1: B k- 1 ----. C(p(k-1), K), and a

*-homomorphism Ok: Dk ----. B k such that

2. Ok is a *-isomorphism.

Proof' First of all, some routine computation shows that for all k E {I, ... , N - I}, and all

f E CO(Gk+l), we have Ik (<I>k+l(¢k+l(f))) = ep(k) (¢(k)(Rk(f))) , where epk, ¢k, R k, ep(k) , and ¢(k)

are as defined in Notation 111.6.12. Since CO(Gk+1) is dense in Ak+l' for each k E {I, ... ,N -I},

we have the following commutative diagram:

Ak+l
¢k+l

Kk+1
<I>k+l

C(Xk+1,K)-------> -----+

1 Rk 11k

A(k) ¢(k) K(k) <I>(k)
C(p(k), K).------> -------t

Let 1/Jk and;[;k be the maps obtained from Proposition 111.6.14 and Lemma 111.6.17, respectively.
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Now we proceed to induct on k. When k = 2, let W1: B 1 = C(X1,K) -; C(FCk-l),K) be

- 1defined by W1 = (<I>(l) 04/1)) 0'IjJ1 0 (<I>1 o¢d- ; let

and let ()2: D 2 -; B 2 be defined by ()2 = (<I>1 0 ¢1) EB (<I>2 0 ¢2).

We first show that ()2 does map into B 2. Let (a,b) E D2 Then ;J1(a) = R1(b). Then

Next we show that ()2 is surjective. Let (c, d) E B 2 , and let

Now, (c,d) E B2 implies that W1(C) = "n(d), that is W1((<I>1 0 ¢d(a)) = "Y1((<I>2 0 ¢2)(b)). But

W1((<I>1 0 ¢l(a)) = (<I>(l) 0 ¢(l)) 0 '¢l(a), and 'Y1((<I>2 0 ¢2)(b)) = (<I> C1) 0 ¢(l)) 0 R1 (b). So

Thus ;Jl(a) = R1 (b), since <I>(l) o¢Cl) is injective. Therefore (a,b) E D2. It is clear that ()2(a,b) =

(c, d). Hence ()2 is surjective.

It is clear that ()2 is an injective *-homomorphism. So ()2 is a *-isomorphism.

Now suppose that result holds for some k with 2 < k < N. Let Wk: B k -; C(FCk), K) be

given by Wk = (<I>Ck) 0 ¢Ck)) O;Jk 0 ()"k 1
, let
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We first show that ek+l maps Dk+l to Bk+l' Let (a, b) E Dk+l' Then

Wk(ek(a)) = (<liCk) 0 1P)) 0 ;(Jk(a)

= <liCk) o1P) (Rk(b)) = /'k((<lIk+l 0 <Pk+l)(b)).

Thus ek+l(a, b) = (ek(a), (<lIk+l 0 <Pk+l) (b)) E Bk+l'

Next we show that ek+l is surjective. Let (c, d) E Bk+l' and let (a, b) = (e;;l(c), (<lIk+l 0

<Pk+l)-l(d)). Since

Wk(C) = Wk(ek(a)) = (<liCk) 0 <p Ck )) ;j;k(a) = /'k(d)

= /'k((<lIk+l 0 <Pk+l)(b)) = (<liCk) 0 <p Ck )) 0 Rk(b),

we see that ;j;k(a) = Rk(b). Thus (a, b) E Dk+l' and it is clear that ek+l(a, b) = (c, d). Therefore

ek+l is surjective. Since ek+l is clearly an injective *-homomorphism, we see that ek+l is a

*-isomorphism. 0

Corollary 111.6.20. Let eN and PN be the *-isomorphisms obtained in Corollary III. 6. 18 and

Lemma III. 6. 15, respectively. Then eN 0 PN is a *-isomorphism between Az and B N.

At this moment, we essentially have a SRSH decomposition of Az . We only need to verify

that the attaching maps are non-vanishing:

Lemma 111.6.21. Let eN be as in Lemma III.6.19, let PN be as in Corollary III.6.18, and let

<lIk,<Pk,Qk be as in Notation III. 6. 12. Let f E Co(Gz).

2. Let 1 ~ k ~ N, let x E X k, and let

Then Tx = Gk,{x} is a closed subset of Gk, Tx n Gz i= 0, and <lIk 0 <Pk 0 Qk(f)(X) = 0 if and

only if <Pk 0 Qk(f)(X) = 0, which happens if and only if flGznT." = O.

3. For each k = 2, ... , N, and for each x E pCk-l), there exists some a E B k- 1 such that

Wk-l(a)(x) i= 0, where Wk-l is the map defined in Lemma III. 6. 19.
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Proof: From the construction of the maps fh in the proof of Lemma III.6.19, we see that

for all (iI, ... , fN) E D N. From the definition of the maps Pk in Lemma III.6.15, we see that

PN(f) = (Q1 (f), ... ,QN(f)) for all f E Co(Gz ). So part 1 is clear.

It is clear that Tx = Gk,{x} is a closed subset of Gk , and Tx n G z is nonempty. From the

definition ofthe the maps <Pi, it is clear that <PkorPkoQk(f)(X) = 0 if and only if cPkOQk(f)(X) = O.

By Lemma III.5.5, we havecPk((Qk(f))(x) = A'k(Qk(f)) = 0 if and only if Qk(f)ITx = O. So

<Pk ocPk oQk(f)(X) = 0 if and only if Qk(f)ITx = 0, if and only if Qk(f)ITxnGz = 0 (Qk(f) vanishes

outside of Gz ), if and only if (fIGznGk)IT,nGz = 0, if and only if flTxnGz = O.

For part 3, we use the notation in Lemma III.6.19. Note that Wk-1 = <p(k-1)0cP(k-1)o,(fik_1°

Bk~l' It is clear that there exists some f E Cc(Gz ) such that flTxnGz I- o. Let a = Bk-1 0Pk-1(f).

Then a E B k - 1 . By part 2 we have

Wk_1(a)(x) = <p(k-1) ° cP(k-1) ° ,(fik-1(Pk-1(f))(X)

= <p(k-1) 0cP(k-1) o,(fik-1(Q1(f), ... ,Qk-1(f))(X)

= 'Yk-1((<Pk 0cPk(Qk(f)))(X)

= (<Pk ° cPk(Qk(f))(X)

I- o.

o

Corollary 111.6.22. Az is a SRSHA.

Proof: By Lemma III.6.19, and part 3 of Lemma III.6.21, we see that

is a SRSH system, so Az ~ B N is a SRSHA. o

The following lemma is known as the gluing lemma. It a standard result in point-set

topology, so we will omit its proof.
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Lemma III.6.23. Let X be a topological space. Let Y and Z be two subsets of X. Let f: Y ---> C

and g: Z ---> C be continuous functions such that flYnz = glYnz. If either both Y and Z are closed

in X or both Y and Z are both open in X, then the function h : X ---> C defined by

is continuous.

h(x) = {f(X)
g(x)

if x E Y

if x E Z

The next lemma will be used in the next chapter.

Lemma III.6.24. Let

be the SRSH decomposition for A z as in III. 6.22. For each k E {I, ... k}, let H k = Gzn (U7=1 Gi) .

For each k with 1 :::; k :::; N, if I ~ Bk is a non-zero ideal, then In ek(Cc(Hk )) i- o.

Proof: Define Tk: CO(Hk) ---> Ek by Tk(f) = (fIGinGz))i=I, ... ,k. By Lemma III.4.6, for each k

with 1 :::; k :::; N, the set Hk is a closed subset of G z . Hence each f E CO(Hk) extends to some

f' E Co(Gz ). Thus T(f) = Pk(f'), where Pk is the map in the proof of Lemma III.6.15. Thus we

see that Tk indeed sends elements of CO(Hk ) into E k . It is clear that Tk is injective. Also, since

Gz n Gi is closed in H k for every i with 1 :::; i :::; k +N, surjectivity of Tk follows easily from Lemma

III.6.23. Linearity of Tk is clear as well.

For each k with 1 :::; k :::; n, define ek : CO(Hk) ---> Bk byek = (h 0 Tk, where Bk and ek are

as in Lemma III.6.19. We will also use Tk and ek to denote their restrictions to Cc(Hk)'

Now we proceed by induction. If k = 1, then there exists a closed subset F ~ Xl such

that 1= {f E B I : flF = O}. Then GI,F is a closed subset of G I = G I n G z by Corollary III.4.5.

If GI,F = G I , then it is clear that F = Xl, which implies that I = O. Thus F i- Xl, and so

GI,F i- G I = HI' Then there exists f E Cc(GI ) = Cc(HI ) such that flGi,F = 0 and f i- O. So

el (f) E I n el (Co (Hd) and el (f) i- O. Thus the lemma holds for k = 1.

Now suppose that the lemma holds for some k with 1 < k < N. Let I ~ Bk+l be a

non-zero ideal. We can assume that I i- Bk+l. Then we know that for each i with 1 :::; i :::; k + 1,
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there exists a closed subset Pi ~ Xi such that

1= {(h, ... , fk+I) E Bk+I: JiIF; = 0 for i = 1, ... , k + I}.

First assume that Xk+I \ p(k) is not contained in Pk+I. (Recall that p(k) is the k-th attaching

space.) Now, by Lemma IlI.4.6, we know that GinGZ is closed in Gz for every i with 1 ~ i ~ k+1.

SO U7=1 (Gi n Gz) is closed in Gz· Thus U7=1 (Gi n Gz ) is closed in Hk+I, because Hk+l is also

contained in Gz . Similarly, Gz n Gk+I is closed in Hk+l as well. Also, by Corollary IlI.4.5, we

know that Gk+I,Fk+l is closed in Gk+ 1• Thus Gz nGk+I,Fk+l is closed in Gk+l nGz , which implies

that GZnGk+I ,Fk+l is closed in Hk+I' Therefore Gzn [Gk+I,Fk+l u (UZ=I Gi )] is closed in H k+I .

If Gz n [Gk+I,Fk+1 u (U7=1 Gi )] = Hk+I, then we have, by Lemma IIlA.8 and Lemma

III.4.4,

Gz n Gk+I = Gk+I n Gz n H k+I

= Gk+I n Gz n [Gk+I,Fk+l U C~ Gi) ]

= [GHI n Gz n Gk+I,Fk+l] U [Gk+I n Gz n C~ Gi) ]

= (Gz n Gk+I,Fk+l) U (G(k) n Gz )

= Gz n (Gk+I,Fk+l U G(k))

Then Xk+I = p(k) U PHI, which contradicts our assumption that Xk+I \ p(k) ~ Pk+I . Thus

Gz n [GHI ,Fk+1 u (U7=1 Gi )] I- Hk+I. Then there exists a nonzero element f E Cc (Hk+I) such

that fiG n[G u(Uk G)] = O. Then Ok+I (1) I- 0 and OHI (1) vanishes on Pi for all i with
Z k+l,Fk+l '1.=1 t

1 ~ i ~ k + 1. Thus In Ok+I(Co(HHd) I- O.

Now assume that Xk+I \ p(k) ~ PHI. Let P = XHI \ pCk) and let

Let P: Bk+I ----7 Bk be defined by P(h, ... ,h+I) = (h, ... , fk). Then P is surjective (this follows

because the map "(k: C(Xk+I,K) ----7 C(PCk),K) is surjective) and PIJ is injective (this follows



123

from the construction of Bk+l and the definition of J). Also J is an ideal of Bk+l, F ~ Fk+1, and

I ~ J. Note that

ker P = {(O, ... ,0, fk+d: ik+1IF(k) = O}.

If I ~ kerP, then for every a = (h, ... ,fk+l) E I, we have fk+lIF(k) = 0 and fi = 0 for every

i with 1 ::; i ::; k. But fk+l also vanishes on Fk+l, which contains Xk+l \ F(k) as a subset. So

fk+l = O. Consequently, we have a = O. This contradicts the assumption that I =f O. Thus I

is not contained in ker P, which implies that P(I) is a non-zero ideal of Bk. Therefore we have

P(I) n ek(Cc(Hk)) =f 0 by the inductive hypothesis. So pick 9 E Cc(Hk) such that 9 =f 0 and

ek(9) E P(I). Now we prove some claims.

Claim 1: Let R: CO(Hk+l) ----; CO(Hk) be defined by R(f) = flHk' Then R is a linear

surjection. Also the following diagram commutes:

Co (Hk+1)

lR

Co (Hk)

0k+l
Bk+1------+

lP
Ok

Bk.---->

It is clear that R is a linear surjection. If f E CO(Hk+1), then

= p(ek+l(f!c,ncz ,"" flck+lncZ))

= p(ek(f!c,ncz,'''' fb), <Il k+1 0 <Pk+l(flck+ 1 ncZ))

= ek(f!c,ncz ,"" flckncZ)

= ek(Tk(R(f)))

= ek(R(f)).

So Claim 1 is proven.

Claim 2: We have P-1(P(I)) ~ {(h, ... , fk, fk+l) E Bk+l: fk+lIFnF(k) = O}.

Suppose that f = (h, ,fk+l) E P-l(P(I)). Then there exists a = (gl, ... ,gk+d E I

such that P(f) = P(a). So (h, ,ik) = (gl, ... gk). Then by the construction of Bk+l, we have
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fk+lIF(k) = 9k+lIF(k). Therefore A+lIFnF(k) = gk+lIFnF(k) = 0, since a E I and Pn p(k) S;; Pk+l'

Claim 2 is proven.

Claim 3: (Recall that the element 9 is chosen, right before Claim 1 above, to satisfy 9 -=J 0

and ek(g) E P(I).) We have gICk+l,FnHk = 0 or Gk+l,F n Hk = 0.

Suppose that Gk+l,FnHk -=J 0 and g/Ck+l,FnHk -=J O. Using Claim 1, choose h E Co(Hk+d

such that R(h) = g. Note that

So hlc (k) -=J O. Then by LemmaIII.5.5, ek+1(h'IIFnF(k) -=J O. By Claim 2, p(ek+l(h)) ct P(I).
k+l,FnF J

But by Claim 1, p(ek+l(h)) = ek(R(h)) = ek(9) E P(I). This is a contradiction, so Claim 3 is

proven.

Now,

Gk+l n [(Gk+l,F n Gz) U Hkl = Gk+l n Gz n [Gk+l,F U (~Gi) ]

= (Gz n Gk+l,F) U [(Gz n Gk+1) n (~Gi)]

= (Gz n Gk+l,F) U (Gz n Gk+1,F(k»)
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So we have

= {Gk+1n [(Gk+l,F n GZ) U Hk]} U Hk

= {Gk+1U Hk} n {[(Gk+l,F n GZ) U Hk] U Hk}

= {Gk+l U Hk} n {(Gk+l,F n GZ) U Hk}

= [Gk+l n (Gk+l,F n GZ )] U Hk

= (Gk+l,F n GZ) U Hk.

Both Gk+l,F n Gz and Hk are closed in Hk+l. Also, by Claim 3, regardless of whether or not

Gk+l,F n Hk = (Gk+1,F n Gz ) n Hk is empty, the function g agrees with the zero function on

Thus by Lemma IIl.6.23, 9 can be extended to some g' E CO(Hk+l) such that g'IGk+l,FnGz = O.

Then by Lemma IlL5.5, ek+1(g') vanishes on F. So ek+l(g') E J. It is clear that ek+l(g') =I- o.
Also, since g' vanishes outside of Hk, the support of g' is the same as g, so g' E Cc(Hk+1).

Finally we check that ek+l(g') E I. By Claim 1, p(ek+1(9')) = ek(g) E P(I). So there

exists some g" E I such that p(ek+1(g')) = P(gll). But PIJ is injective, and both ek+l (g') and gil

are in J, so ek+I(g') = gil E I. This completes the proof. 0

Corollary III.6.25. If I ~ Az is a non-zero ideal, then In Cc(Gz) =I- O.

Proof: Let I ~ A z be a non-zero ideal. Note that (eN 0 PN )lco(Gz) = eN. Since eN 0 PN(I) is a

non-zero ideal of B N, we see that

o=I- eN 0 PN(I) n eN(Cc(GZ))

= eN 0 PN(I) n eN 0 PN(Cc(GZ))

= eN 0 PN(I n Cc(Gz )).

o
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CHAPTER IV

INDUCTIVE LIMITS OF SRSHAS AS C*-SUBALGEBRAS OF C*(X,R.)

In this chapter, we show that when X is a compact metric space and when R. acts on X

freely and minimally, the crossed product C* (X, R.) contains C*-subalgebras that are isomorphic

to simple inductive limits of SRSHAs. These subalgebras are the analogs of the algebras A y =

C*(C(X), uCo(X \ {y} )), the C* -subalgebra generated by C(X) and uCo(X \ {y}), in the crossed

product obtained from a free minimal action of Z on a compact metric space X.

IV.I. Definition of the Subalgebra Ay

To define the subalgebras Ay, we will first need a different description of the set Gz defined

in Notation III.1.10.

Lemma IV.I.I. Let Z be a pseudo-transversal of a free minimal action ofR. on a compact metric

space. Let G z be the set defined in Notation III. 1. 1O. For each r E [0, 00), let Dr = [0, r] . Z, and

for each r E (-00,0], let Dr = [r,O] . Z, where we take [0,0] to be the degenerate closed interval

{O}. Then Gz = (UsEIR({s} x Ds)r.

Proof: Let H = (UsEIR({s} X Ds))c. Let (r,x) E Gz. Then x E ZC, and -r E (a(x),;3(x)),

where a and ;3 are the backward and forward entering times for Z, respectively. First assume that

r ~ O. If (r,x) ~ H, then (r,x) E UsEIR({s} x Ds), and then x E Dr = [O,r]' Z, so there exists

t E [O,r] and z E Z such that x = tz. Then (-t)x = z E Z. Since x E ZC, we see that t =1= 0, and

so -t < O. Then a(x) ~ -t by the definition of the backward entering time. But -r > a(x) ~ -t,

so r < t, contradicting the fact that t E [0, r]. Thus (r, x) E H. With a very similar argument, we

see that (r,x) E H when r :s: o. So Gz ~ H.

Now suppose that (r,x) E H. Then x ~ Dr. First assume that r ~ O. Since x ~ Dr =

[O,r]· Z, for all s E [-r,O], we have sx ~ Z. In particular x ~ Z and (-r)x ~ Z. Also, a(x) :s: -r.
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But a(x) =I- -r, for otherwise, (-r)x = a(x)x E Z. Thus a(x) < -r ~ 0 < f3(x). So (r,x) E Gz .

With a very similar argument, we see that (r, x) E Gz if r ~ O. So H ~ G z. o

Notation IV.1.2. Let Z be a compact pseudo-transversal of a free minimal action of lR on a

compact metric space X. For each y E X, let D¥ = [0, r] . y if r 2:: 0, let D¥ = [r,O] . y if

r ~ 0, where [0,0] = {O}, and let Gy = (UrEIR({r} x D¥)r. For each y E Z and each r > 0, let

B(y, r) = {x EX: d(x, y) < r}, let Z¥ = Z n B(y, r), and let Z¥ = Z¥.

Lemma IV.1.3. Using the notation in Notation IV.1.2, for all y E Z, all r > 0, and all x E X,

we have

1. (lR· x) n Z;¥ =I- 0.

2. Z¥ ~ Z;¥ n (lR. x).

3. Z;¥ n (lR . x) = Z;¥.

4. Z¥ is a pseudo-transversal, and Z¥ ~ z.

Proof: Fix y E Z r > 0 and x E X. Let S = (lR . x) n Z.

Since Z is a pseudo-transversal, we have S = Z. This implies that S n B(y, r) n Z =I- 0,

which implies that (lR· x) n Z¥ =I- 0. This proves part 1.

Let z E Z;¥. Then there exists E > 0 such that B(Z,E) ~ B(y,r). By part 1, for all n 2:: 1,

we have (lR· x) n Z:/2n =I- 0. So for each n 2:: 1, choose X n E (lR· x) n Z:/2n. Now, for each n 2:: 1,

we have B(z, E/2n) ~ B(z, E) ~ B(y, r), so xn E Z;¥ n (lR· x) for all n 2:: 1. Since d(xn, z) < E/2n

for each n 2:: 1, we see that X n ----. Z. SO part 2 holds. Then Z;¥ = Z;¥ ~ (lR· x) n Z;¥ ~ (lR· x) n Z;¥.

Since (lR . x) n Z¥ ~ Z;¥, and since Z;¥ is clearly compact, we see that (lR . x) n Z;¥ ~ Z;¥. So part 3

holds. Part 4 follows immediately from part 3. This finishes the proof.

IV.2. Simplicity and Topological Stable Rank of Ay

o

Notation IV.2.1. For the rest of the chapter, we fix a pseudo-transversal Z, a point y E Z, and

a strictly decreasing sequence {rn } of positive real numbers that converges to O. For each n 2:: 1,

let Zn = Z;¥n' where Z;¥n is as in Notation IV.1.2, let GZn be the set defined in Notation 111.1.10,

let An = Co(GzJ, and let Ay = Cc(Gy). Note that Zl 2 Z2 2 ... , and that n~=l Zn = {y}.
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Lemma IV.2.2. We have

Proof: For each r E JR, let D¥ be as in Notation IV.1.2; and for each n 2: 1, and each r E JR,

let D~ be the set Dr in Lemma IV.1.1 for the pseudo-transversal Zn. Then by Lemma IV.1.1, we

have G z" = (UrEIR({r} x D;:)) c . We first claim that for all r E JR, we have D¥ = n:=l D~.

It is clear that for all r E JR, we have D¥ ~ n:=l D~. So we just need to prove the other

inclusion. Let r E R We will only prove the inclusion for the case when r > 0, because the case

when r < a is similar, and the case when r = a is trivial. Let x E nn~l D~. Then for each n 2: 1,

there exist Sn E [0, r] and Zn E Zn such that x = SnZn. It is clear that Zn -l y. Since {Sn} is a

bounded sequence, we can assume, passing to a subsequence if necessary, that Sn -l S for some

S E [0, r]. Then x = SnZn -l sy E Dr Thus nn~l D;: ~ D¥. So the claim is proven.

Thus (s, x) E (Gy)C if and only if (s, x) E UrEJR( {r} x D¥), if and only if x E D~, if

and only if x E nn~l D~, if and only if (s,x) E nn~l{S} x D~, if and only if (s,x) belongs to

nn~l (UrEIR({r} x D~)) , if and only if (s, x) E nn~l (GzJ = (Un~l GZnr.So Un~l GZn = Gy.

Since D; =2 D; =2 ... for all r E JR, it follows immediately that GZ
1
~ GZ

2
~ •••• Part 1 is proven.

The first statement of part 2 and the first statement of part 3 follow immediately from

the first statement of part 1. Now let f E Cc(Gy), and let K be the support of f. Then K ~

Gy = Un~ 1 GZn· Since GZn is open, and since K is compact, there exists N 2: 1 such that K ~

U~=l GZn = Gzw So f E Cc(GzJ ~ Un~l CC(Gzn)· It is clear that Un~lCc(GzJ ~ Cc(Gy). So

part 2 is proven.

It follows immediately from part 1 and 2 and the first statement of part 3 that Ay C

Un~l An. For the other inclusion, note that for each n 2: 1, CC(GZn ) ~ Cc(JR x X) is dense in

Co(Gz.J ~ Cc(JR x X) when Cc(JR x X) has the inductive limit topology, and so Cc(GzJ is dense

in Co(GzJ in the norm topology. Then for all n 2: 1, we have An = Cc(GzJ ~ Cc(Gy) = Ay.

The desired inclusion follows. D
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Lemma IV.2.3. If I ~ A y is a non-zero ideal, then I n Cc(Gy ) -1= O.

Proof: Since I = UnZl (An n 1), we know that for some n ~ 1, I n An -1= O. Then I n An is a

non-zero ideal in An' so by Corollary III.6.25, we have InAnnCc(GzJ -1= O. But InAnnCc(Gzn ) ~

D

Lemma IV.2.4. Let U be an open set in IR x X. For each n ~ 1, let Rn denote the return time

for Zn, and for each n ;::: 1 and each z E Zn, let

T-; = {(r, sz): S E (0, Rn(z)), s - r E (0, Rn(z))}.

Then there exists N ~ 1 such that for all n ~ N and all z E Zn, we have T-; n U -1= 0.

Proof: We first show that for each r E (0, (0), there exists m ~ 1 such that Rm(z) ~ r

for all Z E Zm. By Lemma III.2.1, there exists a compact neighborhood K of y that satisfies

[(0, r] . (K n Z)] n (K n Z) = 0. Let 6 > 0 satisfy B(y, 6) ~ K, and let m ~ 1 satisfy r m < 6. Then

Zm = B(y,rm ) n Z ~ B(y,6) n Z ~ B(y,8) nZ ~ Kn Z.

So for all z E Zm, we have

[(0, r] . z] n Zm ~ [(0, r] . (K n Z)] n (K n Z) = 0,

and so Rm(z) ~ r.

Now let I ~ IR be a nonempty bounded open interval, and let V ~ X be an open set such

that I x V ~ U. Let ro > 0 be such that I ~ (-ro, ro), and let So > ro be such that so' y E V. (The

existence of So is guaranteed by the minimality of the action.) Pick N such that so' B(y, rN) ~ V

and RN(Z) ~ so+ro for all z E ZN. Note that R 1 :::; R 2 :::;··· • Let n > N. Then So ,Zn ~ V. Now

let z E Zn. Then So . z E V. Let tEl. Then -ro < -t < ro, so

0< So - ro < So - t < So + ro :::; RN(Z) :::; Rn(z).

Also Rn(z) ~ ro + So > So > 0, so (t, soz) E r;. It is clear that (t, soz) E I x V ~ U. Thus

T-; n U -1= 0. D
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Proposition IV.2.5. Let A y be the C* -algebra defined in Notation IV.2.1. Then A y is simple.

Proof: Recall that for each n 2: 1, the set Zn denotes the pseudo-transversal that gives rise

to An. Let I ~ Ay be a non-zero ideal. By Lemma IV.2.3, we have In Cc(Gy) =I- O. So let

0=1- f E Cc(Gy ) n1. Let U = {x E JR. x X: f(x) =I- O}. Then U is open. Use Part 2 of Lemma IV.2.2

and Lemma IV.2.4 to get N such that for all n 2: N, the function f belongs to Cc(GzJ, and for

all n 2: N and for all Z E Zn, we have T;' n U =I- 0, where T;' = {(r,sz): s,s - r E (0, Rn(z))}.

Now fix n 2: N.

Let Xl, X 2 , .•. , Xm be the compact subsets of X associated with the pseudo-transversal

Zn as defined in Notation III.2.5. Let CXl, .•• , CXm be the extensions of the backward entering

times associated with Xl, ... , Xm, as obtained in Lemma III.2.8. Let 131,"" 13m be the extensions

of the forward entering times associated with Xl,"" X m , as obtained in Lemma III.2.8. Then

Xl, ... , Xm are the base spaces of the stable recursive decomposition of An with components

C(Xi,K), for i = 1, ... , m, as in Corollary III,6.22. For each i E {I, ... ,m} and each x E Xi, let

H[ = {(r, sx): s, s - r E (CXi(X),13i(X))}. We claim that H[ n Gz n U =I- 0 for each i E {I, ... , m}

and each x E Xi.

Let i E {I, ... ,m}, and let x E Xi' Let z = CXi(X)X E Zn. Then Rn(z) :::; 13i(X) - CXi(X), Let

(r, sz) E T;'. Then (r, sz) = (r, (s + CXi(X))X), Since 0 < s < Rn(z), we see that CXi(X) < s + CXi(X) <

Rn (z) + CXi(X) :::; 13i (x), so s + CXi(X) E (CXi(X), 13i(X)), Since 0 < s - r < Rn(z), we have

So (r, sz) = (r, (CXi(X) + s)x) E Hf. Thus T;' ~ H[. Then, since T;' ~ Gz, we see that T;' ~

H[ n Gz. Thus 0 =I- U n T;' ~ U n H[ n Gz. This proves the claim.

To finish the proof, let (iI, ... ,1m) be the image of 1 in the recursive decomposition B of

An. Let i E {I, ... , m} and let x E Xi. We just showed that H[ n Gz n U =I- 0. So ll H f ncz =I- O.

Then by Lemma III.6.21, we have fi(X) =I- O. This holds for all i E {I, ... ,m} and all x E Xi'

So (iI, ... ,1m) is not contained in any primitive ideal of B, so (iI, ... ,1m) is not contained any

proper closed ideal B, so neither can 1 be contained in any proper closed ideal of An. Therefore

I n An = An. This holds for all n 2: N. So I = Un=l (I nAn) = Un2 N AN = Ay. Thus Ay is

simple. D
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The next lemma shows that the connecting maps in the direct system (An, ~n), where An

is as in Notation IV.2.1 and ~n is the inclusion map, are non-vanishing.

Lemma IV.2.6. Let An and A y be as in IV.2.1. Let ~n: An ----> A n+1 be the inclusion. For each

n 2: 1, let Xf, ... ,Xl';. be the spaces associated with the pseudo-transversal Zn+ 1 as defined in

Notation III. 2. 5. Then for each n 2: 1, for each k E {I, ... , In}, and for each x E X k, there exists

some f E Cc(Gzn ) such that ~n(f)ITx i= 0, where

and where an+! and (3n+! are the entering times (not the extensions) associated with the

pseudo-transversal Zn+ 1.

Proof' We know that GZn <:;;: Gzn+1 • We show that Tx n GZn is nonempty. Because Zn and

Zn+1 are pseudo-transversals, there exists some s E (an+!(x),(3n+1(X)) such that sx rt. Zn. Take

l' > 0 small enough so that -1' E (an+1(sX),(3n+1(SX)), and that (-21',21')' (sx) <:;;: Z~. Then

(r, sx) E GZn n T x · Thus T x n GZn i= 0.

Then it is clear that there exists some f E CC(Gzn ) such that fiT", i= O. 0

Theorem IV.2.7. The algebra A y is isomorphic to a simple inductive limit of SRSHAs such that

all connecting the maps of the inductive system are injective and non-vanishing. Let X n be the total

space of the n-th SRSHA in the inductive system. Then dim(Xn) ::::; d for some dEN. Moreover,

A y has topological stable rank one.

Proof: For each n 2: 1, let ~n: An ----> An+! be the inclusion map. Let B n be the SRSHA

associated with the SRSH decomposition obtained in previous chapter, and let hn : An ----> Bn be

the isomorphism in Corollary III.6.20. Define en: Bn ----> B n+1 by en = hn+1 0 ~n 0 h:;;1.

It is clear that the total space of Bn has dimension less or equal to the dimension of X,

which is finite. It is also clear that en is injective. Lemmas III.6.21 and IV.2.6 show that en is

non-vanishing.

So the first statement of the theorem holds. It follows from Theorem II.3.23 and

Porposition IV.2.5 that Ay has topological stable rank one. o
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