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Proof:  We first show part 1. Let
A=W;\ ({asle)e: c € Xi} U {Bs(c)e: ¢ € Xi});
B =W\ ({8(:)z: = €T} UTD);
C=W;\ {z € Wi: ai(z) =0 or f;(z) = 0};
D= {rz: z€ Y;,r € (0,8:(2))}

E=W;\ ({as(z)z: z € W} U {Bi(z)z: z € Wy}).

Let A1 = {ai(c)e: ¢ € X;}, let Ay = {Bi(c)e: c € Xi}, let By = {B;(2)z: z € i}, let Bo = Y5, let
C1 = {z € W;: ay(z) = 0}, let Cy = {z € W;: Bi(z) = 0}, let By = {c;(z)z: z € W;}, and let
E, = {Bi(z)z: x € W;}. Tt is clear that C; € By C A; C E; C Cy. Now, if z € Cy, then we have

z = fi(e)z = (Bi(z) — ai(x)) - (as(2)z) = Bi(i(z)x) - (s (2)) € By,
So Cy C By. Let z € Y;. Let r = (a;(2) + Bi(2))/2. Then rz € X;. So
Bi(rz)(rz) = (Bi(2) — r)(r2) = Bi(2)z,

which implies that £;(z)z € Ay. Thus By C Ag. Then it is clear that Cy € By € Ay C Ey C Cy;
and so it follows that A= B =C = E.

Let € V;, then & = rc for some ¢ € X;, and some r € (a;(c), B;(c)). Thus
r — ay{c) € (0, Bi(c) — a;(e)) = (0, Bi(ei(c)c).

Then re = (r — a;(c)) - (as(c)e) € D. Thus V; € D. Let z € D. Then x = rz for some z € Y;, and

some 7 € (0, 3;(2)). So
r—Bi(2)/2 € (-Bi(2)/2, B:(2)/2) = (ai((B:(2)/2)2), Bi((B:(2) /2)2)).

Also, (8:i(2)/2)z € X;, 50 ¢ = (r — Bi(2)/2) - ((Bi(2)/2)z) € V;. Thus V; = D.
If z € V;, then z = rc for some ¢ € X; and some 7 € (;(c), Bs(c)). We thus have

a;(z) = ay(c) — 7 # 0, and Fi(x) = Bi(c) —r # 0. Thus ¢ C, UCy, s0 z € C. So V; € C. Now
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let z € C. Then oi(z) # 0, and G;(z) # 0. Let 7 = (a;(x) + Bi(x))/2. Then ¢ = rz € X;. Also
(i(e), Bi(c)) = (au(x), Bi(x)) — 7. Since ay;(z) # 0, and B;(z) # 0, so 0 € (a;(x), Bi(x)), and so
—r € (oy(x), Bi(x)) — r = (evi(c), Bi(¢)). Then z = (—r)(rx) € V;. Thus V; = C. Part is 1 proven.

For part 2, let ¢ € X;. By part 3 of Lemma II1.3.1, we have 8;(c) — a;(c) > o. Since
a;(c) = —Bi(c), we have a;(c) # 0, and B;(c) £0. Soce C=V,.

Part 3 follows immediately from part 1 and part 2 of Lemma I11.3.1. Part 4 follows from
part 1 and part 5 of Lemma II1.3.1. Part 5 follows from part 1 and part 6 of Lemma II1.3.2.

For part 6, let z € Z¢. Then z € W; for some j € {1,...,N}. So a;(z) = az) < 0 <
B(z) = Bi(x). Therefore z € V.

For part 7, let {z,} be a sequence in V; N Z¢ that converges to z for some x € Z°. Since

V; C W, we see that z € W;. Since = € Z¢, ay(z) # 0 and Bi(x) #0. So z € V;. O
Lemma II1.3.5. Leti,j € {1,...,N}. Then m;(V;N'V;) is closed in X;.

Proof: ~ We only need to show that m;(V; N V;) is closed in Xj;; the other statements follows from
symmetry. If V;N'V; = @, then we are done. So assume that V; NV, # &.

Let {wy} be a sequence in 7;(V;NV;) that converges to some w € X. Since X; is compact,
w € X;. Choose z, € V;NVj such that m;(z,) = w,. But V;NV; C WiﬂW;, which is compact,

s0 zn, has a subsequence, say {y}, that converges to some y € W; N W;. We claim that

(@i (¥), Bi(¥)) N (o5 (y), B; () # 2.

Suppose that (c(y), Bi(y)) N (@5 (1), (3)) = 2. But 0 € [os(y), Ai(w)] N o), B ),
so either B;(y) = a;(y) = 0 or as(y) = B;(y) = 0. First assume that 8;(y) = o;(y). Then we
have Bi(yn) — oj(yn) — Bi(y) — a;(y) = 0. Now, y, € Vi NV}, s0 Bi(yn) > 0 and o;(yn) < 0
for all n > 1. Then Bi(yn) — a;(yn) > 0 for all n > 1. For each n > 1, let 2z, = o;(Yn)¥n.
Then R(2,) < Bi(yn) — @j(yn) — 0, which contradicts the fact that R > . Similarly, we get a
contradiction if we assume §;(y) = a;(y). Therefore (o (y), B:(y)) N (o; (), B; () # @.

Let 7 € (ci(y), Bi(y)) N (5(y), Bj(y)). Then ry € ViNV;. Now, yn — y, 50 o4(yn) — i(y),
and B;i(yn) — Bi(y). Passing to a subsequence if necessary, we can assume that r € (o;i(yn), Bi(yn))
for all n > 1. Then ry, € V; for all n > 1, and so m;(ry,) — mi(ry). But m(ryn) = mi(yn) — w, so

w = m(ry) € m(V; NV;). We have shown that m;(V; N'V;) is closed in Xj. O
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Notation III.3.6. We fix the following notation for the rest of the chapter. For each z € X, let

T ={r e R: rz € Z}. Then T* is an infinite discrete set, hence countable. So index T as
c<af, <al 1< <ali<ag<al << ag g < g <ol

Also note that for each n € Z, we have a{ —af} > 0. Fori € {1,..., N} and for each z € V;, let

Ve ={rz: r € (ai(2), Bi(x))} = (cul=), Bilz)) - =
The following lemma shows that the sets V; are ordered in the correct order.

Lemma II1.3.7. Let k € {2,...,N}, and let z € Vi. Suppose that T* N [ag(z), Br(z)] contains 3

or more elements. Then Z°NVF =L (VENV) N Ze.

Proof: Let T = T* N [og(x),Bk(x)]. Then for some m,! € Z with m < I, there exist
s 051,07 € fou(z), Be(x)) such that ap(z) = af, < afq < -+ < af = Pi(z) and
T={a},a% ,...,af}. Foreachn € {m,m +1,...,l — 1}, let z, = alz.

Then for each n € {m,m +1,...,1— 1}, we have
R(zn) = af 1 —ay < (Be(z) — ag(z)) — 0.

We claim that for each n € {m,m +1,...,1 — 1}, there exists k, < k such that z, € ¥}_. So fix
ne{mm+1,...,1—1}

Now Yy =Y, ; for some 1 <7 < ny and some 1 < j < ng. Also, Y;= Z;NZi C Z; = Tt
for some 1 < {; < ngr. See Lemma II1.2.2, Notation III.2.3 and Notation II1.2.5 for the definitions
of Z;, Z%,Y; j, T' and ng. If y € Wy, then ax(y)y € Yi € T%, and

Br(v) — e (y) = B (o (w)y) = Rlaly)y) € (——(tj ;61)0, i—g} |

Then {Ok(y) —ox(y): y € Vi } C [(—tj—l_ﬁl)—”, %’] . In particular, Gi(z) —ax(z) € [(—til_ﬁﬁ, 51%] . Thus

R(z) < (Br(x) — ax(@)) —o < tf_g e %

Then there exists some h with 1 < h < t; such that R(z,) € ((h_lé)a, ’{—g} , which implies that

zn € TP, In particular, T" is not empty, hence it is relabeled as Z¢ for some d < j (see Notation
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I11.2.3). So z, € Y, for some 1 < ¢t < ny. From the definition of ¥ for s € {1,...,N} (see
Notation III.2.5), it is clear that Y; j, = Y%, for some k,, < k. This proves the claim.
Now, if y € V¥ N Z¢, then there exists some r € (ay,al, ) such that y = rz. Then
r—ap € (0,al 1 —a2) = (0, R(2,)). So we have
k—1

y=rx=(r—oi)(alz)=(r—al)z, € Vg, C U Vi.

i=1

Lemma IIL3.8. Letk € {2,...,N} and let z € Vi 0 (U5 V4) - Then

k—1
zenvE=|JWEnvi)nze

i=1

Proof:  Note that T = T* N [a(z), Br(2)] contains 2 or more elements. First suppose that T
contains only 2 elements. Since & € Vi, we see that 0 € (a(2), Bk(x)). Also (ar(x), Br(z))x C Z¢
by assumption, so we see that x = 0- z € (o (z), Bx(z)) - © C Z¢. Then we have (ax(z), fr(z)) C
(afz), B(z)) C (ey(z),Bi(x)) for every i € {1,...,N} such that z € V;. Since z € V; for some
1 <i <k, we have V¥ = (ar(z), Bk(z))z C (a;(z), Bi(z))x = V. Then we are done.

If T contains 3 or more elements, then we are done by Lemma II1.3.7. [

II1.4. Properties of @;, F®*) and G

Now we define the subspaces G; of R x X which will be used to define the components of

the stable recursive subhomogeneous decomposition of Az.

Notation I11.4.1. For each i € {1,..., N}, let
Gi={(rz) eRx X:z €V, —r € (a;(x), Bi(x))}. - (IIL3)
For each k € {1,...,N — 1}, let

k
FO® =y (Vk+1 nlJ v;-) : (111.4)

i=1

Note that by Lemma IIL.3.5 the set F(®) is closed in Xj1. For each ¢+ € {1,...,N} and each
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F C Xi, let
Gir = {(r,s¢): c€ F,s € (a;(c), Bi(c), s —r € (ai(c), Bi(c)) }- (I1L.5)

Note that G; = G, x,. (Lemma II1.4.4 part 1.) For each k € {1,...,N — 1}, let
G®) = Gpyr . (I11.6)

The subsets G; of R x X defined above are in fact subgroupoids of the transformation
groupoid R x X. For each %, the subgroupoid G; is contained in (R x X)“Zf, where (R x X)“Z is the
set of all elements of R x X whose sources and ranges are both contained in V;. Due to minimality
of the action, the subgroupoid (R x X )“2 is too large. The subgroupoid G;, in some sense, is the
largest continuous piece in (R x X )52 See [13] for more details about groupoids.

Recall that Gz = {(r,z): x € Z¢,—r € (a{z), B(z))}.
Lemma I11.4.2. G, C Gz.
Proof:  First of all, we know that Y is closed in X. By Lemma III1.2.6, for all z € Y7, we have
R(z) = f1(z), and so by Lemma II1.3.4, we have

Vi={rz:zeY,r€(0,8:(2))} = {rz: z€ Y;,r € (0,R(2))} = W; C Z°.

Then if (r,z) € Gy, we have z € Vi = W1 C Z°¢ and —r € (a1(z), Bi(z)) = (a(z), B(z)), since
ailw, = alw,, so (r,z) € Gz, and thus Gy C Gz. O
Lemma II11.4.3. Gz C Y, Gi.

Proof:  Let (r,z) € Gz. Then z € Z¢, and —r € (a(z),B(z)). So z € V; for some 1 < i < N.

Then z € Z¢ N V; implies that a;(z) < a{z) < —r < f(z) < Bi(z). So (r,z) € G,. O

Part 2 and part 3 of next lemma essentially show that G; r is a subgroupoid of R x X for

1€{l,...,N} and F C X,.
Lemma I11.4.4. Leti € {1,...,N}. Then the following hold:

1. Gy ={(r,tc): ce X;,t,t —r € {ay(c), Bilc))}.
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2. Let F C X;. Let ¢1,c9 € F. Let rq,t1,79 and ty be real numbers that satisfy
t1,t1 — 71 € (as(cr), Bilen))s

to,ta — 9 € (04(c2), Bic2));

and

ticy = (ta — r2)ca.

Then (11 + ra,t2c2) € Gy, and (=71, (t1 —r1)c1) € Gip. Let s: R x X — X be defined by

(r,x) — x. Then G p = G; N s‘l(ﬂi’l(F)) and G; g has compact closure.

3. If FC X;, ce Xy, t € (as(e),Bi(c)), and ~r € (as(c), Bi(c)) — t, then (r,tc) € Gir if and
only if c € F.

4. If FF' C X;, then G; rupr = Gi,rp UG and Gy par = Gor N Gy .

Proof: Part 1 is clear.
Now we show part 2. Since (ri,tic1),(re,tac2) € Gy p, we see that ¢;,co € F, that
ti1,t1—71 € (ai(cl),ﬂi(cl)), and that t9,t0 — 19 € (ai(CQ),ﬂi(Cg)). Now t; —7r € (ai(cl),ﬂi(cl))

implies that

—r1 € (as(er), Bi(er)) — t1 = (au(t1cr), Bi(trcr))

= (ai((t2 — r2)e), Bi((t2 — r2)c2)) = (au(c2), Bilc2)) — (t2 — r2).
So toy — (r1 +12) € (ai(e2), Bi(e2)) and (r1 + ro, tacs) € Gy p. Also,
ti1—1r € (ozi(cl),,(i‘i(cl)) and (tl — 7‘1) — (-7‘1) =1 € (ai(cl),,(i‘i(cl))

imply that (—rq, (t1 — r1)e1) € Gy, F.
To see that G; r is pre-compact, note that G; p C [-M, M] x X.

Let (r,tc) € Gy p. Then c € F and ¢,t — r € (a;(c), Bi(c)). Also,

mi(s(r,tc)) = m;(tc) = m(c) = c € F.
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So Gir C GyNs~ w7 Y (F)). Let (r,z) € GyNs~Ynw; '(F)). Then z € V; and —7 € (os(), Bi(z)).
Therefore z = tc for some ¢ € X; and some ¢ € (a;(c), B;(c)). Thus m;(s(r, z)) = m;(tc) = mi(c) =
c € F. Since

—r € (a(z), Bi(z)) = (ai(te), Bi(te)) = (a(c), Bi(c)) — t,

we see that ¢ — r € (ay(c), Bi(c)) — s, and so (r,z) = (r,tc) € GiF.

For part 3, (r,tc) € G;, r implies that there exists ¢’ € F and t/,t' — " € (o;(c), B;i(c)) such
that (r,tc) = (v, t'c’). Then ¢ = m(tc) = mi(t'c’) = ¢’ € F. Thus (r,tc) € G; r implies that ¢ € F.
The other direction is trivial.

Let F, F' C X;. Then

Gi,rur =GiNs™Hm (FUF")

=G N[sT w7 (F)Us T a7 (F))] = Gip UG .

Also, since (r,tc) € G, pnp if and only if ¢ € F'N F', if and ounly if (r,tc) € G; r N G; 51, part 4
follows. O

Corollary II1.4.5. For eachi € {1,...,N} and each E' C X;, if F' is closed (open) in X;, then

G r is closed (open) in G;.
Lemma II1.4.6. Leti € {1,...,N}. Then G;N Gz is closed in Gz.

Proof: ~ Let {(rn,zn)} be a sequence in G; N Gz that converges to some (r,z) € Gz. Then
Tp € V;NZt foralln > 1, and z € Z° By part 7 of Lamma I11.3.4, we have x € V;. Since x € Z¢,
and since (r,z) € Gz, we see that —r € (a(z), (z)) C (a;(z), Bi(z)). Thus (r,z) € G;, and so

G; NGz is closed in Gz. O

Lemma I11.4.7. Letk € {1,...,N—1}. Then for alli € {1,...,k}, we have G;NG®) = G;NGry1;

and Gz N G; NG¥) is closed in G NGy, in G; NGz, and in Grr1 NGz,

Proof: TFixke{l,...,N—1}, and fixi€ {1,...,k}. We first show that G;NG*) = G; N Gr41.
The inclusion G; N G*) C Gy N Gy is clear. Let (r,xz) € G;N Giy1. Then by the definition of
sets G; (Notation I11.4.1), we have z € V; N Viey1. So met1(8(r, 2)) = mr41(z), which is contained

in 44 1(Vi N Viey1) € F®), Thus (r,z) € G¥),
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Now we claim that if 4 is any topological space, and B,C, D C A are arbitrary subspaces
such that B is closed in C, then BN D is closed in C' N D. To prove this, since B is closed in C,
there exists F' closed in A4 such that FNC = B. Then BND = FNCND is closed in CND. This

proves the claim.
Now we know that G;NGz is closed in G z, and Gx1+1NGz is closed in Gz. So G;NGr11NGz

is closed in Gz. Then by the claim above,
GiNGr1 NGz = (Gi NGrr1 N Gz) NG;

is closed in G; N G z. Similarly G; N Gry1 NGz is closed in Ggy1 NGy
Then by the first statement of the lemma, Gz N G; N G¥) is closed in G; N Gz, and in
Gr+1NGz. But then Gz NG, NG® = (GzNGiNG®)N G® is closed in G® NG NGz =
G*) N Gy. O
Lemma II1.4.8. Letk € {1,...,N —1}. Then
k k
G®) NGz = U(Gi NnG® N Gz) = U(Gi NGre1 N Gz).

i=1 i=1

Proof:  The last equality of the lemma follows from Lemma II1.4.7. Also it is clear that
k
J@inc®nGz) <P nas.
i=1

We will show that G®) NGz € UF_,(Gin G® N Gy).
Let (r,z) € G® NGz. Then x € Vip1 N Z¢ and —r € (a(x), B(x)). Now consider

Vg = {rz: 7 € (ak+1(%), Bry1(z))}

We first check that V{7, = Viy1 N W;il(ﬂ'k.{_l(m)). It is clear that Vi¥ ; € Vi1 N W;il(ﬂ'k_{_l(m)).
Let y € Vig1 Nwpty (mhe1(2)), let rp = 7‘”"“@)3'{3’““(75), let 7, = SELLWTPeLY) l(y)gﬂ’“ 1) et ¢y = Ty,
and let ¢, = ryy. Then ¢, = mey1(z) and ¢y = mry1(y). By assumption, ¢; = ¢,. Part 3 of
Lemma II1.3.1 implies that 7, € (cu+1(%), Bes1(z)) and ry € (ap41(y), Pr+1(y)), so we have

~7y € (agt1{cs), Pr+1(cz)) and —ry € (art1{cy), Pr+1{cy)). Note that z,y € Vi41 implies that
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arpt1(z) < 0 < Brt1(z) and that agy1(y) < 0 < Bry1(y). Now, if rp — ry > Br41(x), we have

(art1(z) + Bry1(2)) — (s 1(y) + Brs1(¥)) > 26k+1(z), and so

ak+1(Y) + Br+1(y) < ak11(2) — Br+1(z) = art1(cs) — Brta{cs)

= ar+1(ey) — Br+1(cy) = ar+1(¥) — Bre+1(v).

Then fr11(y) < 0, contradiction. Similarly, 7, — 7y, < ay1(z) implies that aeyq1(y) > 0, also
a contradiction. So r; — 7y € (p41(x), Bey1(z)). Thus y = (re —ry)(z) € V), and Vi, =
Vier1 N (Me41(z)). Also, note that if y € ViZ,,, then y = sz for some s € (og41(z), Brr1(z)),

and then

Vit = (@k+1(9): Be1 (0))y = (o4 1(52), Bry1(57)) (57)

= (k+1(z) — 8, Bry1(z) ~ 8)(sz) = V& 4.

Now, (r,z) € G implies that Te+1(T) € Tt (Vk+1 n (Ule V;)) . Thus there exists
Yy € Vizi N (Uf:l V;) such that 7mx11(z) = mey1(y). Then y € Vi, s0 VP, = V& . But by
Lemma 111.3.8, we know that Z° N Ve, = 2°0 (UfZ, V1 N Vi) . So we have 2° N Vg, =
zZ°N (Ui-;l VEan V,;) . Since z € Vi, ; N Z°, there exists i € {1,...,k} such that x € V|{ , NV; C
Vis1 NVi. Then z € V; N Z¢, and then (a(z), B(z)) C (au(z), fs(x)), and so —r € (au(z), Bi(z)).
Thus (r,z) € G;. Hence

k
(rz) eGP NnGznG | J(GinG® NGy).

=1

Lemma II1.4.9. Let k € {1,...,N —1}. Then Ggy1 \ G® C Gg.
Proof:  Let (r,z) € Ggy1 \ G®. First of all, if VLN (U§=1 V;) # &, there exists
k k
yeVE, N (U V;) C Vg1 N (U V,;) .
i=1 i=1

Then m41(z) = mp41(y) € F*). Hence (r,z) € G®). This contradicts our assumption that (r,z)

is not contained in G, Therefore V2, ; N (Ule %) =g.
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Now, if Z°NVZ, =2°N (Ule(VkIH N VJ) , then
k
Z°NVE, =2Z2°nV&, N (U V¢> =g,
i=1

a contradiction. So Vi¥ ; C Z. That is, (ak41(z), Brt1(z))z € Z. Let
w = min{o, fr41(2)/2, —ok41()/2}.

Since z € V41, we have agy1(z) <0 < frt+1(z). So w > 0. Then [—w,w|z C Z. But
([Fw,wjx) N Z C ([—o,0lz)N Z = {x}.

So, because the action is free, w = 0, which is a contradiction. Therefore
k
Z°NVEL #2°N (U Ve N w) .
i=1

By Lemma II1.3.7, the set T% N [og41(2), Br+1(x)] contains only 2 elements, namely
akt1(x) and Pry1(z). Then for all s € (art+1(z), Bet+1(x)), we have sz € Z¢. So z € Z°¢ (because
ap+1(x) < 0 < Bra(x)), ofxz) = art1(z), and B(z) = PBrt1(z). Since (r,z) € Grt1, we have

=1 € (ar+1(2), Be+1(2)) = (a(z), B(x)), and so (r,z) € Gz. O
Lemma I11.4.10. Leti € {1,...,N}, and let F C X; be closed. Then:
1. we have Gy r = {(r,z) € R x W;: my(x) € F, —r € (), Bi(2)]}
2. we have
Gir \Gir ={(r,2) € Gy r: oi(z) = 0}
U{(r,z) € Gir: Bi(z) =0}
U{(rz) € Gir: —7=oy(z)}

U{(r,z) € G, r: —r = Bi(x)}.

3. the set G, g \ Gyr is closed in R x X, and G; r is open in G; p.
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Proof: Let
A={(rz) eER xW;: m(z) € F,—r € [a;(z), Bi(z)]}.

We first show that A is closed. Well, if (r,,,z,) € 4, and (r, z,) — (r,z) for some (r,z) € R x X,
then z € W; and m;(z) € F, because F and W; are closed in X, and because a;(z,) — ai(z),
Bi(zyn) — Bilz), and —r, — —r. Since ~r, € [o(zn), Bi(z,)] for all n > 1, we have —r €
[ai(z), Bi(z)]. Hence (r,z) € A, and so A is closed.

Now let (r,z) € A. Let s = (ai(z) + Bi(z))/2, and let ¢ = sz = m;(z) € F C V;. Since
—r € [ai(z), Bi(x)], there exists a sequence {ry} in (—f;(z), —a;(z)) such that r,, — r. Now since
a;(z) < Bi(z), we see that o;(z) < s < Bi(z). Since a;(x) < 0, we see that a;(z) < o;(z)/(2n) for

all n > 1; since B;(z) > 0, we have §;(z)/(2n) < Bi(z) for all n > 1. Then
a;(z) < a;(z)/(2n) < s/(2n) < Bi(x)/(2n) < Bi(x)

for all n > 1. Thus s/(2n) € (os(x),Bi(z)) for all n > 1. Then (55)x € Wi, os((5)z) # 0, and
Bi((55)z) # 0 for all n > 1. Thus (5;)x € V; for all n > 1. Since —ry, € (ai(z), Bi(z)) for all n > 1,
we have

~rn — 8/(2n) € (au(z), Bi(z)) — 8/(2n) = (ai ((%) “’) > Bi ((%) “’))

for all n > 1, so (rn, + s/(2n), (s/2n)z) € G, for all n > 1. Since
7i(s((rn + 8/(2n), (s/2n)z)) = 7i(z) € F,

we have (r, + 5/(2n), (s/2n)z) € G; F for all n > 1. Since (r, + s/(2n), (55)z) — (r,T), we see
that (r,z) € G; p. Thus part 1 holds.

Let Ay = {(r,z) € G;r: aj(z) = 0}, let Ay = {(r,z) € Gir: Bi(z) = 0}, let A3 =
{(r,z) € Gip: —r =cay(x)}, let Ag={(r,z) €EGip: —7 = fi(x)}, and let A= A;U---UAy. To
show part 2, we only need to show that Gy, p N A =@ and G; pUA = m We first show that

GirNA; =0 forall j€{1,...,4}.
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Note that

Gir={(r,sc) eRx X:ceF,s,s—r € (ai(c),Bi(c))}

={(r,2) € G;: mi(z) € F}.

If (r,z) € G, F, then z € V;, and so a;(z) # 0 and B;(z) # 0. Then (r,z) ¢ A; and (r,z) ¢ As.
Thus 4) N Gyr = @, and Ay NG, r = @. Also, (r,z) € G;r implies that —r # «;(z) and
—7r # Bi(z). Then (r,z) ¢ Az and (r,z) ¢ A4. Thus A3sNG;r = @, and A4 NG; p = &. Then
GirNA=0.

Now let (r,z) € G;p. Then z € W;, m;(z) € F, and —r € [ay(z), B;(x)]. Suppose that
(r,z) ¢ A. Then a;(z) # 0, f;(z) # 0, —r # a;(z), and —r # B;(z). So z € V;, —r € (ay(z), Bi(z)),
and (r,z) € G;. Since m;(z) € F, we see that (r,z) € G; r. Thus T,F = AUG,,F, and part 2 holds.

Now let {(7n,7n)} be a sequence in A; that converges to some (r,z) € R x X. Since G;
is closed, we see that (r,z) € G; r. Then by continuity of a;, we have o;(z) = 0. So (r,z) € 4,
and so A; is closed in R X X. Similarly, A is closed. Now let {(rn,z,)} be a sequence in Ajz
that converges to some (r,z) € R x X. Then (r,z) € G; r. Since 7, = a;(zy,) for all n > 1, since
ai(Zn) — a;(z), and since r, — 7, we have a;(z) = r. Thus (r,z) € Az. So Az is closed in R x X.

Similarly A4 is closed in R x X; and so A is closed in R x X. Then G; r = G; r N A€ is open in

Gir. O
Corollary I11.4.11. Leti € {1,...,N}. Then
1. we have G; = {(r,z) e R x W;: —r € [ai(z), Bi(2)]},
2. we have
Gi\Gi ={(r,z) € Gi: o(z) = 0}
U{(r,z) € G;: Bi(z) = 0}

U{(r,z) € Gi: —r = ()}

U{(r,z) € G;: —r = Bi(z)},

3. the set G; \ Gi,r is closed in R x X, and G; is open in G,.
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II1.5. The C*-Algebra of G;

In this section we will define *-algebra structures and C*-norms on Co(G;) and Co(G¥).
Let f,9 € C(G; ), and let (r,z) € G, r. For each t € [—8;(z), ~a;(z)], (t,z) and (r — ¢, (—t)z)
are elements of G; p (by Lemma I11.4.4), so we can define h: [~3;(z), —ai(z)] — C by h{t) =

f(t,z)g{r — t,(—t)z). Then h is certainly continuous, and hence in L*([—B;(z), —a;(x)]), and so

f__gl((;) ft, zyg(r—t, (—t)x)dt exists. Also, (—r, (—r)z) is also an element of G; r, so f{—r, (—r)z)

exists. Then we can define convolution on G; r by

—a;(z)

(fxg)(rz) = /_ﬂ‘( ) f(t,z)g(r —t, (—t)x) dt, (I11.7)

and involution by

fr(r,z) = f(—r,(-r)x). (I11.8)

We verify through the next three lemmas that the above formulas make Co(G; r) into a *-algebra.
In fact, if we take the groupoid structure of G; r into consideration, the above formulas are the

ones used in the construction of groupoid C*-algebras in [13].

Lemma ITL.5.1. Leti€ {1,...,N}, let F # & be a closed subspace of X;, and let f,g € C(G; ).

Then f * g and f* are continuous. That is fx g, f* € C(G; ).

Proof: Tt is clear that f* is continuous.

Let {(rn,zn)} be a sequence in G, r that converges to some (r,z) € G; r. Let € > 0. For
eachn > 1, let h,,: R — C be defined by h,(t) = f(t,2n)g(rn—t, (—t)z,) if t € [-B;i(zn), —i(zn)],
and h,(t) = 0 otherwise. Then h,, is measurable for each n > 1. Define h: R — C by A(t) =
ft,z)g(r —t, (—r)x) for t € [—Bi(x), —au(x)], and h,(t) = 0 otherwise. Then h is measurable. Let

6 = min { gy, 2 } . Then 6 > 0. Since ai(z,) — ai(z), and Bi(zn) — Bi(z), there
exists M > 1 such that n > M implies that |oy;(z,) — a;(z)| < 6, and |B;(z) — Bi(z,)| < 8. Now, if
t € [—Bi(z) + 4, —ai(z) — 6], then t € [—fBi(zn), —as(zy)] for all n > M’, and ¢ € [-G;(z), —a:(z)].
Therefore

hn(t) = f(t:2n)9(rn — 1, (=t)zn) = f(t,2)g(r — 1, (=7)z) = h(t).
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Since |hn (t)| < || flloollgllco for all n > 1 and all ¢ € [—f;(z) + 6, —a;(z) — 48], and since

£ llollglloo € L ([=Ai(z) + 6, —ci(z) — 8)),
by the Lebesgue Dominated Convergence Theorem, we have

oi(z)—8
/ I () — h(2)] dt — 0.
—Bi(z)+d

So there exists M’ > 1 such that n > M’ implies that

oy (z)—8
/ lhn(t) — h(t)|dt < /2.

Bi(z)+6

Let M" = M’ + M. Then if n > M", we have

—ai(zn) —oi(z)
/ hy (t) dt — / h(t) dt
—Pi(zn) —Bi(@)

—ai(zn)—0
/ (hnt) — h(t)) dt

—Bi(zn)+6

< 26| hnloo + 26]|Alloo +

< 40| flloollglleo +€/2 < €/2+€/2

= €.

So [(f*9)(rn,xn) — (fxg)(r,z)| < e for all n > M”. Thus (f *g)(rn,zn) — (f *9)(r, z). Therefore

f * g is continuous. O

Lemma IIL.5.2. Leti€ {1,...,N}, and let F # & be a closed subset of X;. Let f,g € Co(Gi,F).
Then f *g € O()(Gi,F) and f* S OO(Gi,F)-

Proof: By Lemma II1.4.10, we have

Gi,r\Gir = {(r,z) € Gy r: ai(z) = 0}
U{(r,z) € G;r: Bi(z) = 0}
U{(r,z) € Gip: —7=ay(z)}

U{(r,z) € Gir: —r=p8i(2)}.
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Next we define four different subsets of G; &, which can be thought of as the faces of G; . Define

Ay = {(T’ .’L‘) € T,F ai(m) = 0}7
Ay = {(T’ .’L‘) € T,F 181(:1:) = 0}7

Ay ={(r,z) € Gir: —7=a;(x)},

and

A4 = {(T‘, .’L') c Gi,pi —r= ,81("13)}

To show that f * g, f* € Co(Gy,r), we just need to show that (f * g)|a;, = 0 and f*[4, = 0 for
jed{l,..., 4}

Let (r,z) € A1 U Ay. Either a;(z) = 0 or Bi(z) = 0. Then for all t € [—Bi(z), —as(z)], we
have (t,z) € A1 U As. So f(t,z) =0 for all t € [~5;(x), —a;(x)], and so

— Qg (z)

(f*xg)(r,z) = /_ﬁ.( ) ft,z)g(r —t,(—t)z)dt =0.

Thus (f * g)|a,ua, =0.
Let (r,z) € As U A4. Then either (r,z) = (—a;(z),z) or (r,z) = (—Bi(z),z). So for all

t € [-Bi(z), —ay(z)], we have
r—t= _ai(_’z;) —t= —(Oli(.’ll) + t) = _(ai((_t)z))’
r—t= _ﬁi(:z;) —t = —(,31(.’11) + t) = “(ﬁi((“t)z)%

and so (r —t, (—t)z) € Az U Ay; and then g(r — ¢, (—t)x) = 0. Therefore we have

—a ()

(f % g)(r ) = /_ﬁ_( 0,2 b, () de =0,

Thus (f * g)|a;ua, =0, and so f x g € Co(Gy F).
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Next we consider f*. Now (r,z) € A; U A implies a;(z) = 0 or f;(z) = 0, which implies
that 7 = o;((—r)z) or r = B;((—r)z), which in turn implies that (—r,(—r)z) € A3z U A4. Also,
(r,z) € AsU A4 implies that —r = oy(z) or —r = [;(z), which implies that o;((—r)z) = 0 or
Bi((—=7)z) = 0, which means that (r,z) € 4; U Ap. Thus if (r,z) € G F, then so is (-7, (—7)z),
and so f*(r,z) = f(—r, (—r)z)) = 0. Therefore f* € Co(Gi r). O

Lemma II1.5.3. The set C(G; p) is a *-algebra, and Co(G; r) is a *-subalgebra of C (G F).

Proof: 1t is clear that C(G, r) is a linear space. Lemma IIL.5.1 shows that convolution and
involution are well-defined.

Let f,g,h € C(GiF), let (r,z) € Gir, and let A € C. To simplify the notation, let
a = a;(z) and b = G;(x). It is clear that A\(f * g) = (Af) x g = f * (\g). Now, applying the Fubini

Theorem to interchange integrals, we check that convolution is associative:

-a

[(f * g) x hl(r,z) = / (f * 9)(t, 2)h(r — 1, (—t)z) dt

—b

- / _a( " K 2)glt — s, (—8)a) ds) h(r — t, (—t)z) dt

—b b
= /_;a _;‘1 f(s,2)g(t — s, (=s)x)h(r —t,(—t)z) dtds
- /_; /_;__ (5, 2)9(t, (—S)B)h(r — (t + 5), (—(t + 8))z) di ds

—a; ((—9)x)
— [ fsa) ( / 9t (—8)2)h((r — ) — 1), (~t)((~3)2)) dt) ds
-b -8 ((—s)x)

—a

- . f(s,z)(g* h){r —s,(—s)x)ds

= [f* (g x h)](r,).

Thus convolution is associative. It is clear that convolution is distributive. Now we check that
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involution is anti-commutative:

(f*x9)"(rz) = (f xg)(-, (-7)2)

—ai((—7r)z)
- / £t (=1)@)g(=r —t, (=1 — £)) dt
—Bi((—r)z)

—~(ai(z)+r)
- / £t (=)&) g(—r —t, (= — t)z) dt
—(Bi(x)+r)

—a

= (s — 1, (—1)x) g(—s,{—s)x)ds

So involution is anti-commutative. It is clear that involution is conjugate linear. It is also clear
that (f*)* = f for all f € C(Gir). Thus C(Gyr) is a *-algebra. By Lemma IIL.5.2, Co(Gi,F) is a
*-subalgebra of C(G;,r). O

Next, we will define a family of *-representations of G; r for each i = 1,..., N, and each
F C X;.Foreachie {1,...,N} and for each z € X, let x7: R — R be the characteristic function
of the interval (a;(x), Bi(z)) C R, and define a projection in p? € B(L?(R)) by p?(£) = x%¢&. For

each 4 € {1,..., N}, each nonempty closed subset F' C X;, and each z € F, define
A i Co(Gyp) — B(L*(R))
by, for f € Co(Gir), £ € L*(R), and r € R,
Bi(=)
DO = [ oot (11L.9)
Notation ITL.5.4. For the rest of the chapter, let A7 denote A{ y. for each i € {1,..., N}, and
let A% denote A7, | o, foreach k=1,...,N —1.

Lemma IIL5.5. For eachi € {1,...,N}, each nonempty closed subset F C X; and each x € F,
the map AYp is a *~homomorphism. Further, if f € Co(Gi,r), and if {xn} is a sequence in F that

converges to some x € F, then A[w(f) — Afp(f). Moreover, if f € Co(Gir) and x € F, then
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A p(f) = 0 if and only if f|u, =0, where
Hy ={(r —t,rz): r,t € (i), Bi(z))} = {(t,rz): 7 € (as(z), Bi(x)), 7 — t € (o), Bi(z)}.

Proof: Tixie{l,...,N} and F C X closed for the entire proof.
Let = € F. Linearity of A{  is clear. Now let f,g € Co(Gy,p). Then for all { € L?(R) and
all r € (a;(x), Bi(z)), we have, applying the Fubini Theorem,
Bi(z)

ALr(fxg)(€)(r) = /A( ) X3 (r)xi RE@)(f * g)(r — t,rz) dt

Bi(x) —ay(rz)
= X3 (r)x3 (0)E(t) (/ f(s,rz)g(r —t —s,(=s+r)z) dS) dt

ai(T) —Bi(rz)

fil@) Bi(ra)
= /'( ) Xi ()x3 (£)E() (/( ) f(=s,rz)g(r —t +3,(s +7)x) ds) dt

Bi(z) Bi(z)
= / X3 (r)xi (£)€(2) (/ f(r—s,rz)g(s —t,sz) dS) at
a;(x) ai(z)

i(z) B (96)
/ @) f(r —s,rz)g(s — t,sx)dtds
ai(z) Jay (w)

e Bi()
=/ Fr—s,rz)xi (r) (/ Xi ()§()g(s — t, s7) dt) ds

() i{(z)

Now we show that for all s € R, we have x¥(s)f(r — s,rz) = f(r — s,rz). If f(r —s,rz) =0, then
we are done, so assume that f(r —s,rz) # 0. Then (r —s,7z) € Gy p. So s—r € (a;(rz), fi(rz)) =
(ai(x), Bi(z)) — r, and thus s € (e;(z), B;(z)). Then x¥(s) = 1. So xZ(s)f(r — s,rz) = f(r — s,rx)
for all s € R. Then

Bi(x)

Nr(f 29O = [

Bi(z)
()2 £(r — 5, ra)xE(r) ( / EOED(s — ¢, 52) dt) ds
i(x) o ()

Ail@) Bi(z)
= /A( ) XZ(8) f(r — s,mz)x%(r) (/( | XZ(8)xF(£)E()g(s —t,sz)dt) ds

Bi(x)
- / XE()F(r — 8,7 2)xE (AL p(0)(€)(5) ds

ai(z)

=X r(HEF(@)(©](r)-
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It r & (ou(z), Bi(2)), then AL o (f * 9)(§)(r) = 0 = AT p(F)AE p(9)(€)](r). Thus
wr(f* 9)(€) = X (NN F(9)(©)]

for all £ € L*(R). So AZp(f * g) = AZ o(f)AF p(9). Therefore A; r is multiplicative.
For all f € Co(G;,r) and all &, € L%(R), we have, applying the Fubini Theorem,

2 L (F)(E) ) = /R ME (£ (E) (r)iT(r) dr

Bi(z) -
/R (/.(m) xi (r)xi (@@ f*(r — t,m:)dt) n(rydr

Bi(z) rBi(z)
= [ [ O b e
a;(x a;(z

5 () i (x) -
=[] T )
Bi(z) 1 Bi ()

- / O () / S OEOTE = 7)) dr dt

o () oy (x)

Bi(x) -

- / £(t) ( / ST, tm)n(r)dr) dt

R (s 7) (:E)
~ /R N DM@ dt

= (&, \i,r (f)(m))-

So Af p(f*) = A p(f)*. Thus AJp is a *-homomorphism.

Let f € Co(Gir), and let {z,} be a sequence in F' that converges to z € F. We now
show that | A7%(f) = AF p(f)| — 0. For each n > 1, let xy: R? — R be the characteristic function
of (a;(zn), Bi(xn)) X (i(xn), Bs(zn)) € R?, and let x: R? — R be the characteristic function of
(a;(z), Bi(z)) x (as(z), Bi(x)) C R2. Because B; is continuous on F and because z,, — x, we see
that the sequence {B;(zy)} is bounded. Let D = sup,>; Bi(zs) and let xp: R? — R be the
characteristic function of the square (—D, D) x (—D, D). Since a;(y) = —B;(y) for all y € X,
we see that x, < xp for all n > 1 and x < xp. For each n > 1, define h,: R? — C by

hu(r,t) = f(r —t,rzy,). Also define h: R? — C by h(r,t) = f(r —t,rz).
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It is clear that for all n > 1, either x, > x or x = X». Then either

/Rz ben =X = /R Xn ™ /R X = (2Bi(zn))" — (2Bi(=))*,

or
Lbo=x= [ x= [ xa= @A) - @A)
But in either case [p, [xn — x| — 0, and so
1/2

1/2
len—XIIzZ(/ Ixn—x|2> =(/ Ixn—xl) .
R2 R2

Therefore ||Xnh — xP|l2 < [|Alloo - [ Xn — X2 = 0. Also, for every n > 1, we have |[xphn — xph|* =
XD - |hn — h|2 < 4xp| fll%- Since 4xp|fll%, € L*'(R?) and since h,, converges to h point-wise, it

follows from the Lebesgue’s Dominated Convergence Theorem that ||Xphn — xph|l2 — 0. Then
||X'nh'n - X'nh”Z = ”X'nXDhn - X'nXDhHZ < ”XDh'n - XDh”Z — 0.

Thus we have

[Xnhn = xhllz < [Xnhn = Xnhll2 + [|Xnh — xhl2 — 0.
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Note that x,,(r,t) = xF*(r)x7™(t) and x(r,t) = x¥(r)x2(t). So for each £ € L*(R), we have

IOER(D AN
= [ o) - s ar

- [ Prsee) - xpee)| o

ﬂi(zn)
= / / X (r)xim @)€Y f(r —t,ray)dt
R ai(In)

2

Bi(x)
_ / ENEERF(r — t,rz) db| dr

(s 7] (ZE)

2

2
dr

- | 0@~ [ xtrenire el ar
R [JR R
2
= /}R /R [xn(r, )E@) hn(r,t) — x(r, 0)E@E)A(r, t)] dt| dr
J

/R E(8) [ () (1, 1) — X(r, ), )] dit

S/R[/R li(t)\-\xn("‘,t)hn(‘r,t)—x(?‘,t)h(v‘,t)\dtrdr

S/}R l(/ﬂk [5(t)|2dt)1/2- (/R lxn(r,t)hn(r,t)—x(r,t)h(r,t)|2dt>l/2] dr

< [ [1eopal | [ oot = xtroneope] o
<16 | [ Do (o) =X 0 O e
= [l€11” - [ xnhn — xhll3-
Thus, [A7R(f) = AZ p(HI < lxnhn — xhll2 — 0.
Next we show that for all z € F, if £ € L?(R) is continuous on (a;(z),8;(z)) and
bounded, then Afp(f)(§) is continuous on (a;(z),Bi(x)). Let = € F, and let { € L*(R)

be continuous on (a;(z),B;(z)) and bounded. Suppose that 7, — r in (a;(z), B;(z)). Then

hn(t) = XE@)XF (rn)E®) f(rn — t, 7nx) converges to
h(t) = xi (0)x3 (ME@R)f(r —t,rz)

pointwise on (a;(z), Bi(z)). Therefore, since |hn| < XF||€|lcollflle € L*((cs(z), Bi(z)), by the
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Lebesgue Dominated Convergence Theorem, we have

n—o0 n—oo

lim A7 p(f)(€)(rn) = lim Rxf(t)xf(rn)ﬁ(t)f(rn —t,7nx) dt

- /R XEEXEER) (r — t,72) dt = A p(F)(E)():

Thus Af (f)(€) is continuous on (a;(x), Bi()).

Now, let f € Co(Gir), and let z € F. Suppose that A7 z(f) = 0. Let r € (a4(2), Bi(x)).
Define £: R — C by &(t) = f(r — t,rz) for t € (ay(z),Bi(z)), and zero otherwise. Then &
is continuous on (e;(x),Bi(x)), and £ is bounded. Therefore A7 z(f)(¢) is continuous. Since

A p(f)(€) =0, we have

Bi(x)
0= RO = [ OO —tre)fde= [ i —tro)Par

ai(z)

But t = |f(r —t,7x)|? is continuous on (a;(x), Bi(z)), so f(r —t,rx) = 0 for all t € (ay(z), Bi(x)).
This holds for all r € (a;(z), B;(z)), so f(r—t,rz) = 0 for all r,t € (a;(z), Bi{x)). That is f|g, = 0.
It is clear that if f|m, = 0, then Af o (f) = 0. a

The following proposition is an immediate consequence of Lemma IIL.5.5.

Proposition I11.5.6. For each i € {1,...,N} and each nonempty closed subset F' C X, define
(,Zsi,pl Co(Gi,F) -— C(F, K(L2(]R))) b‘y

bi,7(f)(x) = 2] p(f)-

If F =@, put ¢;r = 0. Then ¢, p is a *-homomorphism such that ||¢; r(f)|| = suPzer ||/\fF(f)||
for all f € Co(Gi,f).

111.6. Stable Recursive Subhomogeneous Decomposition of Az

Notation III.6.1. We fix the following notations for the rest of the chapter. Now for each
i € {1,...,N}, and each closed F C X; define a C*- norm || - ||;,7 on Co{Gyr) by ||flls,r =
supgep ||Af p(f)|- Note that Lemma IT1.5.5 ensures that || ||; 7 is a C*-norm. Let || - ||; = || - ||+, x,,
for each i € {1,...,N}; and let || - |[*) = || |l441 pw for each k € {1,...,N = 1}. If F®) = g,
let || - ||*) be the obvious norm on Co(G).) For each i € {1,..., N} and each closed F' C X;, let
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A; r be the completion of Co(G; ) with respect to || - |;, . For each i € {1,...,N} let A; denote
Aix,, and foreach k € {1,...,N —1} let A®) denote Ajy1,po- Foreach i € {1,... , N} and each
nonempty closed subset F' C X, let ¢; p denote the map in Proposition II1.5.6. It is then clear
that ¢; r is isometric and extends to an injective *-homomorphism from 4; r into C(F,K(L%(R))),
and we will also use ¢; r to denote the extension. Let ¢; denote ¢; x, for ¢ € {1,..., N}, and let

#%*) denote @k1,p00- For each i € {1,..., N} and each nonempty closed subset F' C X, let
Kip = {f € C(F, K(L*(R))): pt f(2)pf = f(z) for all & € F}.

If F =@, then let K; p = 0. Let K denote K; x, and let K®) denote Ky i1, p00-

The C*-algebras A; will be the components of a SRSH decomposition of Az. We proceed
to obtain a SRSH decomposition of Az as follows: We first identify A; with C(X;,K) for each i €
{1,..., N}. Note that Proposition II1.5.6 already shows that Cy(G;) is isometrically *-isomorphic
to a *-subalgebra of C(X;,K). Thus we only need to identify the range of the map, and show that
the norm closure of the range is isomorphic to C(X;,K). Then we glue the *-algebras Co{G;) to
obtain Co(Gz). After the gluing, we extend the gluing to the A; to obtain a decomposition of Az.
Finally, we use the identifications between the algebras A; and the algebras C(X;,K) to obtain a
SRSH decomposition of Az.

The next lemma is a standard result in operator algebra.

Lemma II11.6.2. Let H be a Hilbert space, let {a,} be a sequence in B(H) that converges to some
a € B(H) in strong operator topology, and let {b,} be a sequence in K(H) that converges to some

b € K(H) in the norm topology. Then a,bnal, — aba* in the norm topology.

Lemma II1.6.3. For eachi € {1,... N}, and for each nonempty closed subset F' C X, let K;
be as in II1.6.1. Then we have:

1. K, r is a C*-subalgebra of C(F, K(L*(R))).
2. 9,7 (Co(Gir)) C Ki F.
3. ¢, r(Co(Gir)) = Kip.

4. For each i € {1,...,N}, and for each z € X;, define u;,: L2(R) — L?(R) by u; . (€)(r)
fﬂ:(f)i)(f)z. Then for each i € {1,...,N}, and each z € X, u;, is a unitary, with u}, given

fI
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by uf,(€)(r) = (B:(x))Y/2¢(Bi(x)r). Further, for each i = 1,...,N, if {xn} is a sequence
in X; that converges to some x € X, then {u;z,} and {uj, } converge to wu;, and uj,,

respectively, in the strong operator topology.

5. Let I = (—1,1), let pr € B(L%(R)) be the projection given by pr(€) = xi€, and let
Q: prK(L*(R))pr — K(L*(I))

be the canonical *-isomorphism. For each i € {1,...,N}, and each closed subset F C X,
define ®; p: Ky p — C(F,K(L*(I))) by @; r(f)(x) = Qu} ,f(@)uiz). Then ®;p is a well
defined *-isomorphism for all i € {1,...,N}, and all closed F C X;. (If F = @, take
C(F,K(L*(I))) =0, and &, =0.)

Proof:  Part 1 and part 2 are clear.

Now we show that for each z € F, theset S; = {¢i,r(f)(2): f € Co(Gi,F)} isdensein T, =
{a € K(L?(R)): pfap? = a}. Let If = (ay(z), Bi(x)). Note that T, = pP K (L%(R))p? = K(L?(I7))
is C*-subalgebra of K(L%(R)). Let &, € Co((au(2), Bi(2)). Let E = {(r,tx) e Rx X : t,r—t € If}.
Then E C G 7. It follows from Lemma I11.3.2 that the map h: IT7 x IT — E defined by h(r,t) =
(t —r, tx) is a homeomorphism. (The inverse is given by (r,tz) — (£ —r,t).) Let f”: I xI — C be
defined by f(r,t) = &(t)n(r). Then " € Co(I x I). Let f': E — C be defined by f/ = f" o h~L.
Then f' € Co(E), and f'(r,tz) = f"(t — r,tz) = £(t)n(t —r). Now E is closed in G r, so there
exists f € Co(Gy r) such that f|g = f’. Then for all » € R and all ¢ € L2(I¥) we have

6ur (F)@)Q)r) = Nep(D((r)
= [ - traydr

- /R XENE@)CE)ErIn(E) dt
- / Ce)e(r)ne) dt

R
= (¢, mE(r).

For any Hilbert space H and any &/,n' € H, we use the notation & ® 17 to denote the rank one
operator defined by ( — (¢,7')¢’. Then ¢; p(f)(z) =€ Q®n, and £ ® n € S;. Since C,(I7) is dense
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in L2(I¥) = p?(L?(R)), we see that £ @ € S, for all &,n € p?(L2(R)). Since
{pf () ® pf (m): &,m € L*(R)}

spans a dense subset of T,,, we see that S, is dense in Tj,.

Now we show that for all f € K; p, for all x € F, and for all € > 0, there exists an open
subset U C F containing = and g € Co(G; ) such that for all y € U, we have ||¢; r(g)(y)— f(¥)|| <
e.Let f € K; g,z € F and € > 0 be given. Then, by the paragraph above, there exists g € Co(G; )
such that ||¢sr(g)(z) — f(2)|| < €/2. Now the map y — |¢;r(9)(y) — f(v)| is continuous, so
U={ye F:|¢ir(9)(y) — f(y)|| <e}is an open set containing z. It is clear that for all y € U, we
have ||¢:,7(9)(v) = F (W)l <e.

Now we show that if f € Co(Gir) and h € C(F), then h¢; p(f) € Im ¢;r. Define
h: Gir — C by h(r,z) = h(m;(z)). Then h € C(Gyr), and hf € Co(Gsr). So for all z € F, all
¢ € L*(R), and all r € R, we have

5,7 (RF)(@)(E)(r) = A p(RF)(E)(r)
- /R SN D@ — t,rm) f(r — t, ) de

= [ X0 OOrE) ¢ - tre) i
= @) [ XEEPEOO S~ o) de

= (R(@)AEF(£))(E)(r)
= (h(z)¢s,r (F) (@) (€)(r).

Thus hey,r(f) = ¢i,r(hf) € Im ¢; .

Now we finish the proof of part 3. Let g € K, r, and let € > 0. For each = € F, let
Ve € F be an open subset containing z, and let f, € Co(G, r) be such that for all y € V, we
have ||¢;, p(f2)(y) — 9]} < e. The existence of V, and f, are shown above. Then {V,: z € F'}
is an open cover of F, which is compact; so there exist y1,...,ym such that F = U;n=1 Vy;- Let
{hj:1<5< m} be a partition of unity subordinate to {V;: 1 < j < m}. By what is shown above,
we have h;d; r(fy,) € Im ¢;r for each j € {1,...,m}. Then f = 3570, hi¢s #(fy;) € Im ¢y p.
Now let z € F, and let 1 <j <m. If x ¢ V,,, then h;(x) = 0 and h;(z)||¢s,r(fy,;)(x) — g(x)| = 0;
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and if z € Vj;, then hj(z)||¢i 7 (fy,)(x) — 9(z)|| < ehj(z) Thus, for all z € F, we have

m

= [ (e = oo

I1f(z) =

Z d’zF fyj Zhj .’E)g .’E)
2) i, 7 (fy;)(z) = 9()

Z (x)e=¢e.

Ms

Part 3 proven.

Now we show part 4. It is clear that for each 4 € {1,...,N} and each z € X;, u;z Is a
unitary, and that u; , is given by the formula in the statement. Fix i € {1,...,N}. Now we show
that if z, — = in X;, then u;,, — u;, in strong operator topology, and u;, — u;, in strong
operator topology.

Let z, — z in X;, and let & € C.(R). Since B;(z,) — Bi(z), we have

£(r/Bi(z))  &(r/Bulm))|?

Blw 2 B2 | 0

for every r € R. Suppose that supp £ C [—b, b]. Since §; is continuous and strictly positive on the
compact set X;, it is bounded above by some real number M and below by some real number

L > 0. Then
2 4 X[-mo,m6)(7) - 1€,

- L

{& T/ﬂz -’En)) (T/ﬂz(m))
ﬂz -'E'n 1/2 ﬂi(x)l/z

for all 7 € R. Since (4 x[—ms,my - [€]|%) L~ € L*(R), by the Lebesgue Dominated Convergence

Theorem, we have

£(r/Bi(wn))  E(r/Bi(x))|?

Bi(zn)1/? Bi()*/?

That is, |4z, (€) — vi,z(§)]| — 0. Thus ||usz, (§) — uiz(€)]| — 0 for all £ € Cc(R).

dr — 0.
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Now let £ € L2(R), and let € > 0. Choose 1 € C.(R) such that ||n —¢|| <¢/3. Let N > 1

be an integer such that n > N implies that ||u; 4, (1) —ui,z(1)|| < €/3. Then for all n > N, we have

[,z (€) — wia ()l
< wien (€) = tizn M + ez, (1) = vea (M + lluie(m) — sz (E)]

<€ =nll +€/3+ (1€ —nl =

Thus w;,, — wu;, in the strong operator topology. Since the strong and *-strong operator
topologies agree on the set of all unitaries in B(L?(R)), we have uj, — uj, in the strong operator
topology as well. This proves Part 4.

Now we show part 5. Fix ¢ € {1,..., N} and fix a nonempty closed subset F' C X;. Note
that for all © € F, we have u’p®u, = p;. Now define 4: C(F, K(L%*(R))) — C(F,K(L?*(R))) by
Y(f)(x) = uk f(x)u,. Continuity of y(f) follows from the previous three paragraphs and Lemma
I11.6.2. Tt is clear that ¢ is a *-isomorphism. We claim that ¥(K; ) = C(F,pr K(L*(R))p;). Let
f € K;r. Then

Y(F)(@) = upf(@)ue = uzpf f(@)pf e = puz f()uep € prK(L*(R))p:

for all z € F. Thus ¢(K;, F) C C(F,p1K(L?(R))p;). Now let f € C(F,p1K(L*(R))p:). Then for
all x € F, we have f(z) = pf(z)p = wipPu,f(z)uipfu,. Define g: F — K(L?(R)) by g(z) =

piug f(z)urp?. Then g € K; r (continuity follows from the fact that if z,, — x in F, then p

x
T

in the strong operator topology), and ¥(g) = f. Thus ¥(K; r) = C(F,pr K (L*(R))p;).
Since for all f € K, r and all ¢ € F, we have ®; p(f)(z) = Q([¥(f))(z)), it is clear that

®; r is a well defined *-homomorphism. It is also clear that ®; r is invertible. O

Notation I11.6.4. For the rest of the chapter, let ®; » be the *-isomorphism from Lemma III.6.3.
Use @; to denote ®; x, for each i € {1,...,N}, and use @ to denote @y, pw for all k with

1<k<N-1

Lemma II1.6.5. For each k € {1,...,N — 1}, if G*®) £ @, define Ry: Co(Gry1) — Co(GR)
by Ri(f) = flow; if G*) = @, let Ri: Co(Gry1) — Co(G®) be the zero map. Then for each

ke{l,...,N —1}, the map Ry is a norm decreasing surjective *-homomorphism.
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Proof: Fix k € {1,...,N — 1}. Since G®) is closed in Gy41, the map Ry is a well defined
surjective linear map.

Let f,g € Co(Gry1). Note that if (r,z) € G, then (¢, z), (r—t, (~t)z), (—r, (=r)z) € G®
for all t € (—Bi(x), —a;(z)). Then for all (r,z) € G*), we have

~a(x)
Rlf ) = (o)) = [ 16 2)glr 1, ()

—a; ()
- / Ri(f)(t,2)Rig)(r — £, (—t)a) dit
—Bi(x)

= (Ri(f) * Rx(9))(r, x);

and

R (f*)(r,2) = f*(r,2) = f(=r, (=r)z) = Re(f)(—=r, (-7)z) = Ba(f)"(r,2).

Thus Ry is a *-homomorphism.

Let f € Co(Gr41). Then for each z € F*), we have AF)#(Ri(f)) = AT, (f). Thus

|Re(@)[|® = sup [AF=(Ry(f))]
zeF (k)

sup || Ag+1(f)ll
e F(k)

IA

sup [|Ag+1 ()l = [[flle+1-
z€X;

So Ry is norm-decreasing. O

Lemma I11.6.6. Letk € {1,..., N—1}. For eache > 0, and for each f € Co(G®)) with || f|*) < ¢,
there exists g € Co(Gr+1) such that |\ g|lk+1 < € and Ri(g) = f, where Ry is the map defined in
Lemma II1.6.6.

Proof: Fix k € {1,...,N — 1}. First note that for all f € Co(Gg+1) we have ¢*)(Ri(f)) =

r1(F)|po -
Let € > 0, and let f € Co(G™¥). Extend f to f’ € Co(Gr+1). Let

U={ze X |ppt1(f) ()| <€}
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Then U is an open set in X;. If z € FF*) then

61 (F) @) = 16® Re (SN @ = 18P (£ @) < 6@ D = AP <.

Thus FF) C U,

Let b € C.(X;) satisfy 0 < h < 1, supp h C U, and h|pw = 1. Define ' € C(Gry1)
by h'(r,y) = h(mks1(y)). Then g = A'f’ € Cy(Grs1). Note that ¢ri1(9) = hdrs1(f'). Now, if
z € X;\ U, then ¢ry1(g9)(z) = h(z)dr+1(f')(z) =0; if z € U, then

Il

Ipr+1(9) @) = (@) b1 (f) (@) = b+ (F) (@) <e.

Thus ||gllk+1 = [|¢r4+1(9)]| < €. Also,

Ri(g)(r,z) = W' (r,z) f (r,z) = h{mps+1(z)) f(r,z) = f(r, ).

So Ry(g) = f. O

Lemma IIL.6.7. For each i € {1,...,N}, define Q;: Co(Gz) — Co(Gy) by Qi(f) = fle.ncy-

Then Q; is a norm decreasing *-homomorphism for each i € {1,...,N}.

Proof: ~ We first show that Q; is a *~homomorphism. Let ¢ € {1,...,N}.

By Lemma III.4.6, the set G;N Gy is closed in Gz. Thus we see that Q;(f) € Co(G:NGz)
for all f € Co(Gz). Since G;NGz is open in G;, we see that Q;(f) € Co(G;). So @Q; is well defined.
Linearity of @; is clear.

Let f,9 € Co(Gz). Note that if (r,z) € Gz N G, then (a(z),B(z)) C (ai(z), Bi(x)),
and so for all ¢t € (-f(x),—a(x)), we have (t,z) € Gz NGy, (r —t,(—t)z) € G; N Gz, and
(—r,(—r)z) € G;N Ggz. Thus for all (r,z) € Gz N G; and all t € (—f(z), ~a(z)), we have
Qi(H)(t,z) = f(t,z) and Qi(g)(r — ¢, (—t)z) = g(r — t,(—¢t)x). Then for every (r,z) contained in
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Gz NGy, we have

@U*mm@=U*mmwzﬂgmwmw%x%WMt

—a(z)
= / flt,z)g(r —t,(—t)z)dt
~A(z)

—afx)

=[ Q) (t,2)Qu(9)(r —t, (—t)z) dt

B(=)

—ai(z)
_ / Qi(f)(t,2)Qi(g)(r —t, (—t)z) dt
—Bi(z)

= (Qi(f) * Qi(9))(r, z).

Also, for all (r,z) € G; NGz, we have

Qi(f)(rx) = f*(r,z) = f(=7, (=r)z) = Qi(f) (=7, (=r)z) = Q:(f)*(r, 2).

Now we consider what happens if (7, 2) € G; \ (Gz N G;). Suppose that

(Qi(f) * Qi(g))(r, ) #0

for some (r,z) € G;. Then for some t € (—pg;(z), —ay(x)), we have (t,z) € G; N Gz and
(r-t, (-t)x) € G; N Gz. Thus, by the first statement in part 2 of Lemma II[.4.4, we have
(rz) = (r — ¢, (~t)z)t,z) € GiNGgz. Soif (r,z) € G; \ Gz, then (Q;(f) * Qi(¢9))(r,z) = 0;
and clearly Q;(f * ¢)(r,z) = 0 for all (r,z) € G; \ Gz as well. Thus for all (r,z) € G,
we have Q;(f * g)(r,z) = (Q:(f) * Qi(9))(r,x). Also, if (r,z) ¢ G; NGz, then (—r,(—7r)z) =
(r,z)"1 ¢ Gz NG;. So (r,z) ¢ Gi NGz implies that Q;(f*)(r,z) = 0= @Q;(f)*(r,z). Thus Q; is a
*_homomorphism.

Now we prove that @; is norm-decreasing. Let z € X;, let » € R, and let t € R. If
7 ¢ (0i(), Bi(x)) or t ¢ (ou(z), Bi(z)), then

XF(0)xi (1) f(r — t,rz) = 0= X7 (Ox7 (NQi(f)(r — t,rz).

If r,t € (a(z), Bi(z)), then (r —t,7t) € G;, and then Q;(f)(r —t,rz) = f(r —t,rz). Thus for each
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T € X;, each f € Cy(Gyz), each &€ € L2(R), and each r € R, we have

—a;(z)
AF(@Qi(F(E)() =/_ﬂ_($) Xi (M)xi 0)§)Qi(f)(r — t,rz) dt

—o(x)
- / X ()i E@R) f(r —t,rz) di

—Bi(x)

—ay(z)
=30 [ X0Ese -ty

—a;(x)
=) [ e OWIe ~tray

= x§ (MA@ (E)))(r)
= (7 A (F)P)(E)(r).

Then for each z € X, we have [|A7(Qi (/)| = Ipf A (F)pF Il < [|A=(FII. Thus [Q:()ll: < [If[lr. So

@; is norm-decreasing. O

Lemma II1.6.8. Let H be a Hilbert space. For each n € Z, let p, € B(H) be a projection.
Suppose that pmpn, = 0 for all m # n, and that Y, ., pn converges to 1 in the strong operator

topology. Let a € B(H) satisfy pnapn = app, for alln € Z. Then ||a| = sup,cz ||pnapn -

Proof: ~ We first show that ) ., p,ap, converges to a in the strong operator topology. Let
¢ € H. Then limy_00 F__, pn(€) = £, 50 limy 0o a( X5 __, pn(€)) = a(€). Thus

k k
kli»n;olo Z pnapn(g) = kll.r{.lo Z apn(ﬁ)
n=—k n=—k
k
= klir{:oa ( _Z_kpn(g)> = a(f)

50 )_,.czPnapn converges to a in the strong operator topology.
Now, let £ € H. For each k£ > 1, let &, = Zﬁz_k Pn(€). Then by assumption, & — €. For

each k > 1, we have

k

k k
(€kr Ex) = < > mald) Y pm(5>> = Y (pm(&),pnl®)

n=-k m=—k m,n=—Fk

n

k
= 3 Gal©.pu®) = Y @I

n=—k n=—*k
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Since (€, &k) — ||€]|%, we see that [|€]|? = 3,z IPa(€)]|%. Thus for all £ € H, we have ||€|* =
Y onez 1Pn (©)]12

For each k > 1, let ar = Z::_k prap,. Then we have shown that ay — a in the strong
operator topology. Let R = sup,¢z, ||pﬁapn||. For each n € Z, we have ||prap,| < |la|, so R < ||a.

Now for each k > 1 and each & € H, we have

lae(©I* = Y llpalarE)I®

neEZ
k 2
= Z pn( Z pm“?m(&))
nez m=—k
2
= Z Z pnpmapm(g)
n€Z llm=-k
k
= > llPaapa(8)
n=—k
k
< Y llpnapal®lpe (O
n=—*k
< R? Z I (€)1
n=—*k
< R7Jiell?.

Thus for each k > 1, |lag|| < R. Let B = {b € B(H): ||b|| < R}. Now, ax € B for all ¥, and ax — a
in the strong operator topology. Since B is closed in the strong operator topology, we have a € B,

and so ||a|| < R. d

Notation II1.6.9. Recall from II1.3.6 that for each z € X, the set T® = {r ¢ R: rz € Z} is

indexed by Z in the increasing order:
T°={--<a?,<a®, ,, <-aly<agp<al <---af <---}.

For each z € X and each n € Z, define a projection g € B(L*(R)) by ¢5(£) = X(ag,az, )¢

Proposition I11.6.10. 1. Letr,t € R, and let z € X. Suppose that (r —t,rx) € Gz. Then for
all n € Z, we have r € (ay,a% ) if and only if t € (a},,al ), where of is as defined in

II1.6.9.
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2. For all z € X, and for all n # m, we have ¢%,q% = 0; and Y., g5 converges to 1 in strong

operator topology, where ¢~ is as defined in I111.6.9.
3. For all f € Co(Gz), allz € X, and all n € Z, we have gZA; ()% = Az(f)gZ.

4. For all f € Co(Gz) and all z € X, we have || Az (f)|| = subPpez |g5A:(f)azl, where Ay is as
defined by Equation (1.4).

Proof:  Part 1: Suppose that r € (a%,aZ,,). Then B(rz) = a%,; —r, and a(rz) = af, —r. Since
(r—t,rz) € Gz, we see that t —r € (a(rz), B(rz)) = (a% —r,al; —7). Thus t € (af;,a%, ). Thus
r € (a%,a? ) implies that ¢ € (a%, a},, ). Now suppose that r ¢ (aj,al, ). Then r € (a7, a5, ;)
for some m # n, whence t € (a%,,a%,,,), and so t ¢ (aZ,al ).

Part 2: It is clear that ¢f¢% =0 if m # n. For each k > 1, let ¢z = Z:z_k g=. Then g
is an increasing sequence of projections, hence converges in the strong operator topology to some
projection ¢ (Theorem 4.1.2 in [6]). It is clear that grg = g for all k£ > 1. Suppose that ¢(€¢) = 0 for
some &. Then gx(§) = qrg(§) =0 forall k > 1. So X(az , ,az)§ = 0 for all k > 1. That is f;m_’fk €2 =0
for all k. So € =0. Thus ¢ = 1.

Part 3: Fix f € Cy(Gz), z € X, and n € Z. Let x,: R — R denote the characteristic

function of (af,a% ;). Now, if r € (af,a%,,), then

Xn(T)xn () f(r = t,72) = Xn (8) f(r — t,72)
forallt € R. If r ¢ (a},a%, ), then
Xn(r)xn(8)f(r —t,rz) = 0.

If t € (a%,al,,), then by part 1, we have (r — t,rz) ¢ Gz, and so f(r — t,rz) = 0; then

Xn(T)Xn () f(r —t,r2) = 0= xu(t)f(r —t,7r2). If t ¢ (a, a7y 1), then
Xn(T)Xn () f(r —t,rz) =0 = Xn(t)f(r —t,7T)

also. Thus for all ,t € R, we have X (r)xn(6)f(r —t,rz) = Xn () f(r —t,rz). Then for all r € R
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we have

So grAe(f)an = Ao (f)an-
Part 4: This follows from part 2 and 3, and Lemma I11.6.8. O

Proposition IIL1.6.11. Let Q); be the map defined in Lemyma II1.6.7. Define

N

Q: Co(Gz) — @Co(Gi)

i=1
by Q(f) = (Q1(f), Q2(f),...,@n(f)). Then Q is an isometric *-homomorphism.

Proof:  Since each Q; is a *-homomorphism, so is Q.

Recall that || - ||, denotes that reduced norm on C.(R x X), which contains Co(Gz) as
a *-subalgebra. We now show that ||Q(f)|l = ||fll-. Let f € Co(Gz), let x € X, and let n € Z.
Let 7o € (aj,y,a5). Then roz € V; for some i € {1,...,N}. Let ¢ = m(roz) € X;, let 5o =
(ai(roz) + Bi(roxz))/2, and let s = ro + 8o. Then ¢ = (sg + rg)z = sz. Let xn: R — R be the
characteristic function of (af,aZ, ;). Define x(t) = xn(t + s). We first show that xx§ = x. Let

t € R. First suppose that x(t) # 0. Then t + s € (af;,a; ), and
t+sg € (aﬁ — Toaaﬁﬂ —Tq) = (a(rom),ﬁ(rox)) c (ai(rom),ﬂi(rox)).

So t € (ai(roz) — s0, B(roz) — s0) = (cu(c), Bi(c)). Thus x7(t) = 1. So xF(£)x(¢) = x(£). I x(t) =0,

then X(t)Xf(t) =0= X(t). Thus XX5 = X-
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Let p € B(L?(R)) be the projection defined by p(¢) = x¢. Define v: L%(R) — L%(R) by
v(€)(r) = &(r + 5). It is easily checked that v is a unitary with v* defined by v*(€)}(r) = &(r — s).
Then for all ¢ € L2(R) and all 7 € R, we have

(Vg Ae (f)anv™](€)(r) = [ga e (f)anv™]1(€)(r + 5)
= Xn (1 + 8) A (f)anv* (€)(r + 5)

=X(r) [ GO ONOFr+ 5~ .+ s)e)
= x(r) [ xalt)elt = 5)s(r+ 5~ tyro)de
=X(r) [ xalt+ @) = tire)at

= x(r) [ X(OO = trc)

= x(r) [ XECIOX O £~ tre)de
=X(r) [ XECIXOR OO~ tro) de
=x(r) [ X ORO QU —tore)

= x(r)A{(Q:(1))(p(§))(r)
= (PA{(Qi(MNP)(€))(r).

Thus vgf Az (f)arv* = pA{(Qi(f))p, and hence

lgn e (F)anll = llvan e (Fanv™ll = IpAF(Q:(f))pll

<A@ < Qi ()l < Q-

This holds for all n € Z, 50 [As(f)] = sPncz l22a(f)a2 | < Q(P)|l. This holds for all z € X, so

| fllr = supzex A= (N < HQUAI-
For QNI < IIfll-, we have shown in Lemma I11.6.7 that |Q;(f)|l: < |||l for all i €

{1,...,N} So Q)| = sup{||Q:(NH::i=1,...,N} <[ f]l. Thus Q is isometric. O

At this point, we are almost ready to glue the *-algebras Cy(G;) together to form Cy(Gz).
Before we do that, let us recall some of the notation that we have used in this chapter so far, and

let us fix further notation for the rest of this chapter.
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Notation II1.6.12. For each ¢ € {1,..., N}, the set Co(G;) (G, is defined in Notation II1.4.1)
is a *-algebra; A; is the completion of Co(G;) with respect to || - ||; (|| - ||s is defined in Notation
111.6.1);

K;={f € C(X;, K(L?(R))): p¥f(z)p? = f(z) for all z € X;};

¢i: Co(G;) — K; is an isometric *-homomorphism with dense range (¢; is defined in Notation
I1.6.1); A; & K; via the extension of ¢;; and ®;: K; — C(X;, K(L?(I))) is a *-isomorphism,
where [ is the interval (—1,1) (@, is defined in Notation II1.6.4).

For each & € {1,..., N — 1} the space Co(G®) is a *-algebra (G*) is defined in II1.4.1);
A®) is the completion of Co(G*)) = Co(Gjq1,pt0) with respect to || - [ (]| - | is defined in

Notation III.6.1);
KW =Ky 1 pw = {f € C(FW, K(L*(R))): pif(@)p} = f(x) for all s € FWY;

o™ Co(GR) — KM is an isometric *-homomorphism with dense range (¢*) is defined in
Notation I11.6.1); A®) = K(*) via the extension of ¢®); ®*): K — C(F®) K(L2(I))) is a
*_isomorphism (&) is defined in Notation II1.6.4); the restriction map R : Co(Gr+1) — Co(G™®)
is a norm-decreasing surjective *-homomorphism such that an element with small norm lifts to
some element with small norm.

Let @; be the map defined in II1.6.7, and let @ be the map defined in II1.6.11. Then
Qi Co(Gz) — Cp(G,) is a norm-decreasing *-homomorphism, and Q: Co(Gz) — @il Co(G;) is

an isometric *-homomorphism.

The next statement is used in the decompostion of Co(Gz). The proof is easy and is

omitted.

Lemma I11.6.13. Let X be any locally compact Hausdorff space, and let Fy,...,F, be closed
subsets of X such that \Jl_, F; = X. Let f: X — C an arbitrary function. Also suppose that
fle € Co(F;) for eachi € {1,...,n}. Then f € Co(X).

Proposition II1.6.14. Let E, = Co(G1). For each k = 2,..., N, there exists a *-subalgebra
E, CCo(G) @ ®Co(Gr) and a *homomorphism y_1: Ex_1 — Co(G*—1) such that
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1. Yr_q is norm decreasing.
2. Ex = Ex_1 &y cx-vy Co(Gr) = {(e, f) € Ex—1 ® Co(Gk): r-1(e) = Re-1(f)}-

3. If (fi, -+, fx) € Ex, then for all i € {1,...,k}, we have f; € Co(G; N Gz). (We treat
Co(GiNG3z) as a subspace of Co(G;).)

4. If (f1,+++, fx) € Eg, then for alli,j € {1,...,k}, we have fila.nc;ne, = filaine;nas-

N

- If(f1,-.-, fr) € Ex, then for allj € {1,...,k — 1}, we have (fi1,..., f;) € E;.

Proof:  This is a proof by induction. We first simplify the base case of the induction by making
the first algebra of the gluing process trivial. Fix some zp € Xi. Let FO = {zo} and let
Go =GO = G| jw. It is clear that G = G is a closed subset of G1. Then by Lemma II1.5.3, we
see that Cp(Go) = Go(G®) is a *-algebra with the involution and convolution given by Equations
111.7 and TI1.8. Let Ry: Co(G1) — Co(G®) be the restriction map. Then an argument identical
to the one given in Lemma II1.6.5 shows that Ry is a norm decreasing surjective *-homomorphism.

Now, instead of proving the statemem‘; of this lemma, we prove the following instead, which
is the same as the the statement of the lemma except that the index k ranges from 1 through n
instead of 2 through n. The statement of this lemma follows immediately.

Let Eg = Cy(Go). For each k € {1,..., N}, there exists a *-subalgebra
E, CCo(Gr) @ - & Co(Gk)

and a *-homomorphism ¥ _1: Ex_3 — Co(G*~1) such that
1. k-1 is norm decreasing.
2. By = Ey-1 ®gyct-v) Co(Gr) = {(e, f) € Ex-1® Co(Gr): Y—1(e) = Re—1(f)}-

3. If (fo,..-,fx) € Eg, then for all ¢ € {0,...,k}, we have f; € Co(G; N Gz). (We treat
Oo(Gi n Gz) as a subspace of Oo(Gl))

4. If (fo,.. -, fi) € Eg, then for all 4,5 € {0,...,k}, we have fi|GiﬂGjﬂGz = fj‘Gq‘,nGjﬂGZ'

5. If (fo,..-, fx) € Bk, then for all j € {0,...,k — 1}, we have (fo,..., f;) € E;.
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Induct on k. For the base case when k = 1, let 9o: Eg — Co(G®) be the identity map and let
Ey = {(f,9) € Eo ® Co(G1): ¥o(f) = Ro(g)}. Then conditions 1 through 5 hold trivially. This
proves the base case.

Inductive step: Suppose that for 1 < k < N, there exist E}, and 1;_; that satisfy conditions
1 through 5 in the statement.

If F® = @, then let ¢y, = 0, and let Ex1 = Ex @ Co(Gr41). Then condition 1, 2, 4, and
5 are clear; and condition 3 follows from Lemma I11.4.9.

Now assume that F*) £ @, Then G*) # @,

Define vy, : Er, — Co(G®) by ¢e(fo, ..., fr)(w) = fi(w) if w € G; for some i = 0,...,k,
and 0 otherwise. We first show that for all (fo,...,fx) € Bk, ¥s(fo,-..,frx) is a well defined
function. We only need to show that the definition does not depend on the choice of i. Let
(f1,..., fx) € Ex, and suppose that w € G; N G;. If w ¢ Gz, then f;(w) =0 = f;(w) by condition
3 in the inductive hypothesis. So suppose that w € Gz. Then w € G; N G; N Gz, and then
fi(w) = f;(w) by condition 4 in the inductive hypothesis. Thus ¥, (fo,..., fx) is well defined.

Note that if (r,z) € G*) \ Gz, then for all = 0,...,k, we have (r,z) ¢ G; N Gz; and
then ¥i(fo,..., fr)(r,z) = 0 by condition 3 in the inductive hypothesis and by the definition of
Yr(fo, -5 fr)-

Next we show that if (fo,...,fx) € Ex, then ¥ (fo,..., fx) € Co(Gz N G®). Now we

know, by Lemma I11.4.8, that

k k
G nGz=JGinG¥nGz=JGinG¥ NGy,

i=1 1==0

and by Lemma II11.4.7, that G; N G*) N Gz is closed in G N Gz. From the definition of

e (fo,-- -, fr), we see that

Yi(fos -5 F)lainazne® = filgine zna® -

Now G; NGz N G® is closed in G; N Gz, by Lemma 111.4.7. By condition 3 in the inductive
hypothesis, each f; is in Co(G:NGz). So filg,ngzne® € Co(GiNGzN G(k)). By Lemma I11.6.13,
we have ¥ (fo, ..., fx) € Co(Gz N G®)) C Co(G™)). Thus 4y, is a well defined map.
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Next we show that v is a *-homomorphism. Linearity is clear. Also, 1y preserves
the involution because (r,z) € G; if and only if (—r,(—r)z) € G; (by the first statement in
part 2 of Lemma II1.4.4). Let (fo,..., fx),(g0,---19k) € Ex. Let hy = ¥p(fo,..., fx), let by =
Ye(g0, .-+ » k), and let h = ¥ (fo * go, ..., fr * gx). We only need to show that h = hy x hy. Note
that hg, ks, h € Co(Gz N G®). Let (r,z) € G®. If

—ag+1(w)

(hy + hg)(r,3) = | o (b (D) d

then for some t € (—fBkq1(2), —ar+1(z)), we have (t,z),(r — t,(—t)z) € Gz. Then by the first
statement in part 2 of Lemma I11.4.4, we have (r,x) € Gz. Thus if (r,z) ¢ Gz, then h(r,z) =0=
(hgxhg)(r, 7). Now suppose that (r,z) € Gz. Then by Lemma I11.4.8, we have (,z) € G;NG*INGz

for some % € {1,...,k}. So h{r,z) = (f; * ¢;)(r,z). Also, we have

—agq1(z)
(hy  hy)(r,3) = [ hy(t, @hy(r — 1, (~t)a) dt.
—PBr+1(z)

Ift ¢ (—f(z), —a(z)), then (t,z) ¢ Gz, and then hs(t,z) = 0. So we have

—a(z)

(hf*hg)(r,z)zlﬂ(z) hy(t, )by (r — t, (—£)) d.

Now, (r,z) € GiNGzNG® soz €V ﬁVkH N Z¢. Then for all t € (—a(x),—B(z)), we have
t € (=Bi(z), —s(z)), and t € (=Pr41(x), —ar41(z)), since o;(y) < afy) < 0 < By) < B;(y) for all
j€{l,...,N}and ally € Z¢NV;. Thus for all t € (—B(z), —a(z)), we have (t,z) € GzNG;NG®),
Then by Lemma I11.4.4, (r —t, (—t)z) € Gz N G; NG for all t € (—B(x), —a(z)). Thus we have

—a(z)

(hy+he)(ra) = [ it @t~ (~ta)de.

—B(x)
Now, by condition 3 in the inductive hypothesis, f; vanishes outside of G; N Gz. Then we have

—a;(x)
(b hy)ra) = [ o Fb @)l = () = (fie0(r,2) = i),

Therefore 1) preserves convolution, and so ¥ is a *-homomorphism.
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Next we show that 1, is norm decreasing. Let (fq,..., fi) be an element of Ey, and let

h = r(fo,. .-, fr). Let z € F*) Note that there exist m < n and ag, 0% 1,-.+,a5 € R such that

7% N [ok+1(), Bret1(z)] = {afnaafn-{-li o ant

and agt1(z) = af, <af, <+ <af =Prr1(x). Foreach l=m,...,n—1,let x;: R — R be the
characteristic function of (af, af, ), and let ¢; be the projection in B(L?*(R)) defined by ¢:(€) = x:€.
It is clear that g;qr = 0 if | #£ I’, and that Z?;nlz @ = p§,q- (Recall that pf ; is the projection in
B(L*(R)) defined by pf, (£) = x%,,£.) Then it is clear that A®)»=(R) = p2,  AEMT(h)ph |~ We
claim that

IA®:=(R) || = sup{||gA® = (R)a||: L =m,...,n—1}.

Let | € {m,...,n ~1}. Let r,¢t € R. If (r — t,rz) ¢ Gz, then h(r — t,rz) = 0, and so
xi(r)h(r—t,rz) = 0 = xi(¢t)h(r —t,rz). Suppose that (r—t,rz) € Gz. By Proposition II1.6.10 part
1, we have r € (af,af,,) if and only if ¢t € (af,af, ). Therefore x;(t) = 1 if and only if x;(r) = 1,
and x;($)h(r —t,rz) = xi(r)h(r — t,rz). Thus x;(r)h(r —t,rz) = x;(t)h(r — t,rz) for all r,t € R.
Then for all £ € L2(R) and all r € R, we have

Br+1(z)
A2 (h)qu()(r) = / Xie1(M)xXic1 (Oxa(DE@RR(r — ¢, rz) di

apy1(x)

Br+1(z)
= [ X O b o) d

ag41(z)

Bry1(x)
— () / X1 (M1 EDR(r — t,r)

okt1(x)

= x(r) A (h)(€)(r).
Thus A*)2(h)g, = gA®Z(R) for all | € {m,...,n —1}. Then it is clear that
OB = g AP = (R 1| = sup{laA D =(B)all: L= m, ..., —1}.

Now we show that for each [ € {m,...,n—1}, we have ||gA**(h)a| < ||(fo, f1,-- ., f&)]|-
Let I € {m,...,n—1}. Since z € F*) there exists o € Viy1 N (Ule W) such that m¢41(z0) = .
Let 7o € (af,af,,). Then roz € Z° NV = Z°NV;7?;. Thus by Lemma II1.3.8, there exists some

i with 1 < ¢ < k such that rox € Z°NV;. Let so = (ai(rox) + Bi(rox))/2, let ¢ = (so + o)z,
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and let s = rg + sg. Then ¢ belongs to X;. We claim that for every real number r, we have

xi(r 4+ 8)x5(r) = xi(r + 8).
Let r € R. If xi(r + s) = 0, then we are done. Suppose that x;(r + s) # 0. Then

r+s € (af,af,,), and then
7+ 50 € (af —70,af,1 — 10) = (a(roz), B(roz)) C (ai(roz), Bi(rox)).
Because s € (ai(rox), Bi(roz)), we have
r € (u(roz) = 0, Bi(ro) — s0) = (u(c), Bi(c))-

So x§(r) =1, and so xi(r + 8)x5(r) = xu(r + ).
Define u: L2(R) — L?(R) by u(€)(r) = &(r + s). Then u is a unitary with u* given by
u*(&)(r) = &(r — s). For all £ € L2(R), and for all 7 € R, we have

a8 ()] (€)(r)
= [@ P * (R)qu)(€)(r + )
= xu(r + NE(Rgr* (€))(r + 5)
=l +9) [ X+ P O O+ 5 =t + )a)
— xi(r+ ) /R Xes (1 + X (X (OE(E = sYR(r + 5 — &, (r + 8)z) dt
= +5) [ s+ OXEn(E+ Pt + SO o) e
= xi(r + ) /]RXZ (t+ 8)E@)h(r — t,rc) dt
= xlr+5) [ XX + SO ~tre)dr

Now for all r,t € (a;(c), Bi(c)), we have (r — t,7¢c) € Gy, so h(r — t,rc) = fi(r — t,rc) for all

r,t € (ai(c), Bi(c)). Then, letting p be the projection in B(L2(R)) given by p(€)(r') = xi(r'+8)é(r),



113

we have

[ugA®® (h)qru*](€)(r) = xa(r + 5) Axf(r)xf(t)p(ﬁ)(t)fi(r —t,rc)dt

= xu(r + )X (fo) (p(€))(7)
= [pA{(f:)p)(E)(r).

Thus ugA®® (h)qu* = pA¢(f;)p. Then

1ax® (Rail| = llugA®* (R)qru*|| = |pA(f:)p

<IN < M1fells < M1CFos - - Sl

Thus [|A®2(R)|| < |(Fos-- -, fx)| for all z € F®) | and so

1o, -, Fi) 1 = 1RI® < N1 (for -, Fol

So 1 is norm-decreasing.

Now, let
Eyy1 = By gy a0y Co(Grt1) = {(e, f) € Ex © Co(Grta): ¥r(e) = Be(f)}-

Condition 5 is clear.

Now let (fo,..., fx+1) € Ext1. By condition 5 and inductive hypothesis (condition 3),
Jfi € Co(G;NGg) for all i = 0,...,k. To show that fry1 € Co{Grt1 N Gz), we only need to
show that fr11 vanishes outside Gz, since fry1 € Co(Gi+1) and Gz N Gg1 is open in Giy;. Let

w € Gpq1 \ Gz. Then by Lemma 111.4.9, w € G*), and

Set1(w) = Ri(fier1)(w) = v(fo, .- -, fr) (w).

Ifwée G forall e =0,...,k, then ¥r(f1,..., fi)(w) = 0 by the definition of ¢%. Suppose that
w € Gy for some i € {0,...,k}. Then ¥r(fo,..., fr)(w) = fi(w). But f; € Co(Gz N Gy), so

fi(w) = 0. Thus fx4; vanishes outside of Gz, and so fr41 € Co(Gz NGk41). So condition 3 holds.
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Now we show that condition 4 holds. Let (fo,- .., f&, fx+1) be an element of Ey4,, and let
i,7 € {0,...,k+1}. Without loss of generality, assume that ¢ < 7. If j < k41, then by condition 4
in the inductive hypothesis and condition 5, fi|a,na:nc; = fileznaing;- So assume that j = k+1.
Le£ w € GzNGiNGxy1. By Lemma II1.4.7, if i > 1, then we have GzNG;NGyyy = GzNG;NGH),
Also,

GzNGoNGry1=GzNGNGINGrp1=GCGzNGNGLNGR =Gz nGonGHR,

Then
Fer1(w) = Re(frer1)(w) = Ye(fr,. .., fi)(w) = fi(w).

So fileznGinGyi1 = fr+1lazncinGy,,- This proves condition 4 and finishes the proof. O

Lemma II1.6.15. For each k € {1,...,N}, let Qk be the map defined in Lemma II16.7 and
let Ei be the algebra defined in Proposition II1.6.14. For each k € {1,...,N}, define a map
pk: Co(Gz) — @le Co(Gy) by pi(f) = (Q1(f), ..., Qr(f)). (Note that pn s the same as the map
Q defined in Proposition I11.6.11.) Then for each k =1,...,N, we have Im p, C Ey. Further, py

is an isometric *-isomorphism from Co(Gz) onto En.

Proof:  To show that Im py C Ej, induct on k. This is clear when k = 1, since p; = @1 and
E, =Co(Gh) = Co(G1NGg).

Let k satisfy 1 < k < N, and suppose that Im py C Ey. Let f € Co(Gz). Then pi(f) € Ek.
Let 1f; be the map defined in Proposition I11.6.14. Let w € G®). If w ¢ Gz. Then (o (f))(w) =
0 = Ry (Qr+1(f))(w). Suppose that w € Gz, then w € Gz N G*). By Lemma II1.4.8, there exists

some i with 1 <4 < k such that w € G; NGz N G*), Then

b (e () (W) = Pr(Q1(f), - .., Qu(N))(w) = Qi(F)(w) = (flaingz)(w) = f(w),

and

R (Qrr1(N)(w) = Qrar(F) (W) = (flewanez)(w) = fw).

Thus ¥ (pk(f)) = Be(Qk+1(f)), and so pe41(f) = (px(f), Qk+1(f)) € Egy1. Thus Im pry1 C

Erp1.
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Next we show that py is an isometric *-isomorphism. First of all, py = @ is an isometric
*-homomorphism. So we just need to show that the range of py is En.

Let (f1,...,fn) € En. Define f: Gz — C by f(w) = fy(w) if w € G;NGz. We first show
that f is well-defined. Well, we know that Gz = Uf;l Gz N G; by Lemma I11.4.3, so f(w) exists.

Suppose that w € G; N G; N Gz. By Proposition II1.6.14, we have

filw) = (filcine;ne,) (W) = (filaingne, ) (W) = fi(w).

Thus f is a well defined function. It is clear that f|g,nc, = filezne: € Co(GiNGz).

Now G; NGz is closed in Gz for all 4 € {1,..., N} by Lemma II[.4.6. Applying Lemma
I11.6.13 to Gz, G1 N Gz,...,Gy NGz, and f, we see that f € Co(Gz).

Finally, we check that pn(f) = (f1,...,fn). Let 1 <{ < N, and let w € G;. f w ¢ Gz,
then fi(w) =0 = Qi(f)(w); if w € Gz, then fi(w) = f(w) = Q:(f)(w). Thus f; = Q;(f) for all
t=1,...,N, and so

pN(f) = (Q1(f),--., QN () = (f1,-- ., fN).

Hence py is surjective.

This finishes the proof. O

The previous two lemmas give a recursive decomposition of Co(Gz) with components
Co(G;). Next we use the fact that Az and A; are closures of, respectively, Co(Gr) and Cp(G;) in
C*(X,R) to extend the decomposition to Az with components A;. We need a technical lemma

first.

Lemma I11.6.16. Let B, D, and F be C*-algebras. Let A,C and E be dense *-subalgebras of B, D,
and F, respectively. Let pa: A — F and ¢¢o: C — E be norm-decreasing *-homomorphisms. Let
G=AdpC={(a,c) e A®C: ¢a(a) =¢c(c)}. Let pp: B — F and ¢p: D — F be continuous
ertensions of ¢4 and ¢¢, respectively. Let H = B®r D = {(b,d) € B® D: ¢p(b) = ¢p(d)}.
Suppose that ¢¢ is surjective, and that for every € > 0 and every e € E with ||e|| < ¢, there exists

¢ € C such that ¢o(c) = e and ||c| < e. Then G is a *-subalgebra of H, and G = H.

Proof: Tt is clear that G is a *-subalgebra of H. Let (b,d) € H, and let ¢ > 0. Since A is dense

in B and C is dense in D, there exist a € A and ¢ € C such that |Ja — b|| < €/4 and |c—d|| < €/4.
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Let e = ¢p4(a) — ¢c{c). Then
lell < ll¢a(a) — B (B)|| + ll¢n(d) — ¢c(c)]| < e€/2.

By assumption, there exists f € C such that ||| < €/2 and ¢c(f) = e. Then
dc(f +¢) = gc(f) + dclc) = e+ ¢clc) = dala).
Thus (a, f +¢) € G, and
[f+ec—dl <fle—dl +[If]| <e/d+e/2<e

So [[(a,c+ f) — (b,d)|| < ¢, and hence G is dense in H. O

Lemma II1.6.17. For each k € {1,... N}, let Ry: Co(Grs1) — Co(G)) be the restriction map
defined in Lemma I11.6.5. Let Dy = Ay, and let Ry: Apy1 — AW be the continuous extension
of Ri. Then Ry, is surjective. Moreover for each k € {2,...,N}, there exists a *-subalgebra

Dy CBF_, A; and a *homomorphism _1: Dp_1 — A®=D) such that
1. Dy = Dy—y ® 40— Ap = {(a,b): Dy ® Ay p_1(a) = Rp_y (b)}.
2. Ey is a dense *-subalgebra of Dy,

3. Jk‘—l|Ek—1 = 1p_1, where the map Py is the one defined in Proposition I11.6.14 for each
ke {l,...,N -1}

Proof: It is clear from Lemma II1.6.5 that Ry is surjective for all k.

‘We prove other statements by induction on k. The base case is when k = 2. Let Jl be the
continuous extension of 41, and let Dy = {(a,b) € Dy @ Ay: Jl[a) = ﬁl(b)} It is clear that E» is
a *-gsubalgebra of Dy. Condition 1 is clear, condition 2 follows from Lemma II1.6.16 and Lemma
I11.6.6, and condition 3 follows immediately from condition 2.

Suppose that result holds from some k. By the inductive hypothesis, E} is dense in Dy,

80 we can extend Yy : By — C'O(G(’“)) continuously to {Ek: D, — A% Let

Dia1 = {(a,b) € Dy @ Agy1: ¥r(a) = Ri(b)}.
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It is clear that Fy,1 is a *-subalgebra of Dg;. Condition 1 is clear, and condition 2 follows from

Lemma, II1.6.16 and Lemma II1.6.6. Condition 3 is also clear. O

Corollary II1.6.18. Az = Dy as C*-algebras, where Dy is the C™*-algebra obtained in Lemma
11.6.17.

Proof: The map pn: Cy(Gz) — Ep is an isometric *-isomorphism, Co(Gz) is dense in Az, and

Ep is dense in Dy. So py extends to a *-isomorphism from Az to Dy. (1

Lemma I11.6.17 and Corollary II1.6.18 give a recursive decomposition of Az. Now we use
the fact that each of the components A; in the decomposition is isomorphic to the corresponding

C(X;,K) to obtain a stable recursive subhomogeneous decomposition of Az.

Theorem I11.6.19. Let K = K(L?((—1,1))). For each k € {1,...,N — 1}, let
Pr: C(Xrt1, K) = C(FW, K)

be the restriction map. For k € {1,...,N}, let ® be the map defined in Notation IIL6.12. Let
B, = C(X1,K), and let §;: D; — By be given by 8y = ®,0¢1. For each k =2,..., N, there exists
a *-subalgebra of By C @?:1 C(X;, K), a *homomorphism Uy_1: By_1 — C(F(k‘l),K), and a

*_homomorphism 6y : Dy — By such that
1. Bk = Bk_1 @C(F(k—l)’]{) C(Xk,K) - {(a, b) S Bk—l © C(Xk,K): \Ilk_l(a) = ’Yk—l(b)}-
2. O 1is a *-isomorphism.

Proof:  First of all, some routine computation shows that for all £ € {1,...,N — 1}, and all
f € Co(Gip1), we have v, (Rpy1(dr1(£))) = @® (¢ (Ri(f))) , where &y, ¢i, Ry, 2*), and ¢*)
are as defined in Notation II1.6.12. Since Co(Gg41) is dense in Ag41, for each k € {1,...,N — 1},

we have the following commutative diagram:

Ak Fet, Ky, Sen, C(Xk+1, K)

| Ry b e
Aw Y pw 20 opw .

Let 1) and ¥ be the maps obtained from Proposition I11.6.14 and Lemma II1.6.17, respectively.
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Now we proceed to induct on k. When k = 2, let ¥;: B; = C(X,K) — C(F(k—l),K) be
deﬁned by \Ill = ((D(l) o¢(1)) o 1;1 o ((Dl o ¢1)—1 : let

By = B, @C(F(l),K) C(XQ,K) = {(a,b) €B1 P C(XQ,K): \Ill(a) = ”yk(b)};

and let 63: Dy — By be defined by 05 = (P 0 ¢1) @ (P2 0 h2).
We first show that 05 does map into Bs. Let (a,b) € Dy Then Jl(a) = Ry(b). Then

11(®1 0 41(a)) = (20 060 0 da(a) = 8V 04D) 0 Ra()) = (%10 $a(0).

Thus 03(a,b) = (@1 0 ¢p1{(a), 3 0 ¢2(b)) € Ba. So ) maps into Bo.

Next we show that 0, is surjective. Let (c,d) € Ba, and let

(a,0) = ((B10¢1) ' (0), (D20 ¢2) 7' (d)) .

Now, (c,d) € By implies that ¥1(c) = y1(d), that is ¥1((®1 0 ¢1)(a)) = v1((P2 0 ¢2)(b)). But
(@1 0 41(a)) = (0 0 §D) o1 (a), and 71 (@2 0 2)(8)) = (V) 0 §) 0 By (b). So

<<I>(1) o (;5(1)) o(a) = <<I>(1) o ¢5(1)> o Ry(b).

Thus 1;(a) = Ry(b), since 1) o ¢ is injective. Therefore (a,b) € Dy. It is clear that 65(a,b) =
(¢,d). Hence 6, is surjective.

It is clear that @5 is an injective ¥-homomorphism. So 6, is a *-isomorphism.

Now suppose that result holds for some k with 2 < k& < N. Let W: B, — C(F*) K) be
given by ¥y = (8% 0 ¢®)) 0 4y, 0 6%, let

Bit1 = B ©crmr, k) C(Xk+1, K) = {(a,b) € Br ® C( X1, K): Yi(a) = vk(b)},

and let Oxy1: D1 — Bry1 be given by k11 = 0 ® (Prr1 © Prg1)-
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We first show that 041 maps Dgyq to Biy1. Let (a,b) € Dgi1. Then

U4(0k(a)) = (qm o ¢<k>) o ¥i(a)

= ®) o ) (Iz’k(b)) = e ((Pry1 0 Prr1)(B))-

Thus Ox+1(a,b) = (0x(a), (Pr+1 © Fr41) (b)) € Byt
Next we show that 0k, is surjective. Let (c,d) € By, 1, and let (a,b) = (67 '(c), (P41 0

$r+1)”1(d)). Since

T (e) = L(0x(a)) = (@) 0 9®)) () = 1e(d)

= ((@rs1 0 111)(B) = (29 0 ¢®) 0 B (1),

we see that Jk(a) = Ek(b). Thus (a,b) € Dgt1, and it is clear that 0x11(a,b) = (¢, d). Therefore
fr11 is surjective. Since 01 is clearly an injective *-homomorphism, we see that 041 is a

*_isomorphism. O

Corollary II1.6.20. Let Oy and py be the *-isomorphisms obtained in Corollary II1.6.18 and

Lemma I11.6.15, respectively. Then Oy o pn is a *-isomorphism between Az and By .

At this moment, we essentially have a SRSH decomposition of Az. We only need to verify

that the attaching maps are non-vanishing:

Lemma 111.6.21. Let Oy be as in Lemma II1.6.19, let pn be as in Corollary II1.6.18, and let
O, b, Qi be as in Notation I11.6.12. Let f € Co(Gz).

1. We have On o pn(f) = (P10 ¢1 0 Q1(f), P20 da0Qa(f),...,Pn o dn 0 Qn(S))-

2. Let1 <k <N, let x € Xy, and let

Ty ={(r,sz): s € (a(z), Bi(®)),s — € (or(), Br(x))}-

Then Ty = G, (s} is a closed subset of Gi, Ty NGz # D, and O o ¢y 0 Q(f)(x) =0 if and
only if ¢r 0 Qr(f)(z) = 0, which happens if and only if flg,nT, =0.

3. For each k = 2,...,N, and for each x € F* =1, there exists some a € By_1 such that

Uy _1(a)(x) # 0, where Uy_y is the map defined in Lemma I11.6.19.
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Proof:  From the construction of the maps 8; in the proof of Lemma III1.6.19, we see that

On(fiyo s IN) = (@1 0¢1(f1),..., BN 0 dN(fN)),

for all (f1,...,fn) € Dy. From the definition of the maps pi in Lemma II1.6.15, we see that
pn(f) = (Q1(f),...,Qn(f)) for all f € Co(Gz). So part 1 is clear.

It is clear that T, = G, (¢ is a closed subset of G, and T, N Gz is nonempty. From the
definition of the the maps ®;, it is clear that @ o ¢ 0 Qx(f)(z) = 0 if and only if ¢ o Qr(f)(z) = 0.
By Lemma IIL5.5, we have ¢x((Qx(f))(z) = A (Qk(f)) = 0 if and only if Qx(f)|lr, = 0. So
Pr o 0 Qi (f)(x) = 01if and only if Qx(f)|z, =0, if and only if Qx(f)|1,ng, = 0 (Qk(f) vanishes
outside of Gz), if and only if (f|g,ne,)|T.ne, =0, if and only if flr,ng, = 0.

For part 3, we use the notation in Lemma II1.6.19. Note that ¥;_; = ®*Dogpt*—Dog,_10
6; 1. It is clear that there exists some f € C(Gz) such that f|z,ng, # 0. Let a = 8_1 0 pr—1(f).

Then a € Bi_1. By part 2 we have

Upo1(a)(@) = %D 0 p® D o1 (pe_1(f)) ()
= (b(k—l) o} ¢(k_1) o} d;k—l(Ql(f)) CERE Qk—-l(f))(x)
= Yo—1((®x 0 p1(Qk(f))) (2)

= (@k © d(Qr(f))()
# 0.
O
Corollary II1.6.22. Az is a SRSHA.
Proof: By Lemma II1.6.19, and part 3 of Lemma II1.6.21, we see that
(h-1) v
(leBla<Xk7F B ,‘I’k—1,7k—1;Bk)k=2>

is a SRSH system, so Az & By is a SRSHA. O

The following lemma is known as the gluing lemma. It a standard result in point-set

topology, so we will omit its proof.
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Lemma I111.6.23. Let X be a topological space. Let Y and Z be two subsets of X. Let f: Y — C
and g: Z — C be continuous functions such that flynz = glvnz. If either both Y and Z are closed

in X or bothY and Z are both open in X, then the function h: X — C defined by

f(x) ifzeY
hz) =

g(z) fzeZ

18 continuous.
The next lemma will be used in the next chapter.

Lemma 111.6.24, Let

N
(XhBla (Xka F(k—l)a \Ilk—l”yk-ly Bk) k=2)
be the SRSH decomposition for Az asin II1.6.22. Foreach k € {1,... k}, let Hy = GZO(U;“:] G’i) .
For each k with1 <k < N, if I C By is a non-zero ideal, then I N gk(Cc(Hk)) # 0.

Proof:  Define 14: Co(Hy) — Ex by 7e(f) = (flaings))i=1,...k- By Lemma IIL.4.6, for each k
with 1 < k < N, the set Hy is a closed subset of Gz. Hence each f € Co(Hy) extends to some
' € Co{Gz). Thus 7(f) = px(f’), where px is the map in the proof of Lemma I11.6.15. Thus we
see that 7 indeed sends elements of Co(Hy) into Ey. It is clear that 74 is injective. Also, since
GzNG; is closed in Hy, for every 4 with 1 < ¢ < k+ N, surjectivity of 1 follows easily from Lemma
I11.6.23. Linearity of 7 is clear as well.

For each k with 1 < k < n, define gk: Co(Hy) — By by gk = @, o T, where By and 8 are
as in Lemma I11.6.19. We will also use 7 and gk to denote their restrictions to C.(Hg).

Now we proceed by induction. If k& = 1, then there exists a closed subset F' C X; such
that I = {f € By: f|lr = 0}. Then Gy r is a closed subset of G1 = G1 N Gz by Corollary II1.4.5.
If G1,r = Gy, then it is clear that F' = X, which implies that I = 0. Thus F' # X, and so
Gi1,r # G1 = Hy. Then there exists f € Cc(G1) = Cc(Hi) such that flg,, = 0 and f # 0. So
01(f) € 1N 61(Co(Hy)) and 81(f) # 0. Thus the lemma holds for k = 1.

Now suppose that the lemma holds for some k with 1 < k& < N. Let I C Bgyq be a

non-zero ideal. We can assume that I # Bgy1. Then we know that for each 7 with 1 < i < k41,
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there exists a closed subset F; C X; such that

I'={(f1,--»fe+1) € Beg1: filp, =0fori=1,...,k+1}.

First assume that X, \ F® is not contained in Fj,;. (Recall that F*) is the k-th attaching
space.) Now, by Lemma I11.4.6, we know that G;NGz is closed in Gz for every ¢ with 1 < ¢ < k+1.
So Ule(Gi N Gz) is closed in Gz. Thus Uf=1(G,; NGz) is closed in Hyyq, because Hyyq is also
contained in Gz. Similarly, Gz N Gg41 is closed in Hyyq as well. Also, by Corollary I11.4.5, we
know that Gk41,r,,, is closed in Giy1- Thus Gz NGk+1,F,,, 18 closed in G+1 NGz, which implies
that Gz NGrt1,F,,, is closed in Hyyq. Therefore Gz N [Gk+11Fk+1 U (Ui.ll Gi)} is closed in Hy .

If Gz N [Gk+1,Fk+1 U (Uf=1 G,;)] = Hpgy1, then we have, by Lemma II1.4.8 and Lemma
111.4.4,

GzNGry1 = Gr1 NGz N Hyp
k
=Gr1 NGz N le+1,Fk+1 U (U Giﬂ
=1

k
= [Gi41 N Gz N Giy1,Fy,] U [GM NGz N (U Gﬂ

= (GZ N Gk+1,Fk+l) U (G(k) N GZ)
- GZ N (Gk+1,Fk+1 U G(k))

=Gz N Gk+1,Fk+1UF(k)'

Then X1 = F® U Fiyq, which contradicts our assumption that Xit1 \ F(¥) ¢ Fp.1. Thus
Gz N [Gk+11Fk+1 U (Ule Gi)] # Hi11. Then there exists a nonzero element f € C.(Hk41) such
that f|Gzﬂ[Gk+1,pk+1U(Ui-"=1 ¢ = 0. Then 0x+1(f) # 0 and 8x11(f) vanishes on F; for all 1 with
1 S’L S k + 1. Thus I'n 6k+1(CO(Hk+1)) 76 0.

Now assume that Xgyq1 \ F®) C Fypq. Let F = Xgp1 \ F® and let

J={(f1,--.s fx+1) € Brt1: fet1lr =0}

Let P: By1 — Bg be defined by P(f1,..., fi+1) = (f1,..., fx). Then P is surjective (this follows

because the map yi: C(Xgt1, K) — C(F®) K) is surjective) and P|; is injective (this follows
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from the construction of By and the definition of J). Also J is an ideal of Byy1, F C Fiy1, and
I € J. Note that

ker P = {(0,...,0, fr+1): fe+1lpw = 0}.

If I C ker P, then for every a = (f1,..., fk+1) € I, we have fry1|pay = 0 and f; = 0 for every
i with 1 < ¢ < k. But frqq also vanishes on Fy11, which contains X4, \F(’“) as a subset. So
frx+1 = 0. Consequently, we have a = 0. This contradicts the assumption that I # 0. Thus [
is not contained in ker P, which implies that P(I) is a non-zero ideal of Bj. Therefore we have
P(I) N 0,(C.(Hg)) # 0 by the inductive hypothesis. So pick g € C.(Hy) such that g # 0 and
0:(9) € P(I). Now we prove some claims.

Claim 1: Let R: Co(Hg+1) — Co(Hy) be defined by R(f) = f|m,. Then R is a linear

surjection. Also the following diagram commutes:

g
Co(Hry1) —5 Bryt

IR P
Co(Hy) 2 By

It is clear that R is a linear surjection. If f € Co(Hyy1), then
PBr41(f)) = POrr1(re11(f)))

= P(ek-l-l(flGlﬂGza .. 'afle+1ﬂGz))

= P(O(fleinczs--» fleaw), Prat 0 Gka1(flarsnaz))

= 0c(flernGz, - -+ flewnayz)

= 0c(R(f)leinczy- - B(f)lernc)
= On(Ta(R(f)))

= Ou(R(S)).

So Claim 1 is proven.

Claim 2: We have P~Y(P(I)) C {(f1,-+, fr» fox1) € Bri1: frsilpare = 0}.

Suppose that f = (f1,..., fe+1) € P7H(P(I)). Then there exists a = (g1,...,9k+1) € I
such that P(f) = P(a). So {f1,..., ft) = (91, .. gx). Then by the construction of By, we have



124

fiet1lpe = gea1|pao. Therefore fii1|parptd = gk+1|parpto =0, since a € I and F'N F®) C Fiyq.
Claim 2 is proven.

Claim 3: (Recall that the element g is chosen, right before Claim 1 above, to satisfy g # 0
and 5k(g) € P(I).) We have glg, ,, pni, =0 0r Ge1,rp N Hy = 2.

Suppose that G417 NHy # @ and gl ., pna, 7 0. Using Claim 1, choose h € Co(Hj41)
such that R(h) = g. Note that

Grt+1,Fr N Hy = Gr41,r NGz N Giy1 N Hg
= (G}H_l,p n Gz) n (GZ n Gk+1,F(’°>)

=Gz N Gk+1)FnF(k).

So hlg # 0. Then by Lemma IIL5.5, 8511 (k)| po o # 0. By Claim 2, P(6x41(h)) ¢ P(I).

But by Claim 1, P(6x41(h)) = 0x(R(R)) = Ok(g) € P(I). This is a contradiction, so Claim 3 is

k+1,Fnpk)

proven.

Now,

k
Gier1 N[(Grr1,p NGz) UHE] = Gy NGz N l:Gk+1,F U (U Gi):l
i=1

k
= (GzNGrp1,r) U {(GZ N Gre1) N (U Gi)}

= (GzNGry1,r) U(Gz N Gipq,pm)
=Gz N Gk+1,F(’°)UF

=Gz N Giy1.
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So we have

Hip1 = (Gz N Giy1) U Hy
= {Gr41 N [(Gr41,r NGz) U H]} U Hy,
= {Gr41U Hi} N {[(Grs1.7 N Gz) U Hy] U Hy}
= {Gr+1 U Hp} N {(Gr+1,rp N Gz) U Hy}
= [Grt1 N (Grt1,r NGz)] U H

= (Gr41,rNGz) U Hy.

Both Gr+1,r N Gz and Hy, are closed in Hyy;. Also, by Claim 3, regardless of whether or not

Gri1,r N Hy = (Gry1,r N Gz) N Hy is empty, the function g agrees with the zero function on
Gry1,p NHE = (Gk+1,F NGz)N Hy.

Thus by Lemma II1.6.23, g can be extended to some g’ € Co(Hk41) such that ¢|g, ., rnc, = 0.
Then by Lemma III.5.5, §k+1(g’) vanishes on F. So §k+1(g’) € J. It is clear that §k+1(g’) #+ 0.
Also, since g’ vanishes outside of Hy, the support of ¢’ is the same as g, so g’ € Co(Hgy1).
Finally we check that 0x41(¢’) € I. By Claim 1, P(6x41(¢")) = Ox(g) € P(I). So there
exists some ¢’ € I such that P(§k+1 (¢")) = P(g"). But P|, is injective, and both 6j,1(g") and ¢

are in J, so §k+1(g’ ) = ¢g” € I. This completes the proof. O
Corollary I11.6.25. IfI C Az is a non-zero ideal, then I N C.(Gz) # 0.
Proof: Let I C Az be a non-zero ideal. Note that (65 o PN)|Co(Gz) = §N. Since Oy o pn(I) is a

non-zero ideal of By, we see that

0£60no0 pN(I) ﬁgN(Cc(GZ))
=0Onopn({I)NBOn o PN(Cc(GZ))

=0nopn(INC(GZ)).

So INCe(Gyz) #0. O
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CHAPTER 1V

INDUCTIVE LIMITS OF SRSHAS AS C*-SUBALGEBRAS OF C*(X,R)

In this chapter, we show that when X is a compact metric space and when R acts on X
freely and minimally, the crossed product C*(X,R) contains C*-subalgebras that are isomorphic
to simple inductive limits of SRSHAs. These subalgebras are the analogs of the algebras A, =
C*(C(X),uCo(X \ {y})), the C*-subalgebra generated by C(X) and uCo(X \ {y}), in the crossed

product obtained from a free minimal action of Z on a compact metric space X.

IV.1. Definition of the Subalgebra A,

To define the subalgebras A,, we will first need a different description of the set Gz defined

in Notation III.1.10.

Lemma IV.1.1. Let Z be a pseudo-transversal of a free minimal action of R on a compact metric
space. Let Gz be the set defined in Notation III.1.10. For each r € [0,00), let D, = [0,7] - Z, and

for each r € (—00,0], let D, = [r,0] - Z, where we take [0,0] to be the degenerate closed interval
{0}. Then Gz = (U,cr({s} x Ds))°.

Proof:  Let H = (U,er({s} x Ds))*. Let (r,z) € Gz. Then = € Z¢, and —r € (a(z), B(z)),
where « and 3 are the backward and forward entering times for Z, respectively. First assume that
r > 0.If (r,z) ¢ H, then (r,z) € J,cg({s} x Ds), and then x € D, = [0,7] - Z, so there exists
t € [0,7] and z € Z such that = = tz. Then (—t)x = 2z € Z. Since x € Z¢, we see that t # 0, and
s0 —t < 0. Then a(x) > —t by the definition of the backward entering time. But —r > a(z) > —t,
so r < t, contradicting the fact that ¢ € [0,7]. Thus (r,x) € H. With a very similar argument, we
see that (r,z) € H whenr <0. So Gz € H.

Now suppose that (r,z) € H. Then z ¢ D,. First assume that » > 0. Since ¢ ¢ D, =

[0,7] - Z, for all s € [—7,0], we have sx ¢ Z. In particular ¢ Z and (—r)z ¢ Z. Also, a(z) < —r.
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But a(z) # —r, for otherwise, (—r)z = a(z)z € Z. Thus a(z) < —r < 0 < B(z). So (r,z) € Gz.

With a very similar argument, we see that (r,z) € Gz if r <0.So H C Gz. O

Notation IV.1.2. Let Z be a compact pseudo-transversal of a free minimal action of R on a
compact metric space X. For each y € X, let DY = [0,7] -y if » > 0, let DY = [r,0] -y if
7 < 0, where [0,0] = {0}, and let Gy = (U,g({r} x D¥))°. For each y € Z and each 7 > 0, let
B(y,r) = {z € X: d(z,y) <r}, let Z¥ = ZN B(y,r), and let Z¥ = —Z?

Lemma IV.1.3. Using the notation in Notation IV.1.2, for ally € Z, ollr > 0, and oll z € X,

we have

3. ZZN(R-z)=ZY.
4. ZY¥ is a pseudo-transversal, and Z¥ C Z.

Proof: FixyeZr>0andzeX. Let S=R-z)NZ.

Since Z is a pseudo-transversal, we have S = Z. This implies that SN B(y,r) N Z # @,
which implies that (R -z) N ZY # . This proves part 1.

Let z € Z}!. Then there exists € > 0 such that B(z,¢) C B{y,r). By part 1, for all n > 1,
we have (R-z) N Zez/zn # @. So for each n > 1, choose z, € (R-z) N Z:/TL. Now, for each n > 1,
we have B(z,¢/2") C B(z,€) C B(y,r), s0 &, € Z}! N(R-z) for all n > 1. Since d(zn, 2) < /2"
for each n > 1, we see that z,, — 2. So part 2 holds. Then Z¥ = Z_ﬁ - m - m
Since (R-z) N ZY C Z¥, and since Z¥ is clearly compact, we see that (R - z) N Z¢ C Z¥. So part 3

holds. Part 4 follows immediately from part 3. This finishes the proof. O

IV.2. Simplicity and Topological Stable Rank of A,

Notation IV.2.1. For the rest of the chapter, we fix a pseudo-transversal Z, a point y € Z, and
a strictly decreasing sequence {r,} of positive real numbers that converges to 0. For each n > 1,
let Z,, = Z¥ , where Z} is as in Notation IV.1.2, let Gz, be the set defined in Notation III.1.10,

let A, = Co(Ggz,), and let Ay = C,(G,). Note that Z; 2 Z; 2 ---, and that (o, Z, = {y}.
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Lemma IV.2.2. We have
1. Gz, CGz, C - and U, Gz, = Gy.
2. Co(Gz,) € Co(Gz,) C -+ and C(Gy) = U5, Ce(Gz,)-
3. A1 C Ay C - andAy:m.

Proof:  For each r € R, let DY be as in Notation IV.1.2; and for each n > 1, and each r € R,
let D7 be the set D, in Lemma IV.1.1 for the pseudo-transversal Z,. Then by Lemma IV.1.1, we
have Gz, = (U, er({r} x D?))c. We first claim that for all r € R, we have DY =", DZ.

It is clear that for all 7 € R, we have DY C (2, D?. So we just need to prove the other
inclusion. Let » € R. We will only prove the inclusion for the case when r > 0, because the case
when r < 0 is similar, and the case when r = 0 is trivial. Let © € {75, D}. Then for each n > 1,
there exist s, € [0,7] and 2, € Z, such that z = s,2,. It is clear that 2, — y. Since {s,} is a
bounded sequence, we can assume, passing to a subsequence if necessary, that s, — s for some
s €[0,7]. Then z = sz, — sy € DY. Thus ,5; D} € DY¥. So the claim is proven.

Thus (s,z) € (Gy)® if and only if (s,z) € U,cp({r} x Dy), if and only if z € DY, if
and only if z € (5, DY, if and only if (s,z) € (,5,{s} x Dy, if and only if (s,z) belongs to
Mozt (Uper({r} x D)) , if and only if (5,2) € 1,5,(G%,) = (Upss Gzn)c. 80 Upsy Gz, = Gy-
Since D} D D? > - for all 7 € R, it follows immediately that G z, € Gz, €---.Part1is proven.

The first statement of part 2 and the first statement of part 3 follow immediately from
the first statement of part 1. Now let f € C.(G,), and let K be the support of f. Then K C
Gy = U,>1 Gz, Since Gz, is open, and since K is compact, there exists N > 1 such that K C
Un=1 Gz, = Gzy. S0 f € Ceo(Gz,) C U,s1 Ce(Gz,). It is clear that |51 Ce(Gz,) C Ce(Gy)- So
part 2 is proven.

It follows immediately from part 1 and 2 and the first statement of part 3 that A, C
m. For the other inclusion, note that for each n > 1, C.(Gz,) C C.(R x X) is dense in

Co(Gz,) C Ce(R x X) when C.(R x X) has the inductive limit topology, and so C.(Gz,) is dense

in Co(Gz,) in the norm topology. Then for all n > 1, we have A, = C.(Gz,) C C.(G,) = Ay.

The desired inclusion follows. O
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Lemma IV.2.3. If I C A, is a non-zero ideal, then I N C.(Gy) # 0.

Proof:  Since I = |J,,5,(An NI), we know that for some n > 1, IN Ap # 0. Then IN A, is a
non-zero ideal in A,,, so by Corollary I11.6.25, we have INA,NC.(Gz,) # 0. But INA,NC(Gz,) C
INC(Gy), so Ce(Gy)NI #0. O

Lemma IV.2.4. Let U be an open set in R x X. For each n > 1, let R,, denote the return time

for Z,., and for each n > 1 and each z € Z,, let
T? ={(r,sz): s € (0, Ry(2)),s — 7 € (0, Rn(2))}.

Then there exists N > 1 such that for alln > N and oll 2z € Z,,, we have T) NU # @.

Proof: ~ We first show that for each I' € (0,00), there exists m > 1 such that Ry,(2) > T
for all z € Z,,. By Lemma III.2.1, there exists a compact neighborhood K of y that satisfies
[(0,T] - (KNZ)N(KNZ)=@. Let § > 0 satisfy B(y,d) C K, and let m > 1 satisfy r,, < 6. Then

Zm = B(y,rm)NZ C B(y,0)NZ C B(y,0)nZCKnNZ.

So for all 2z € Z,,,, we have

[(0,T]-2]NZ, C[(0,T]- (KNZ)N(KNZ)=2,

and so R, (2) > T.

Now let I C R be a nonempty bounded open interval, and let V' C X be an open set such
that I x V C U. Let ro > 0 be such that I C (—rp,r9), and let sg > 7o be such that sg-y € V. (The
existence of sg is guaranteed by the minimality of the action.) Pick N such that so- B(y,ry) CV
and Ry(z) > so+ 7 for all z € Zy. Note that By < Ry <---.Let n > N. Then s0-Z, C V. Now

let z€ Z,. Then sg-z2€ V. Let t € I. Then —rg < —t < 19, s0

0<sg—ro<89o—t<sg+rg< Ry(2) < Rp(z).

Also R,(z) > 1o+ so > so > 0, so (¢,80z) € T It is clear that (¢,s02) € I x V C U. Thus

M AU + 2. O
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Proposition IV.2.5. Let A, be the C*-algebra defined in Notation IV.2.1. Then A, is simple.

Proof:  Recall that for each n > 1, the set Z, denotes the pseudo-transversal that gives rise
to An. Let I C Ay be a non-zero ideal. By Lemma IV.2.3, we have I N C.(Gy) # 0. So let
0+# feCc(Gy)NI. Let U = {z € Rx X: f(x) # 0}. Then U is open. Use Part 2 of Lemma IV.2.2
and Lemma IV.2.4 to get N such that for all n > N, the function f belongs to C.(Gyz, ), and for
alln > N and for all z € Z,, we have TP N U # @, where T7 = {(r,sz): s,s — r € (0, Rp(2))}.
Now fix n > N.

Let X1, Xq,...,Xm be the compact subsets of X associated with the pseudo-transversal
Zy, as defined in Notation I11.2.5. Let «g,...,a,, be the extensions of the backward entering
times associated with X1,..., X, as obtained in Lemma II1.2.8. Let 31, ..., Bm be the extensions
of the forward entering times associated with X,,..., X,n, as obtained in Lemma II[.2.8. Then
X1,..., X, are the base spaces of the stable recursive decomposition of A, with components
C(X;, K), for i =1,...,m, as in Corollary I11.6.22. For each i € {1,...,m} and each z € X, let
Hf = {(r,sz): s,s —r € (oy(z), Bi(x))}. We claim that HF NGz NU # @ for each i € {1,...,m}
and each z € X;.

Leti€ {1,...,m}, and let z € X;. Let z = o;(z)x € Z,. Then R, (2z) < Bi(z) — ai(z). Let
(r,sz) € TP*. Then (r,sz) = (r, (s+ o4(x))z). Since 0 < s < R, (z), we see that oy (z) < s+ ay(z) <

R, (z) + ai(z) < Bi(z), s0 s + oy(z) € (eu(z), Bi(z)). Since 0 < s — r < R, (z), we have

a;(z) < oy(x) + s — 7 < Rp(2) + o) < Bi(z).

So (r,sz) = (r, (as(z) + s)x) € HF. Thus T} C HY. Then, since T} C Gz, we see that T C
HYNGgz. Thus @ AU NT} C UNHF N Gz. This proves the claim.

To finish the proof, let (fi,..., fm) be the image of f in the recursive decomposition B of
An. Let i € {1,...,m} and let z € X;. We just showed that Hf NGz NU # @. So f|gznc, # 0.
Then by Lemma II1.6.21, we have f;(z) # 0. This holds for all i € {1,...,m} and all z € X;.
So (f1,...,fm) is not contained in any primitive ideal of B, so (f1,..., fm) is not contained any

proper closed ideal B, so neither can f be contained in any proper closed ideal of A,. Therefore

INMA, = A,. This holds for all n > N. So I = {J,_,(INAn) = U,>y4nv = A4y Thus A, s

simple. O
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The next lemma shows that the connecting maps in the direct system (A, t,,), where A,

is as in Notation IV.2.1 and ¢, is the inclusion map, are non-vanishing.

Lemma IV.2.6. Let A, and A, be as in IV.2.1. Let i, Ap — Any1 be the inclusion. For each
n > 1, let XT,..., X[’ be the spaces associated with the pseudo-transversal Zni1 as defined in
Notation III.2.5. Then for eachn > 1, for each k € {1,...,1,}, and for each x € X, there exists
some f € Co(Gyz,) such that vn(f)|T, # 0, where

T, = {(7'7 333): s € ((an+1($)aﬂn+1(x))>3 —T € (a'n+1($)’ﬂn+1(x))},

and where apy1 and Pni1 are the entering times (not the extensions) associated with the

pseudo-transversal Zpi1.

Proof: ~ We know that Gz, C Ggz,,,. We show that T; N G, is nonempty. Because Z, and
Zn41 are pseudo-transversals, there exists some s € (an+1(z), fnr1(z)) such that sz ¢ Z,. Take
r > 0 small enough so that —r € (any1(sz), Bry1(sz)), and that (—2r,2r) - (sz) C ZS. Then
(rysz) € Gz, NTg. Thus T, NGz, # 2.

Then it is clear that there exists some f € Cc(Gz,) such that f|7, # 0. O

Theorem IV.2.7. The algebra A, is isomorphic to a simple inductive limit of SRSHAs such that
all connecting the maps of the inductive system are injective and non-vanishing. Let X,, be the total
space of the n-th SRSHA in the inductive system. Then dim(X,,) < d for some d € N. Moreover,

Ay has topological stable rank one.

Proof: For each n > 1, let tp: Ay, — Apy1 be the inclusion map. Let B, be the SRSHA
assoclated with the SRSH decomposition obtained in previous chapter, and let h,: A, — B, be
the isomorphism in Corollary 111.6.20. Define ¢,: B, — Bn1 by ¢, = hny10tn 0 byt

It is clear that the total space of B,, has dimension less or equal to the dimension of X,
which is finite. It is also clear that (, is injective. Lemmas I11.6.21 and IV.2.6 show that (, is
non-vanishing.

So the first statement of the theorem holds. It follows from Theorem I11.3.23 and

Porposition IV.2.5 that A, has topological stable rank one. O
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