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SUMMARY

The use and application of modeling and simulation (M&S) is pervasive in today’s

world. A key component in the application of models is to conduct appropriate verification

and validation (V&V). V&V is conducted to make sure the model represents reality to the

appropriate level of detail based on the questions posed. V&V techniques are well docu-

mented within the literature for observable systems, i.e. required data can be collected from

the operations of the real system for comparison with the simulation results; however, V&V

techniques for non-observable systems are limited to subjective validation. This subjective

validation can be applied to the simulation outputs, operational validation, or towards the

model development, conceptual validation. Oftentimes subjective operational validation of

the simulation is the primary source of validation efforts. It is shown in this thesis that the

sole reliance on subjective operational validation of the simulation can easily lead to the

inaccurate acceptance of a model.

In order to improve M&S practices for the representation of non-observable systems,

models must be developed in a methodological manner that provides a traceable and de-

fensible argument behind the models representation of reality. Though there is growing

discussion within the recent literature, few methods exist on proper conceptual model de-

velopment and validation. The research objective of this thesis is to identify a methodology

to develop a model in a traceable and defensible manner for a system or system of systems

that is non-observable. To address this research objective the proposal will address eight

aspects of model development.

The first is to define a set of terms that are common vernacular in the field of M&S. This

is followed by the assessment of what defines a good model and how to determine if the model

is good or not. This leads to a review of V&V and the observation that subjective validation

in isolation is not sufficient for model validation. Next, a review of model development

procedures is conducted and analyzed against a set of criteria. A selection is made using
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the Analytic Hierarchy Process (AHP). A procedure developed by Balci in 1986 is selected

for the use in development of models for non-observable systems. Specific steps within

Balci’s 1986 procedure are investigated further to determine appropriate techniques that

should be used when developing models of non-observable systems. These steps are system

and objective definition, conceptual model, communicative model, and experimental models

and results

Five techniques are identified in the literature that can be applied to system and ob-

jective definition: Soft Systems Methodology, Requirements Engineering, Unified Modeling

Language, Systems Modeling Language, and Department of Defense Architecture Frame-

work. These techniques are reviewed and selection is made using AHP. The System Mod-

eling Language (SysML) is selected as the best technique to perform System an Objective

Definition.

Significant resources are devoted to the study of conceptual model development. Pro-

posed in this thesis is a process to decompose the impacts of the system and apply subjective

weightings in order to identify aspects of the system with significant importance. This ap-

proach enables the modeling of the system in question to the appropriate level of fidelity

based on the identified importance of the system impacts. Additionally, this process pro-

vides traceability and defensibility of the final model form.

Communicative model development is rarely addressed in the literature; however, many

of the techniques used in system and objective definition can be applied to developing a

communicative model. A similar study to the system and objective definition, AHP was

utilized to make a selection. It was concluded that the Unified Modeling Language provides

the best tool for creating a communicative model.

In the final step, experimental models and results, the literature was found to be rich

in techniques. A gap was found in the analysis of the outputs of stochastic simulations.

Four questions resulted: ’which stochastic measures should be used in analyzing a stochastic

simulation?’, ’how many replications are required for an accurate estimation of the stochastic

measure?’, which least squares method should be used in the regression of a stochastic

response?, and ’how many replications are required for an accurate regression of a stochastic

xxii



measure? Heuristics are presented for each of these questions.

A proof of concept is provided on the methodology developed within this thesis. The

selected scenario is a Humanitarian Aid / Disaster Relief Mission, where the U.S. Navy has

been tasked with distributing aid in an effective manner to the affected population. Upon

application of the proposed methodology, it was observed that subjective decomposition

and weighting of the scenario proved to be a useful tool for guiding and justifying the form

of the eventual model. Shortcomings of the methodology were identified. The primary

shortcomings identified were the linking of information between the steps of the model

development procedure, and the difficulty in correctly identifying the structure of the system

impacts decomposition.

The primary contribution of this thesis is to the field of M&S. Contributions are made

to the practice of conceptual model development, a growing discussion within the literature

over the past several years. The contribution to conceptual model development will aid in

the development models for non-observable systems. Additional contributions are made to

the analysis of stochastic simulations. The methodology presented in this thesis will provide

a new and robust method to develop and validate models in a traceable and defensible

manner.
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CHAPTER I

INTRODUCTION TO MODELING AND SIMULATION

Laplace’s Demon: We may regard the present state of the universe as the effect

of its past and the cause of its future. An intellect which at a certain moment

would know all forces that set nature in motion, and all positions of all items

of which nature is composed, if this intellect were also vast enough to submit

these data to analysis, it would embrace in a single formula the movements of

the greatest bodies of the universe and those of the tiniest atom; for such an

intellect nothing would be uncertain and the future just like the past would be

present before its eyes. (Pierre Simon Laplace) [95]

Laplace’s Demon is a perfect articulation of the philosophy of scientific determinism.

Assuming classical mechanics, having perfect and infinite knowledge of the universe one

would be able to predict the totality of past and present. Though flawed, Laplace’s De-

mon does reflect humanity’s nature to understand and predict the world. Humans often

attempt the prediction of reality through the use of abstracted understandings of the real

world. These abstractions are called models. To many, the term ‘model’ often elicits the

thought of the use and application of Modeling and Simulation (M&S) which is pervasive

in today’s world. The use of M&S is commonly found in science and engineering, two fields

of study that focus on understanding and predicting the world. Examples of models used

in the sciences are climate models such as the Community Earth System Model developed

by the National Center for Atmospheric Research [71], weather models such as the Weather

Research & Forecasting Model developed by a variety of United States Government In-

stitutes [88], biological models such as the Epidemic Simulation System developed by Los

Alamos [31], social dynamic models such as Sakoda’s famous Checker-board Model of So-

cial Interaction [167], and physics models such as Newton’s law of universal gravitation

[125]. Models developed for use in engineering include sizing models such as the Flight
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Optimization System (FLOPS) developed by NASA [107], structural models such as the

Finite Element Method [185], fluid models such as Computational Fluid Dynamics [9], and

supply chain models such as Markov Chains [162]. Models can take many different forms in

addition to those listed above. Some of these forms are business models, conceptual models,

and physical models.

Models and simulations come in many forms and are used for a variety of purposes. A

better understanding of what defines models and simulations is needed. This is addressed

in the following section. Additionally, it must be better understood as to why models and

simulations are used. The use of models and simulations is addressed in Section 1.2. Given

that models and simulations are tools and are used for specific reasons, it needs to be deter-

mined what defines good models and simulations. It will be revealed that this is determined

though verification and validation, which is covered in Section 1.3. Finally, shortcomings

within the current literature with respect to the previous questions are identified. These

shortcomings lead to the research objective of this thesis, which is covered in Section 1.4.

1.1 The Definition of Models and Simulations

Given this wide variety of models and their applications, it is important to address the

definition and purpose of a model. There are countless definitions of a model offered in

the literature; however, there are a number definitions found that describe models in the

broadest and most appropriate form. Four insightful definitions from the literature are

listed as follows.

‘A model is a representation and an abstraction of anything such as a system,

concept, problem, or phenomena.’ (Balci, 1994) [20]

‘... a model is conceived as any physical, mathematical, or logical representation

of a system, entity, phenomenon, or process.’ (Zeigler, 2000) [217]

‘An abstract representation of reality in any form (including mathematical, phys-

ical, symbolic, graphical, or descriptive form) to present a certain aspect of that

reality for answering the questions studied.’ (Ebert, 2005) [62]
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‘M is a model of A with respect to question set Q if and only if M may be used

to answer questions about A in Q within tolerance T.’ (Ross, 1977)[161, 3]

The first definition of a model is from Balci. In his statement, a model is intended to

represent either a concept, problem, or phenomenon. Within the literature, the subject that

is to be modeled is often referred to as the system or the entity. In this thesis both terms

will be used. The selection of the term used is based on the usage from work that is being

described. A system is defined as a set of interacting components [2]. Balci’s definition

covers all of the entities that were modeled in the examples above; however, his definition

does leave out the form of these representations.

The second quote, by Zeigler, then refines the definition of a model by including the

‘form’ of the model in addition to its intent to represent some subject. Zeigler defines the

form that a model can take as physical, e.g. a statue of a person is a model of the person;

mathematical, e.g. Newton’s Law of Gravitation is a model of gravity; and logical, e.g. a

mental understanding of a business process.

Ebert then expands the definition of a model further by presenting its ‘purpose’. The

purpose of a model is to answer a set of questions. Combining the definition offered by Ebert,

who states the purpose of models, with Balci’s definition which identifies the entities to be

modeled, one can the expand the purpose of a model to either aid in answering questions or

communicating ideas. Zeigler addresses in his work three problems that models can be used

to aid in solving: analysis, inference, and design [217]. Analysis is the attempt to understand

the entity to be modeled. Given knowledge about the internal structure and behavior of the

entity, one is attempting to understand its macro behavior with respect to the environment

in which it exists. Inference operates in the opposite direction. Given knowledge about the

entity’s macro behavior within the environment, one is trying to understand the internal

structure and behavior of the entity. Design is attempting to find or construct an entity

that will exhibit a desired macro behavior within the greater system.

The final definition, offered by Ross, is the most technical, general, and far reaching. His

definition does leave out that the purpose of a model could be to communicate an idea, as do

many others. The one unique aspect of his definition is that it offers a statement of quality.
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He states that the questions must be answered within a given tolerance; however, there are

many models that have been developed and used that can be considered inadequate. For

this reason, this author believes that the quality assessment of a model should not be part

of the definition of a model, for there exist good and bad models. Considering the above

discussion, a formal definition of a model is presented:

Definition: A model is an abstraction of reality or one’s concept that is used

as an aid in answering a set of questions or to aid in communication.

Like the term model, ‘simulation’ has a number of definitions offered in the literature;

however, the definitions offered for simulation fail to converge on a universal concept. There

are three philosophies regarding the term simulation. The first philosophy is to use the word

simulation interchangeably with the word model. Additionally, the term simulation has been

used as a substitute for the paradigms of computer modeling: discrete event simulation,

Monte Carlo simulation, and system dynamics, where discrete event simulation dominates

[120, 87, 153, 66, 100, 82, 72]. The second definition given to simulation is the entire process

of modeling a system, i.e. building the model, conducting experiments, and analyzing said

system [20, 179, 76]. Finally, the United States Department of Defense (DoD) uses the

term simulation to refer to an execution or computation of a model [199, 56, 21]. This is

the denotation that will be used here. Applying this terminology to Newton’s Gravitation

Model, the model would be the equation and a simulation would the be calculation of the

trajectory of two or more objects interacting through the gravitational force. Applying this

terminology to computational fluid dynamics, the Navier-Stokes equations used will be a

model of the behavior of the fluid. Additionally, the computer program that is used to

perform analysis on a fluid would also be referred to as a model. The execution of the

computer program would be referred to as the simulation.

Definition: A simulation is the execution of a model.
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1.2 The Successful Use and Application of Models and Simulations

Given the definition of a model and a simulation, a question emerges. Why is M&S used?

The definition of a model presented by Ebert, presented in the previous section, suggests

that a model is used in the process of answering questions. Based on a review of the

literature, the most general response to the question posed is that M&S is used to better

understand reality or act as a medium of communication [153, 62, 161, 3, 20, 145, 14]. The

use of M&S has numerous advantages including but not limited to the following:

• Experimental test bed: M&S offers an ability to experiment with systems that cannot

be tested or are very difficult to test. [153, 179, 14, 43, 202]

• What-if questions: Allows an analyst to perform what-if analysis on the fly, enabling

a better understanding of the system in question. [153, 179, 145]

• Test yet to be created systems: Simulation is the only method available to test and

experiment with a system that currently does not exist. [153, 179, 43]

• Cost effective: Conducting a simulation from a model can be much cheaper than

performing experiments with the real system. [153]

• Control of conditions: Unlike many real systems, everything within a simulation can

be monitored and controlled. [153, 179, 66]

• Time Scaling: Offers the ability to simulate a process that may take years in the real

world but may only take a number of minutes in simulation. [179, 43, 66]

• Repeatable: Offers the ability to repeat exact conditions to determine cause and

effect. In the real world one cannot control every aspect; therefore, experiments are

not perfectly repeatable. [66]

M&S has many applications and benefits, which is why it is so ubiquitous in today’s

world; however, not all models are created equal. Undoubtedly, there are good models and

there are bad models; therefore, what makes a good model? Revisiting the definition of

a model, Ross [161] provides a definition of a model which includes a statement on the
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quality of its representation of the entity which it is emulating. He states that the model

must resemble the represented system in question within a tolerance. Kleijnen states that

a model should be ‘good enough’ based on the goals of the model [87], and Balci offers the

following statement on the success of a model:

An M&S project is considered successful if it produces sufficiently credible M&S

results that are accepted and used by the decision makers or sponsor. (Balci

2011) [22]

Each of these views addresses the need for the model to represent the system in question

with a high enough fidelity to answer the questions posed to the system. Sanchez expands

on this concept with a quip borrowed from Einstein, ‘as simple as possible, but no simpler.’

[168] Sanchez confirms that a model must adequately represent the system in question, but

models with additional complexity beyond the needs of the study are not good models. An

overly complicated model is often a more resource intensive model requiring longer simu-

lation times and potentially greater computational resources. A model can represent the

system to such a high degree that it is no longer useful. With this information, a good

model can now be defined as one that represents the system that is to be emulated to

the appropriate level of fidelity based on the questions presented for the study. Determin-

ing whether a model represents reality to the appropriate level of fidelity is accomplished

through a process called Verification and Validation (V&V).

1.3 Verification and Validation of Models and Simulations

Remember that all models are wrong; the practical question is how wrong do

they have to be to not be useful. (George E.P. Box) [38]

Before using a model to aid in answering a set of questions, one must be sure that the

model has the appropriate level of fidelity based on the questions asked of the system. This

is achieved through V&V. A common and incorrect interpretation of the task of V&V is

to prove that the model is correct [47]. Instead, the goal of V&V is to attempt to prove

the model is incorrect or not capable for answering the questions asked [152, 106]. This
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stems from the concept that there does not exist a model that perfectly represents reality;

therefore, absolute model validity is impossible [171, 139, 168, 49, 170]. Essentially, model

verification and validation is a process of increasing the user’s confidence in the model [152].

The definitions for verification and validation are as follows.

Definition Verification is the process of determining if model transformations

from one form to another were accomplished as intended. Verification is focused

on making sure the model was built right.

Definition Validation is the process of determining if the model sufficiently

represents the system for study based on the questions asked. Validation is

focused in making sure the right model was built.

A basic overview of how V&V is used throughout a model’s life is shown by the Sargent

Circle shown in Figure 1 [171, 170]. The circle starts with the entity. The entity, referred to

in this thesis as the system, is the object or process that is to be modeled. The conceptual

model is the manner in which the entity is intended to be represented within a computer-

ized framework. Generally, the conceptual model is the way in which the entity should be

modeled in the mind of the modeler [154, 25, 158, 133]. A better definition of a conceptual

model will be presented in Chapter 4. Assessing the conceptual model’s ability to accurately

represent the entity with respect to the research questions and to the fidelity requirements

imposed by the research questions is referred to as ‘conceptual model validation’. This is

the first appearance of validation. The computerized model is the implementation of the

conceptual model in a computer for execution. This is accomplished through the process of

programming. Ensuring that the conceptual model was translated into the computerized

model correctly is referred to as ‘computerized model verification’. This is also the common

interpretation of verification. Once the computerized model is developed, experiments are

performed on the model that will address the questions of the study. Ensuring that the

computerized model adequately resembles the entity under study is referred to as ‘opera-

tional validation’. This is the common interpretation of validation for M&S. An important

takeaway from Sargent’s Circle is that V&V activities occur throughout the life of an M&S
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program. Another takeaway is that validation occurs between the modeling processes and

the system, and verification occurs between the modeling processes.

Entity 

Conceptual 
Model 

Computerized 
Model 

Conceptual Model 
Validation 

Computerized 
Model 

Verification 

Operational 
Validation 

Programming 

Figure 1: Simple Modeling Process

Given a basic understanding on how model development and V&V activities occur

throughout the life of an M&S program, a more detailed description of the interaction

between the system knowledge and the model is presented. This detailed description of

how V&V is used throughout a models life is shown by the Evolved Sargent Circle shown

in Figure 2 [169, 172, 170]. The Evolved Sargent Circle is composed of two main sections:

the real world and the simulation world. The interaction of the simulation with the real

world is the primary consideration in this section. The simulation world will be reviewed

in greater detail in Chapter 2.

The entity, or system, that is being modeled and simulated is shown in the upper right

box of the real world. The goal of any M&S effort is to gain understanding, or knowledge,

about the identified entity. This is represented within the Evolved Sargent Circle as the

Entity Theories box between the two worlds. The entity theories include characteristics,

causal relationships, and the behavior of the entity or system under study [169, 172, 170].

These are listed as theories because the theories could be proven to be false. There are

two approaches to developing entity theories. The first is to gather data directly from the

entity through experimentation. This data allows the creation of hypotheses about the
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Figure 2: Evolved Sargent Circle

entity which can be falsified through theory validation with more entity data. Another

method for developing entity theories is through abstraction. Abstraction is the process of

creating entity theories through observations of the entity. This is commonly performed by

Subject Matter Experts (SMEs) who have extensive experience interacting with the entity.

Given the entity data and theories, the model can be validated in three different ways. The

first is through conceptual model validation, first presented within the Sargent Circle. The

other two are forms of operational validation. Traditionally, operational validation involves

the comparison between the simulation output data and entity data; however, operational

validation can also be performed between the simulation output data and the entity theories.
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The latter case involves observing the simulation data and determining whether the data

performs as expected.

Given an understanding on how V&V and M&S development contribute to each other,

the specific process of V&V must be investigated. Unfortunately, there is no widely accepted

methodology in V&V of models [65, 30, 87, 41, 16, 17, 46, 137, 49, 172, 170]; however, there

are numerous techniques. Balci presents 77 V&V techniques in his 1998 paper [17]. These

techniques are applied throughout the model’s life-cycle. Numerous techniques for verifi-

cation are available within the literature. These include but are not limited to animation,

traces, structured walkthroughs, white box testing, and black box testing. A significant

amount of research is devoted to the study of verification; however, for the subject of this

thesis, verification is not a primary concern. Instead, focus is placed on validation. This

is due to the unique challenges to validation presented by non-observable systems. Non-

observable systems and the challenges they present will be expanded upon shortly.

In addition to the application of validation in three forms, shown in the Evolved Sargent

Circle, validation can be looked at as occurring in three stages: data validation, model de-

velopment validation, and model operational validation. ‘Data validation’ is the process of

determining that the data used, either as numerical inputs or qualitative observations, are

accurate representations of the real system to be studied. This was not shown in the Sargent

Circles shown above; however, it is an important part of validation. ‘Model development

validation’ is concerned with ensuring that the logic and assumptions made for developing

the model are sufficient to addressing the questions of the system. Conceptual model vali-

dation would be included within model development validation. Finally, ‘model operational

validation’ is concerned with comparing the results of the simulation to observations of the

real system or the theories of the real system.

In each stage of validation there exist many techniques that can be utilized [16]. These

techniques can be broadly categorized into ‘objective validation techniques’ and ‘subjective

validation techniques’ [171]. An objective technique would use a mathematical or statistical

test. A subjective technique is one in which a determination of validity is made through

the opinion of a SME, the model developer, the end user, or a third party.
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The stages of validation and the two categories of validation techniques can be applied

to observable or non-observable systems. A completely observable system is one that allows

the ability to gather the required information on the system in a timely, feasible, and

viable way. That is a completely observable system is one that enables the gathering of

all relevant information that is needed for analysis. The only tasks required to answer the

questions about the entity or system are to gather the information and analyze it. Applying

this concept to the Evolved Sargent Circle, a completely observable system would provide

sufficient entity data to form the entity theories. A M&S effort would not be required.

On the other end of the spectrum is a completely non-observable system. A completely

non-observable system is one in which the gathering of the required information is either

not timely, feasible, or viable to the extent that no analysis can be performed to discover

more knowledge of the entity. An example of this would be that a question on a system

is posed but not enough information is known to develop a model that can illuminate the

gaps in knowledge. Applying this concept to the Evolved Sargent Circle, a completely

non-observable system would not provide sufficient information to form the entity theories.

Without the entity theories an M&S effort cannot be attempted.

In reality most modeling efforts are based on a partially observable system that fall

between the two extremes. Figure 3 shows this spectrum between observable and non-

observable systems. On the far left is the completely observable system which has been

addressed. In the middle is a partially observable system. A partially observable system

can provide enough information to enable the development of a model which will answer the

specific questions. An example of this is estimating the drag of an object in a fluid. Enough

is known about the system from previous research and observations to create a CFD model.

This model can then be executed to receive more information that will answer the specific

question. Another example of a system of systems is a ballistic missile defense model. In

this model all the physical attributes are known; however, the interaction between the parts

is not known. A model is then built to fill these gaps in knowledge. On the far end is the

completely non-observable system, which has been defined. An example of this would be

a Human Behavior Representation (HBR) model. Suppose an anti-piracy operation must
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be analyzed; however, there is too great of an uncertainty about how the pirates behave to

build a model to study the system. Under this circumstance a non-traditional approach is

required.

Commonly, systems that fall on the observable side of partially observable are referred

to as observable, and systems that fall on the non-observable side of partially observable are

referred to as non-observable systems. This is the notation that will be used for the remain-

der of this paper. More specifically, an observable system is one that provides entity data for

which operational validation can performed. This validation approach would be an objective

approach. A non-observable system is one that lacks entity data, and therefore operational

validation must be performed between the simulation data and the entity theories. This

validation approach would be a subjective approach. Finally, it should be noted that every

system will contain elements that exist on different parts of the observable/non-observable

spectrum. For example, in the anti-piracy example the pirate behavior is completely non-

observable; however, the specifications of the patrol vehicles is completely observable.
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Figure 3: Observable / Non-Observable Spectrum

The validation approaches for observable and non-observable systems were presented by

Sargent [171] as a table, reproduced in Table 1. Objective validation of observable entities

is the ultimate form of validation and should always be performed if possible. Validation

techniques that fall under this category include F-Tests [47], Smith-Satterthwaite Test[47],
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Non-parametric Rank Sum Test[47], Mann-Whitney test [178], and Theil’s inequality [178].

These tests can be classified as tests of the means, variance, and correlations between the

model and the entity. Objective approaches can also be used for validating models of non-

observable entities. The difference between the two is that with non-observable entities

the simulation results are compared to that of an accredited simulation as opposed to the

real entity. Though this does make one wonder why the effort would be made to develop

a model and validate it to another model, if that other model already existed and access

to its simulation results is available. As discussed earlier, models of systems are developed

to address specific questions; therefore, a new model would not be expected to behave as

the other accredited model unless they address the same problem, which makes the model

development pointless. Objective validation of models of non-observable systems is not

expected to be common.

Table 1: Sargent Validation Breakdown

Observable System Non-Observable System

Objective
Approach

Comparison using statistical
tests and procedures

Comparison to other models
using statistical tests and pro-
cedures

Subjective
Approach

Comparison using graphical
displays
Explore model behavior

Explore model behavior
Comparison to other models

Subjective validation of observable entities is exceedingly common and often one of the

first steps in validating a model. Validation techniques that fall under this category include

graphical comparisons. Graphical comparison is the displaying of the information to check

to see if the statistical metrics, e.g., mean, variance, are within reasonable bounds. A more

rigorous example of graphical comparison is the Turing-Schruben test [176].

Subjective validation of models developed for both observable and non-observable enti-

ties can be accomplished through exploring the model behavior. This can be accomplished

though animation, degenerate tests, face validity, sensitivity analysis, and regression analy-

sis [171, 172, 87]. In each of these techniques, an expert determines if the observed behaviors
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resemble that of the real world.

Finally, models of non-observable systems can be validated subjectively through the

comparison to other accredited models. The techniques used here include comparison using

graphical displays and exploring model behavior. The main difference is that the comparison

is made between the model to be validated and the model that has been accredited.

For non-observable systems, only conceptual model validation and subjective operational

validation between the simulation data and the entity theories is available. Unfortunately,

conceptual modeling is given little attention within the M&S community [153, 154, 156, 39].

Without proper conceptual model development, the validation efforts of models for non-

observable systems are solely based on subjective operational validation. An example of

subjective operational validation of an non-observable system is given in the next section.

1.3.1 Subjective Validation Example and Observations

This section reviews the validation efforts of three different conceptual models from a previ-

ous research project [196] conducted for the Office of Naval Research. The project required

the development of an agent based model of a naval patrol scenario. The model was used

to help size an Offshore Patrol Vehicle (OPV). A visual description of the conceptual model

is shown in Figure 4. In this scenario there are two legal fishing zones that have the dimen-

sions 15x6 nmi. This is shown as a white box in Figure 4. Below the two legal fishing zones

are the illegal fishing zones that have the dimensions 15x5 nmi. Within the fishing area

there are fishing vessels. These fishing vessels primarily remain in the legal zone but will

cross with some kind of modeled behavior to be discussed shortly. An OPV, called Foxtrot,

is tasked with patrolling these waters to enforce adherence to the legal fishing zones and to

protect the vessels from being commandeered by interceptor vessels protecting their claim

to the illegal fishing zone. The interceptor vessels are on the north and south end of the

model. The north interceptor is called Yankee, and the south interceptor is called Zulu.

Both interceptors are from country Charlie.

When developing the model there was some concern on the proper representation of

the fishing vessel movement behavior. The behavior of the OPV and the interceptors was
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Figure 4: Economic Exclusion Zone Layout

easier to estimate because they followed very simple procedures. The fishing vessel behavior

was not well defined nor were there SMEs available who had extensive knowledge of their

behavior. There existed no data on their crossing rates nor their movement behavior. Three

concepts were suggested: a random bounce, exponential time, and following fish schools [10].

A visual representation of these three conceptual models is shown in Figure 5. The random

bounce representation described the vessels’ behavior by traveling in an initial random

direction. Once the vessel came into contact with a border, the vessel would turn to some

new random direction and continue. If the border was that of the illegal zone, there was a

probability the vessel would cross. When the vessel traveled in the illegal zone and came

into contact with the border to the legal zone it would cross every time. The exponential

time representation described the vessels’ behavior similar to that of the random bounce.

The difference between the two representations is that the vessels would only cross once an

internal variable of time had expired. Once the time had expired the vessel would turn and
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cross into the other fishing zone. Finally, the following fish schools concept defined another

set of agents to represent schooling fish. These schooling fish would follow a random walk.

The fishing vessels would track these schools and cross into the illegal zone depending on

their perceived risks and rewards.

Random Bounce Exponential Time Fish Following 

Figure 5: Three Conceptual Models

Each concept was developed into a computational model and simulated. These simu-

lations were subjected to the following validation techniques: animation, degenerate tests,

face validity, and sensitivity analysis. Under this analysis no issues were found for any of the

concepts. During analysis the three concepts showed very different results. Shown in Figure

6 are the sorted parameter estimates for the three conceptual models. Sorted parameter

estimates are useful for screening and determining variables of importance [174]. The pa-

rameters are sorted in decreasing order of significance. The top set of parameters is that of

the random bounce conceptual model. The middle set of parameters is the exponential time

conceptual model. The bottom set of parameters is the fish following conceptual model.

The parameters have been highlighted based on vehicle type. The yellow highlights repre-

sent variables that belong to the Yankee or Zulu interceptor. The red highlights represent

variables that belong to the OPV. The green highlights represent variables that belong to

the fishing vessels.

The first observation is that for all three conceptual models the uncontrollable variables

that belonged to the interceptors and fishing vessels determined the majority of the behavior.

It is observed that for the first concept, random bounce, the cruise speed and radar range
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were the most important OPV parameter. The second concept, exponential time, showed

that the radar range was the most important OPV parameter. The third concept, following

fish schools, showed that none of the OPV parameters had an impact on the outcome of

the simulation.

This study resulted in three potential conceptual models that could all pass subjective

validation and resulted in widely different results. For non-observable systems, only sub-

jective operational validation and conceptual model validation is available to validate the

model. It was shown here that subjective validation can be misleading. These results lead

to the following observation.

Observation: Subjective validation methods in isolation are insufficient for

models of non-observable systems.
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Figure 6: Sorted Parameter Estimates of the Three Conceptual Models
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1.4 Summary and Motivation

Models are ubiquitous in the modern world. The application of these models range from

simple models of gravity to models of the weather to models of epidemics. A quality model

was defined as representing the system that is to be emulated to the appropriate level of

fidelity based on the questions presented for the study. This quality is determined though

the process of V&V.

Models that have been developed for observable systems prove to be an ideal case for

model validation. These systems allow the model to be objectively and subjectively val-

idated. Unfortunately, this is rarely the case. Many organizations, including the United

States Department of Defense (U.S. DoD), are concerned with the modeling and simula-

tion of non-observable systems, e.g. counter insurgency operations, anti-piracy operations,

humanitarian aid / disaster relief missions. Model validation of non-observable systems is

limited to subjective operational validation and conceptual model validation. The previous

section showed that subjective operational validation in isolation is insufficient. The re-

maining validation technique is the process of validating the model during the development

process. For the non-observable system case, model development acts as the primary source

of model validation. The concept that model development can be the primary source of

model validation is strongly supported by the literature. Pace articulates this best in the

following quote.

‘Conceptual validation should be the foundation for simulation credibility...

without validation of the concepts and algorithms of the simulation, one has

no basis for judgement about how well the simulation can be expected to per-

form for any other conditions.’ (Pace, 2004) [136]

Some industries that face non-observable systems, such as industrial systems, have a

long history of guidelines for proper model development and system representation. In

these situations historical precedence will guide proper model development; however, not

all modeling efforts have the benefit of a historical perspective. The modeling of non-

observable systems with little to no historical precedence will require a new approach to
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model development. This leads to the following research objective of this thesis.

Research Objective: Identify a methodology to develop a model in a traceable

and defendable manner for a non-observable system that has a limited or non-

existent history of modeling.

This research objective will be addressed through the following efforts. The first will

be to define a potential set of model development procedures within the literature that can

be used for model development of non-observable systems. A selection will then be made

as to which procedure is best suited for the development based on a set of criteria. Once

a procedure is selected, an assessment will be made as to whether the model development

procedure is sufficient for this type of problem. This work is covered in Chapter 2. Once a

model development procedure has been selected, the literature is revisited to determine how

each step of the process can be completed. Chapters 3 through 5 address specific steps in

the selected model development procedure. Chapter 3 discusses methods for problem for-

mulation, objective definition, and system definition. Chapter 4 provides a new method for

proper conceptual model development. Chapter 5 investigates the experiments and results

steps in the selected model development procedure. Chapter 6 applies the methodology that

was developed in chapters 2 through 5. Finally, a conclusion is presented on the proposed

methodology with additional observations and suggestions for future research.
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CHAPTER II

MODEL DEVELOPMENT PROCEDURES

Every model ever built had to go through a process of development, whether explicitly

stated or not; however, the formal procedure and documentation of model development

varies widely from discipline to discipline and model to model. The highest abstraction of

model development can be discretized into three realms: The entity, conceptual model, and

computerized model [171, 152, 181, 126, 153, 172, 123]. A common representation of this

model development abstraction can be seen in Figure 1, often called the Sargent Circle.

This was first presented in chapter one. The Sargent Circle was originally developed as a

means to communicate concepts of V&V; however, model development and V&V are two

sides to the same coin. It is difficult to address one without addressing the other; therefore,

the Sargent Circle can double as a road map to model development. In the interest of

thoroughness, the Sargent Circle will now be reviewed.

The entity, sometimes referred to as the system, is the object or process that is to be

modeled. The entity represents reality. The conceptual model is the manner in which the

entity is to be represented within a computerized framework. The conceptual model is the

way in which the entity should be modeled in the mind of the modeler [154, 25, 158, 133].

This concept will be expanded on in greater detail in chapter three. Transitioning from

the entity to the conceptual model is referred to as a process of modeling. This is the

primary interest of this thesis based on the research objective stated in chapter one. The

modeling process can be conducted in a variety of ways. This process will be addressed in

the next section. Assessing the conceptual model’s ability to accurately represent the entity

with respect to the research questions and fidelity requirements imposed by the research

questions is referred to as conceptual model validation. The computerized model is the

implementation of the conceptual model in a computer for execution. This is accomplished

through the process of Programming. Assuring that the conceptual model was translated
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into the computerized model correctly is referred to as computerized model verification.

This is also the common interpretation of verification for M&S, as detailed previously.

Once the computerized model is developed, experiments are performed on the model that

will address the questions of the study. This process is called experimentation and will

be addressed in further detail in chapter three. Ensuring that the computerized model

adequately resembles the entity under study is referred to as operational validation. This

is the common interpretation of validation for M&S.

The above modeling process can be used to describe a wide range of computer model-

ing, ranging from modeling physics to operational models, such as fluid modeling, structure

modeling, supply chain modeling, industrial operation models, military models, and biolog-

ical models. The focus of this thesis is the development of M&S for non-observable systems.

There is a significant volume of literature dedicated to this subject of model development

over the past five decades. The most influential works and those deemed important to this

study will be covered; however, significant semantic irregularities exist within the literature.

For this reason, some definitions are required before various model development approaches

are addressed. The definitions that follow are heavily leveraged from the literature; however,

the precise definitions and their use is unique to this thesis.

The first definition is for the phases of the model life cycle. Phases resemble phases

of design for many engineering applications. Commonly, phases of the model life cycle are

sequential and do not repeat. The second definition is the procedure for model development

and use. This is very similar to phases of the model life cycle; however their distinction

is important. The procedure can be thought of as detailing the steps of model develop-

ment. For example, the model development phase can be populated with the following

activities: conceptual modeling, communicative model development, programming, and the

V&V associated with the activities. Iteration is expected between these activities. The next

definition is what is referred to as a framework or methodology. This is a more detailed

account of how to accomplish the steps presented in a procedure. This may include an

approach to system decomposition, model definition, and a documentation language. The

methodologies found in the literature contained these three attributes to a varying degree.
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System decomposition can be described as a process of defining a system as an aggregate of

its smaller parts in an effort to better understand and model the system in question. Model

definition is similar to system decomposition; however, in this context model definition is

focused on decomposition of the modeled system. Model definition is the identification of

the objects that will exist within the model, their attributes, and behaviors. The model

definition will most likely resemble that of the system decomposition. The documentation

language would be a formal method for communicating the functioning of a model. This

can include a set of definitions, images, or documents that are standardized. The purpose of

a documentation language is to create consistency among different fields of study enabling

better communication. The final definition required is the modeling support system. A

modeling support system is a tool that aids in the management of M&S development. This

often takes the form of a computer program.

In the following sections some of the above definitions will be explored further. The cur-

rent literature will be explored to support these definitions and to develop an understanding

of how models and simulations are developed. First the phases of model development will

be explored. This will be followed by an expansive review of the literature of current de-

lineations of the activities that exist within the procedures for model development and

use. Finally, in chapter three an investigation is made into the different methodologies and

frameworks that exist to aid in the development of models and simulations.

2.1 Phases of the Model Life Cycle

The phases of the model life cycle can be broken into many different sections. Of the

definitions to be explored, the phases of the model life cycle has received the smallest

attention in the literature. One reason for this may be that the phases of the model life cycle

is primarily a semantic discussion. The primary interest for model development lies in the

activities and methodologies to develop models. The earliest found phase breakdown comes

from a 1976 report from the Government Accountability Office (GAO) [202]. In the report

five phases are defined: problem definition, preliminary design, detail design, evaluation,

and maintenance. The purpose of the first phase, problem definition, is to define: what

22



problem is to be solved, who will be building the model, how the problem should be modeled,

and how the model will be used. The preliminary and detail design phases involve building

the model. Preliminary design is focused on detailing what the model will do and how it

will be executed. Detail design is focused on the actual development of the model. The

evaluation phase is a final V&V that the model undergoes. The final phase, maintenance,

is to document any and all changes to the model. This effort will make the use of the model

throughout its life much easier for current and future users.

Another breakdown of the phases of model development comes from Nance and Balci’s

Model and Simulation Life Cycle [118, 20]. This work can find its origins in The Conical

Methodology developed by Nance and Balci, which was developed in response to the 1976

GAO report [120, 118, 121, 122, 20]. In their approach three phases exist: problem defi-

nition, model development, and decision support. The problem definition is a process of

understanding the customer’s problem and correctly formulating the requirements of the

model that is to be designed. The model development phase includes processes that trans-

late the modeling requirements into an actual programmed model and analyzing said model.

The decision support phase includes the process of communicating the simulation results

and findings to the decision makers.

Another suggestion on the phases of model development made by Chance et al. [43].

They present the following three phases: model design, development, and deployment. They

make a very important statement in that their phases can be iterated. They state that

identified omissions, a change in project scope, and errors found in later phases can cause a

return to earlier phases. This is a different interpretation than in this thesis on the definition

of phases. In this delineation, model design phase contains activities that prepare for the

actual model design and construction. These activities include identifying customers, goals,

time allotment, and performance measures. The phase ends with a document detailing the

requirements of the model. Model development entails selecting a model paradigm, e.g.

discrete event simulation and agent based model, data collection, building the model, and

V&V. The final phase, project deployment, includes analyzing the model results, presenting

results to the concerned party, and maintaining the model.
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GAO’s five phase description is mostly complete; however, it is missing a phase in which

the results are presented to the concerned party as the Nance-Balci and Chance approaches

suggest. Additionally, the preliminary and detailed design phases seem to be redundant. In

other approaches this is defined within the model development phase. GAO’s preliminary

and detailed design phases can be considered as two steps in the model development pro-

cedure, conceptual model development and program model development, respectively [20].

Chance’s approach makes a similar breakdown to GAO with the model design and devel-

opment phase. Because the phases of model development are intended to be completed in

a linear fashion all activities relating directly to designing, programming, and Verification,

Validation and Testing (VV&T) of the model will be defined under a model design phase.

The Nance-Balci approach provides a good suggestion for the phases of model development;

however, the maintenance of the model is not explicitly defined. Chance’s approach also

provides a good suggestion for the phases of model development; however, the important

phase of problem definition is not given its own phase and is included with model design

phase.

Noting the positives and negatives of the phase breakdowns listed above, a conclusion

can be drawn for a breakdown of the phases of model development: problem definition,

model design, decision support, and maintenance. In this delineation, the problem defini-

tion phase is the same as the GAO and Nance-Balci approach. The purpose of this phase

is to translate the customer needs into model requirements in terms of questions to be an-

swered, fidelity requirements, budget available, and time available. The model design phase

includes all activities relating directly to designing, programming, and VV&T of the model.

This includes the preliminary design, detail design, and evaluation phases of the GAO ap-

proach and the model design and development phases of the Chance approach. The decision

support phase includes the analysis of the model in combination with communicating the

analysis and notable findings to the concerned parties. Finally, the maintenance phase in-

cludes activities to insure that the model can be reused in the future. This includes final

documentation and continued documentation throughout the model’s life. These phases

are designed to be completed in a successive manner. It is possible for a return to earlier
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phases as was noted by Chance et al. [43]; however, these phases are not designed to be a

spiral development. The returning to earlier phases, though common, is an indication that

there was an error in the model development that must be corrected. It should be noted

that new projects that reuse the model will still require a restart of the model development

phases resulting in updating the model through each phase.

Problem 

Definition 

Model 

Design & 

Analysis 

Decision 

Support 
Maintenance 

Figure 7: Phases of the Model Life Cycle

2.2 Procedures for the Development of Models and Use

Research Question 1: Out of the literature, which procedure is best suited

for model development of the defined type of entities?

There are many suggested procedures available in the literature that detail the steps in

the development of models and simulations. In this section the more popular procedures

available in the literature will be reviewed. This section will focus on what the steps

are rather than how the steps are completed. Once the most appropriate procedure is

selected for this application, the literature will be reviewed to determine how each step is

accomplished.

What makes a good procedure? There are a number of criteria that will help deter-

mine the quality of a model development and use procedure for modeling a non-observable

system. These are completeness, iterative, traceable, and flexible [23]. The attribute of

completeness is one that determines if the procedure listed includes all steps in the model

life cycle. For example, a procedure may exclude the creation of a conceptual model or

the steps of documentation and reporting results. The primary steps that are being looked

for are problem formulation, setting objectives, defining assumptions, conceptual model

development, programming, verification, validation, experimental design, analysis, docu-

mentation, application, and maintenance or storage. These may exist as individual steps or
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within other steps. The second criterion is iterative. All procedures should be iterative, for

model development is iterative in nature. A procedure should display both global and local

iterative features. A global iterative feature is one that links the simulation results to the

initial system decomposition or model conceptualization. A local iterative feature would be

one that displays iterations between adjacent steps in the model development procedure.

The movement from one step to another does not occur at once but instead is a process

requiring iteration between the two steps. Third, an M&S procedure should lend itself to

traceability. One should be able to trace the observations from the results to the assump-

tions made about the model and those assumptions to the problem statement. Given that

there are an infinite number of ways to develop a model and simulation, these decisions

must be traceable and defensible. This will aid in not only the credibility of a model but

also its reuse for future application. An increase in the number of steps within a procedure

and the number of V&V activities aid in traceability. Finally, a procedure should be broad

enough such that it can be applied to a wide number of applications; however, it must be

focused enough so that it is usable. This is largely subjective, therefore the procedure will

be evaluated based on if it is applicable to the following model paradigms: system dynamic

models, discrete event simulations, and agent based models. Initially, each procedure will

be given a subjective score of poor, moderate, good, and very good for each of the criteria.

A more rigorous method will later be applied to help select the best procedure for use in

developing a model for a non-observable system.

2.2.1 The Sargent Circle

The first presented procedure for model development and use was the Sargent Circle. The

procedure is reproduced in Figure 8. It was presented by the Society for Computer Simula-

tion in 1979 [182, 171, 172]. The circle was initially posed as an aid to describe verification

and validation of models through their life-cycle. It is difficult to discuss V&V without dis-

cussing model development; therefore, the Sargent Circle doubles as a model development

procedure. The circle contains three steps. The first, called the system or entity, represents
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that which is to be modeled within the real world. In Sargent’s words ”The problem en-

tity is the system (real or proposed), idea, situation, policy, or phenomena to be modeled”

[171, 169, 172, 170]. This is followed by the conceptual model. The conceptual model was

earlier presented as the concept for representing the entity as a model that exists within the

mind of the modeler [19, 15, 20, 25]. A more formal and modern definition of a conceptual

model is that it contains a description of what is to be modeled accompanied by the objec-

tives, inputs, outputs, content, and assumptions [171, 152, 46, 156, 94, 172, 22, 18, 23, 48].

Finally, the computerized model is the conceptual model implemented onto a computer

[171, 169, 172, 170].

The Sargent Circle is a very simple depiction of model development and V&V. The figure

is very useful for communicating how the two are related; therefore, it is understandable that

the circle is considered poor for the criterion of completeness. The procedure contains the

major steps; however, it is missing the problem formulation, application, documentation,

and maintenance. The other steps that are included under completeness can be considered

as part of the steps shown in the circle. The Sargent Circle is considered to be very good

when considering the criterion of iterative. The procedure displays global iteration and

local iteration between each step. Due to the simplicity of the procedure the traceability

is considered poor. A breakup of the steps shown would aid in the traceability of the

procedure. Finally, the flexibility of the procedure is considered to be very good. The

simplicity of the procedure is a great benefit to the flexibility.

2.2.2 The Shannon Life Cycle

Robert Shannon presents another model development procedure in his 1975 book System

Simulation: The Art and Science [178]. Shannon’s Life Cycle is shown in Figure 9. Shannon

begins his procedure as all procedures should be started: with the formulation of the prob-

lem. This is the process of determining exactly the problem that is to be studied. He states

that ”the research team must understand and articulate a set of germane objectives and

goals” [178]. He further states that formulating the problem is a continuous process that

is conducted throughout the study. This step is followed by system definition. He defines

27



Entity 

Conceptual 
Model 

Computerized 
Model 

Conceptual Model 
Validation 

Computerized 
Model 

Verification 

Operational 
Validation 

Programming 

Figure 8: Sargent Circle

the system as a combination of subsystems and a part of a larger system. He identifies two

functional boundaries of the system. The first is the boundary that separates the problem

from the rest of the universe. The second is the boundary that separates the system of

interest from the environment. After defining the boundaries Shannon suggest the use of

logical flow diagrams or static models. Once this is done it must be determined whether

simulation is still required to answer the questions of the system. If so the next step is

the model formulation. This is similar to conceptual modeling of the other procedures.

The next step is data preparation which is a process of gathering the relevant data and

determining how to use the data. Model translation is the process of developing the com-

puterized model. This becomes the computer model that is able to execute the simulations.

Shannon’s procedure then hits a validation check point. Though the block is stated as a

validation activity, verification is also included. If this step fails, the modeler is to return

to previous steps to right the issues; however, it is unclear to which step the modeler must

return. It is assumed that this is left open to the situation at hand. After passing the

validation check, strategic planning is addressed. In this step the experiments are designed

to answer the questions posed to the system. Tactical planning is concerned with how to

execute each of the experiments identified in strategic planning. The experimentation step

is the execution of the experiments. Included in this step is sensitivity analysis of the model
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parameters. The final check of interpretation is to determine whether the results are useful.

If not, then the process returns to an earlier state. It is unclear to which step the process

should return; however, this author believes that this was left vague by design. The final

two steps are implementation and documentation. Once the results are avaliable, they must

be put into action. This constitutes the implementation step. Finally, no model develop-

ment is complete without documentation of the assumptions, development, and results of

the study.

Shannon’s procedure for model development is mostly complete containing many of the

steps of interest; however, it is missing the maintenance phase. For this reason the pro-

cedure is given a value of good for the metric of completeness. There are many feedback

loops for the procedure; however, they primarily exist only if there is an observed problem.

Additionally, it is unclear where the feedback loops are supposed to point. For these rea-

sons, the iterative nature of the procedure is considered to be moderate. The traceability of

Shannon’s procedure is considered good. There are many steps and multiple check points

that aid in the traceability of the model development. Finally, the flexibility is also consid-

ered good. The procedure does a good job in defining what must be done without limiting

its application.
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Figure 74: Mine Counter Measures: Histogram of Mines Remaining for 11 Levels
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The sample mean and sample variance for the Time output and the Mines Remaining

output can be seen in Figures 75 and 76, respectively. The sample mean measure for time

is seen at the top of Figure 75. What is observed is that the Remus Sensor Range of 2500 is

a tipping point in which the time increases linearly. The sample variance, below the mean

graph, shows a more convoluted result. The variance remains mostly constant until the

Remus Sensor Range of 3000 ft in which the variance dips and then begins to return to its

previous level. The sample mean for the mines remaining output, shown in the top graph of

Figure 75, indicates the same result as the output for the mean of the time. It is shown that

the Remus Sensor Range of 2500 is a tipping point in which the mines remaining decreases

linearly. Similarly, the sample variance shows the same behavior.

Figure 75: Mine Counter Measures: Sample Mean and Sample Variance of Time for 11

Levels
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Figure 76: Mine Counter Measures: Sample Mean and Sample Variance of Mines Remaining

for 11 Levels

The binomial proportion estimates for the time output is shown in Figure 77. Six

binomial proportion values were selected in a similar manner as in the single point analysis

section. The binomial proportion estimates were made by dividing the observed range of all

output data into six parts. The first binomial proportion estimate determines the portion

of the output that is observed below the minimum observed value plus one sixths of the

range. The second binomial proportion estimate determines the portion of the output that

is observed below the minimum observed value plus two sixth of the range. This pattern is

continued up to the entire range, which would be unity. Figure 77 includes labels indicating

the time used for the binomial proportion. Similar conclusions can be drawn from this

figure as was drawn from the sample mean and variance measures, which is that the time

output begins to change once the Remus Sensor Range rises above 2500 ft. This is indicated

by the knee in the curve for three of the middle measures. The binomial proportions for

the mines remaining output is shown in Figure 78. The same conclusion is drawn from this

figure; however, the curves are different indicating fewer mines remaining.

Another observation can be drawn from these figure; however, they are more subtle and
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difficult to identify. It can be observed that there exist a multi-modal behavior in the time

output and not in the mines remaining output. This observation is made by observing the

difference between the lines in their probability. Note in Figure 77 the bottom two lines

are very close together. Also the top three lines are very close together, but there is a large

gap between them. This is indicative of a multi-modal distribution. Note in Figure 78 the

difference in spacing is more uniform, which is indicative of a uni-modal distribution.

Figure 77: Mine Counter Measures: Binomial Proportions of Time for 11 Levels
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Figure 78: Mine Counter Measures: Binomial Proportions of Mines Remaining for 11 Levels

The quantile estimates for the time output is shown in Figure 79. Seven quantiles are

tracked across the 11 Remus Sensor Range values. These quantiles are the same as were

used in the single point analysis section, 0%, 10%, 25%, 50%, 75%, 90%, and 100%. The 0%

and the 100% quantiles represent the observed minimum and maximum, respectively. These

measures are plotted with dashed lines to indicate their difference for the other measures.

The middle quantile estimates are plotted with solid lines. Again, the same observation

that the Remus Sensor Range causes increases after 2500 ft can be made. Additionally,

it is easily seen that there exist two peaks in the distribution. This is indicated by the

closeness of the lines. The quantile measures of 10% and 25% remain close to each other

across the cases. The same closeness is shown by the quantile measures of 50%, 75%, and

90%. Another observation can be made about the distributions. For a change in the Remus

Sensor Range of 2500 ft to 2800 ft the five middle quantile measures become much closer

together. This indicates that the distribution is more centrally located, losing its multi-

modal shape. As the range is increased this centrality dissipates, which is indicated by the

90% quantile jumping in value at a range of 3400 ft. Finally, at a range of 4000 ft and new

multi-modal distribution can clearly be seen.

The quantile estimates for the mines remaining output is shown in Figure 80. Again,
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the same observation that the Remus Sensor Range causes increases after 2500 ft can be

made. Additionally, it is easily seen that there exists a symmetric uni-modal distribution

at the lower sensor ranges. This is indicated by the uniform distances between the quantile

measures. After the sensor ranges increases past 2500 ft it can be seen that the distribution

shifts lower and becomes more skewed. This is indicated by the 10% and 25% quantiles

collapsing onto each other.

Figure 79: Mine Counter Measures: Quantiles of Time for 11 Levels
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Figure 80: Mine Counter Measures: Quantiles of Mines Remaining for 11 Levels

5.1.3.4 Conclusion

The sample mean and sample variance were shown to be insufficient for single point analysis,

given that the output distribution is not known a priori. For output analysis over a range

of a variable, the mean and variance was shown to be more useful. Some information was

able to be derived, primarily the general trend. The variance estimate showed to be useful

for only the mines remaining output. This was due to the uni-modal distribution of the

mines remaining output. For the multi-modal distribution of the time output the variance

performed poorly, as would be expected.

The binomial proportion estimates performed very well for the single point analysis.

These measures were able to identify the multi-modal and uni-modal nature of the time

and mines remaining outputs, respectively. The measures also acted as fairly good ap-

proximations of the distribution. Applied to multi-point analysis, the binomial proportions

performed better than the mean and variance by identifying the general trends and the

presence of multi-modal and uni-modal distributions.

Finally, the quantile estimates performed equally as well as the binomial proportion
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for single point analysis. The major difference occurred during multi-point analysis. The

quantile estimates were able to identify the general trends, the presence of a multi-modal

and uni-modal distribution, and provide information on the shape of the distribution as it

changed due to sensor range increasing. The binomial proportions would be able to make

the same observations; however, more measures would be required. Each measure contained

five useful measures. The quantile measure was found to provide more information than

the binomial proportions. For this reason it is recommended that quantiles are used in the

analysis of simulations with stochastic outputs.

Research Question 5 Hypothesis: Quantile estimates should be used for

outputs of stochastic simulations when faced with an unknown or changing dis-

tribution.

5.2 Investigation into the Required Replications for Accurate Confi-
dence Interval Estimation

The previous section addressed which stochastic measures should be used for the outputs of

a stochastic simulation. During the analysis the number of replications required or available

was not considered. It was assumed that the estimates were accurate. This was able to be

done because a large number of replications were used giving considerable confidence in the

estimate. Realistically, there is a limitation on the number of replications one can acquire

from a simulation. This can be due to numerous reasons including time requirements on

analysis combined with run time requirements of the simulation and required number of

unique cases that must be investigated for the desired analysis. For example, if one has a

weekend available to run the simulation (about 63 hrs) and each run requires an hour then

only 63 runs can be accomplished. These 63 runs must be divided between unique cases and

repetitions. Therefore, how many repetitions are required for the different measures? The

following analysis and results to this question are based on a paper by the author published

in late 2013 [197].

Research Question 6, presented at the beginning of this chapter, addresses the question

of the number of replications needed for an accurate stochastic measure. Every measure will
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contain some error, therefore it is common to calculate Confidence Intervals (CIs) about

the estimate. CIs are used to define a range of possible values in which the true value of

the estimate will lie at some confidence interval level, e.g. 95%. For example, if the 95%

CI of an estimate is found, then the true value will lie within those bounds for 95% of the

estimates. Not to be confused with the statement that the CI has a 95% probability of

containing the true value. The CI either contains the true value or not, but 95% of the CIs

calculated from the estimates will contain the true value.

There are two general methods for determining how many replications are required

using CI. The first determines how many replications are required to achieve an absolute

error tolerance of β. The error tolerance is the half-width of the CI. Law [100] presents a

sequential procedure to solve for the number of repetitions, which is as follows:

1. Make n0 replications and set n = n0

2. Compute estimate and CI half-width of estimate

3. If the CI half-width is equal to or less than β then stop. Otherwise, incre-

ment n upwards by 1 and go to step 2.

This procedure is not recommended by Law due to its sensitivity of the selection of β

on the coverage accuracy [97]. The coverage is defined as the portion of time the interval

contains the true value. The same sequential procedure as listed above can be applied to

relative errors. The relative error is defined as λ = |X̄ − µ|/|µ|, where the mean is the

estimate and µ is the true mean. The procedure is repeated until Equation 37 holds true.

The same approach can be taken with other statistical measures. For the sample mean Law

recommends an initial sample size of at least 10 and a relative error no greater than 0.15

[100].

ti�1,1�α/2
p
S2(n)/n

|X̄(n)|
≤ λ

1− λ
(37)

The procedure mentioned, along with numerous others in the literature, provide a good

approach towards determining how many replications are required. This approach works

well for numerous problems; however, when constructing a surrogate model, or meta-model,
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this procedure does not apply. For surrogate models there does not exist an absolute or

relative error requirement. The CI widths are not important. Instead the goal is to match

the true underlying model. If the surrogate model perfectly captures the true statistical

measure, then one does not care about the CI width of the sample data.

When faced with a heteroscedastic output, i.e. non-constant variance, there are two basic

approaches for linearly regressing the equation coefficients to produce the surrogate model.

The first is to use Ordinary Least Squares (OLS) while making sure that the confidence

intervals are the same width. This can be accomplished by using the procedure suggested

by Law for absolute error tolerances. The other approach is to use Weighted Least Squares

(WLS) where the weightings take into account the different CI widths. An issue with the

first method is that the modeler would not know how many total runs would be required

before starting the runs. Given that the number of cases would need to be maximized

in order to maximize the analysis, the modeler needs to know the number of replications

needed before the execution of the runs. An issue with the second method is that there

is no information available in the literature as to how many replications are required for

accurate CIs without specifying an error tolerance. More specifically, the literature does

not indicate the number of replications that are required for the CI estimate to hold true.

This question will be answered by studying the coverage accuracy of the CI estimates for

sample mean, variance, binomial proportions, and quantiles. The coverage of the CI varies

depending on the measure used and the distribution applied to it. For the sample mean

and variance measure, the skewness, kurtosis, sample size, and desired coverage level will

be varied using the Pearson Family of Distributions. The Pearson Family of Distributions

was selected because it contains some of the most common distributions, e.g. Gaussian,

Student’s t, uniform, exponential, beta, gamma. The accuracy of the CI estimates for the

binomial proportions and quantiles are tested by varying the sample size, coverage level, and

quantile level using the Gaussian distribution. It was found that the distribution does not

significantly impact the CI accuracy of binomial proportions and quantiles. Additionally,

for each of the four measures the mean and variance of the Pearson Distributions were not

varied because they were found not to impact the accuracy of the CI. Estimates on the
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accuracy of the CIs are found by repeating every combination 20,000 times and calculating

the coverage. An algorithm will be developed to run every case for the four different

stochastic measures.

5.2.1 Required Replications for Accurate Sample Mean Confidence Intervals

The sample mean is an unbiased estimator of the true mean and is reproduced below in

Equation 38. The equation for calculating the CI of the sample mean is shown in Equation

39. This equation is based on the Student’s t distribution instead of the Gaussian because

the Student’s t performs better [100]. The sample mean CI is accurate for all distributions

if n is sufficiently large. This is because the sample mean CI is based on the Gaussian

Distribution and the sample mean follows a Gaussian Distribution which is a result of the

Central Limit Theorem.

X̄(n) =
1

n

nX
i=1

xi (38)

X̄(n)± tn�1,1�α/2

r
S2(n)

n
(39)

The algorithm developed to study the CI coverage accuracy for the sample mean was

developed in the mathematical program MATLAB. The Pearson function was used to create

distributions from the Pearson Family of Distributions. The distributions were created by

varying the skewness between -3 and 3 at 0.25 increments. The kurtosis was varied between

2 and 11 at 0.25 increments. The feasible Pearson Distributions were the ones with a kurtosis

that is greater than the square of the skewness plus one. Each distribution contained two

million data points. The samples were then taken from the distribution for sample sizes

of 5 to 50 incrementing by 5. The desired CI coverage varied between 75% and 95% at

increments of 10%. Each combination was then replicated 20,000 times.

The results from the sample mean confidence interval study are shown in Figure 81.

There are a total of 15 contour plots. The first row shows contour plots of desired CIs

of 95%. The second row show CIs of 85% and the third row shows CIs of 75%. Each

column represents the sample size. The first column shows results for sample sizes of 5.
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Each proceding column increases the sample size by 5 until the final column which has a

sample size of 50. Each contour plot has the kurtosis on the ordinate and the skewness

on the abscissa. The body of the plot contains contour regions of the error between the

desired CI and the observed coverage. An example of the error is that if the desired CI

level was 95% and the observed coverage was 85% then there would be an error of 0.1. The

same error would be observed if the values were switched. The color scale ranges from 0

to 0.1 and is shown on the far right of the figure. Upon examination of Figure 39, it is

seen that the estimate is very accurate. Distributions with low skewness perform the best.

Skewness seems to be the primary driver for the accuracy of the sample mean CI accuracy.

As the sample size is increased the error drops, which would be expected. Interestingly, as

the desired CI level is lowered the error also decreases. The conclusion drawn is that the

sample size should not fall below 10 for low skewness distributions. Increased sample sizes

would be required for greater skewness; however, the sample size should not have to exceed

50. The error with extreme skewness and kurtosis with 50 samples and a CI level of 95% is

only 0.05.
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Figure 81: Coverage Error for Sample Mean Confidence Intervals
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5.2.2 Required Replications for Accurate Sample Variance Confidence Inter-
vals

The sample variance measure is an unbiased estimator for the variance. The equation for

the sample variance is reproduced below in Equation 40. The CI for the sample variance is

estimated with the use of the χ2 Distribution and is shown below in Equation 41. The χ2

Distribution can be shown to be the distribution of the sample variance from a Gaussian

Distribution. From this it is known that the CI estimator for the sample variance assumes

that the original data set is Gaussian distributed. Therefore, if the original distribution is

not a Gaussian then the CI estimator will have some error no matter the sample size.

Ŝ2(n) =

nP
i=1

[xi − X̄(n)]2

n− 1
(40)

"
(n− 1)Ŝ2(n)

χ2
α/2,n�1

,
(n− 1)Ŝ2(n)

χ2
1�α/2,n�1

#
(41)

The results from the sample mean confidence interval study are shown in Figure 82.

This figure is represented in the same format as the previous figure. The one difference

between the two figures is that Figure 82 varies the sample size between 10 and 5120.

The sample sizes were scaled as a geometric progression with a common ratio of 2. These

samples sizes were used to show that the repetitions do not improve the accuracy of the

CI estimate. What is observed from this result is that the sample variance CI estimator

is a poor estimator for most Pearson Distributions. The further the distribution is from a

Gaussian Distribution, indicated by a skewness of 0 and a kurtosis of 3, the more inaccurate

the estimate. An interesting observation, however, is that the CI estimator is more sensitive

to kurtosis than it is to skewness. Another trend observed is that as the CI desired level

is decreased, the band of distributions that perform well with the CI estimator decreases

in the kurtosis dimension. What is concluded is that the CI estimator, shown in Equation

41, performs well for distributions with a kurtosis of three within the Pearson Family of

Distributions.
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Figure 82: Coverage Error for Sample Variance Confidence Intervals
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The CI for sample variance was found to be a poor estimator for most Pearson Dis-

tributions; therefore, another technique must be used for this estimate. A computational

intensive, non-parametric technique called bootstrapping will be used to estimate the sam-

ple variance interval. The philosophy behind bootstrapping is that in the absence of a

known distribution, the sample set itself acts as the best approximation of the distribution

[111, 63]. There are four primary CIs for the bootstrap technique: Normal Approximation

Method, Percentile Method, Bias Corrected Method, and Percentile t-Method [111]. The

Bootstrap Percentile Method was selected for the sample variance CI estimation method.

The Percentile Method estimates the CI of some metric, θ, as follows:

1. Generate B bootstrap samples from the original sample set of size n. Each

sample in the original set has a probability 1/n of being in the bootstrap

sample. Repeated samples are allowed in the bootstrap set.

2. Calculate θ for each bootstrap sample set, θb.

3. The (α/2)B smallest sample estimates the lower interval and the (1−α/2)B

smallest sample estimates the upper interval.

The results from the sample mean confidence interval using the Bootstrap Percentile

Method are shown in Figure 83. This figure is represented in the same format as the

previous figure. Here only the CI level of 95% is shown. Additionally, the sample size of

5120 was removed due to computational limitations. The number of bootstrap samples was

set to the sample size, i.e. B=n. The actual coverage was estimated by repeating each

case 1000 times. This number was reduced from earlier studies due to the computational

intensity of bootstrapping. The irregular pattern seen in the contour plots in Figure 83 are

due to random fluctuations in the coverage estimate. It can be seen that as the number of

samples increases, the coverage estimate becomes more reliable. Additionally, the larger the

kurtosis of the distribution the larger the sample size needs to be. Despite the bootstrapping

method offering a solution for estimating sample variance CI, the sample size required is still

quite large. A sample size of at least 640 is suggested when using the Bootstrap Percentile

Method for estimating sample variance CIs.
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Figure 83: Coverage Error for Sample Variance 95% Confidence Interval Using Bootstrap

Percentile Method

As shown the number of samples required for the Bootstrap Percentile Method is very

large. With 640 samples the distribution is visible using a standard histogram. The num-

ber of samples required may be reduced by using Gaussian error bounds on the variance

estimate. As the number of samples increases the distribution of the sample variance ap-

proaches a Gaussian Distribution. A given sample of size N can be discretized into B

batches each having Bn samples. The sample variance is then calculated for each batch.

The mean and variance of the batch variances are then used to create confidence intervals

using Equation 39. An experiment was developed that varied the number of batches, the

samples in each batch, the skewness, and the kurtosis. The results can be observed in Figure

84. The total number of samples used for each contour plot is shown in Equation 42.

Samples =

2666666666666664

25 50 75 100 125 150

50 100 150 200 250 300

75 150 225 300 375 450

100 200 300 400 500 600

125 250 375 500 625 750

150 300 450 600 750 900

3777777777777775
(42)

Observations from Figure 84 lead one to conclude that the number of batches contribute

more to accurate confidence interval coverage than the number of samples in each batch,

assuming the same number of total samples. If one compares the upper row with the left
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most column it is easily seen that increasing the number of batches is preferred to increasing

the number of samples in each batch. Finally, it is observed that the batch sample size of 5

results in some interesting error on the border of feasible distributions. It is recommended

that 10 samples per batch are used and at least 25 batches. This results in a required

sample size of 250 to accurately estimate the confidence interval of the sample variance.

The sample size can be adjusted if the kurtosis of the distribution were known. Given this

knowledge larger kurtosis values would require greater sample sizes and smaller kurtosis

values would require smaller sample sizes.
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Figure 84: Coverage Error for Sample Variance 95% Confidence Interval Using Batches for Normality
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5.2.3 Required Replications for Accurate Binomial Proportion Confidence In-
tervals

The unbiased point estimator for a binomial proportion is reproduced below in Equation

43, where Z is the number of occurrences within the defined bounds, e.g. [10,∞). The

most common CI for the binomial proportion is called the Wald Interval and is shown in

Equation 44. In Equation 44 z1�α/), not to be confused with Z, refers to the critical points

of a Gaussian Distribution, which can be found in data tables in the back of most text

books on statistics.

Despite the Wald Interval being the most common CI estimator, the performance of the

interval is erratic and often produces below-desired coverage [40]. Two better alternatives

to the Wald Interval are the Wilson Interval [212] and the Agresti-Coull Interval [6] shown

in Equations 45 and 46, respectively. Brown et al [40] provides an analysis of the interval

estimations and suggests the use of the Wilson Interval for small sample sizes and the

Agresti-Coull Interval for large sample sizes, e.g. n ≥ 40. Given that the goal is to find

the minimum number of repetitions required the Wilson Interval will be used for further

analysis.

p̂ =
Z

n
(43)

p̂± z1�α/2

r
p̂(1− p̂)

n
(44)

p̂+ 1
2nz

2
1�α/2 ± zα/2

r
p̂(1�p̂)
n +

z2
1−α/2
4n2

1 + z21�α/2/n
(45)

p̂+ z21�α/2/2

n+ z21�α/2
± z1�α/2

vuuuut p̂+z2
1−α/2/2

n+z2
1−α/2

�
1−

p̂+z2
1−α/2/2

n+z2
1−α/2

�
n+ z21�α/2

(46)

The analysis was performed in the same manner as the previous two sections. One dif-

ference in the binomial proportion analysis is that there exist numerous measures instead of

a single measure. The binomial proportion measures used are the values of the distribution
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that would result in 2.5%, 10%, 25%, 50%, 75%, 90%, and 97.5%. Given that there is an ad-

ditional dimension to the analysis the results will be displayed in three figures. The results

from the four binomial proportion confidence intervals at a 95% CI are shown for binomial

proportions of 2.5%, 10%, 25%, and 50% in Figure 85. Only half of the values are displayed

because the results are mostly symmetric about the 50% binomial proportion. The results

from the four binomial proportion confidence intervals at a 85% CI are shown for binomial

proportions of 2.5%, 10%, 25%, and 50% in Figure 86. The results from the four binomial

proportion confidence intervals at a 75% CI are shown for binomial proportions of 2.5%,

10%, 25%, and 50% in Figure 87.

What is observed from these figures is that there is no discernible pattern. As the sample

sizes are increased the coverage accuracy may increase or decrease. The same behavior is

observed when the CI levels are changed. The skewness and kurtosis show no change at all in

the coverage accuracy. This indicates that the Wilson Interval accuracy is not dependent on

the distribution. The only indication contrary to this is seen for 2.5% binomial proportion

at extreme kurtosis and positive skewness where the coverage drops significantly. The same

observation is made for extreme kurtosis and positive skewness for the 97.5% binomial

proportion, which is not shown. Finally, the only reliable pattern observed is increasing

coverage accuracy as the binomial proportion approaches 50%. From these observations,

no heuristic can be drawn for the number of replications required. Another set of analyses

must be conducted.
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Figure 85: Coverage Error for Binomial Proportions at 95% Confidence Interval using Wilson Intervals
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Figure 86: Coverage Error for Binomial Proportions at 85% Confidence Interval using Wilson Intervals
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Figure 87: Coverage Error for Binomial Proportions at 75% Confidence Interval using Wilson Intervals
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The previous analysis was unable to draw conclusions on the number of replications

needed for accurate CI estimates for binomial proportions. A new series of experiments

were run based on different variables. It was concluded from the previous analysis that

the skewness and kurtosis are not significant contributors to the accuracy of the Wilson

Interval; therefore, a Gaussian Distribution with a mean of zero and a variance of one was

used for all cases. The CI level was varied between 75% and 95% by increments of 5%.

The sample size was varied between 3 and 200 at increments of 1. The binomial proportion

ranged from 0.01 to 0.50 at increments of 0.01. Each combination was repeated 20,000

times to calculate the expected coverage.

The results are shown in Figure 88. The layout of this figure is similar to the previous

two; however, the axes have changed. Each column represents a different CI level with the

leftmost column representing 95% CI and the rightmost column representing 75% CI. For

each contour plot the sample size is on the abscissa and the binomial proportion value is on

the ordinate. The body of the contour plot, like the previous figures, shows the contours of

the error of the coverage.

The first observation is that the coverage accuracy of the Wilson Interval decreases as

the CI level drops. For a given CI level, the error decreases with both increasing sample

size and as the binomial proportion value approaches 0.50. Another observation is that the

error follows an inverse relationship, i.e. n = 1/p̂. Finally, when observing the body of

the contours, the error has an erratic nature to it. Therefore, increasing the sample size

or binomial proportion value does not always improve the coverage accuracy. It will only

improve the accuracy on the macro scale. The conclusion that is drawn from this analysis

is that the heuristic n ≥ 3/min(p̂, 1− p̂) is sufficient for the number of replications needed

for a given binomial proportion. The heuristic is plotted as a line in each contour in Figure

88. This value may need to be increased with lower levels of CI.
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Figure 88: Coverage Error of Confidence Intervals of Binomial Proportions using Wilson

Intervals and n ≥ 3/min(p, 1− p)

5.2.4 Required Replications for Accurate Quantile Confidence Intervals

The equation of the quantile estimate is reproduced in Equation 47, where q is the de-

fined proportion, and X represents the order statistic of the samples. The equation that

approximates the CI for the quantiles is shown in Equation 48 where Xr represents the

rth smallest value and Xs represents the sth smallest value. Xr and Xs represent the

lower and upper bound, respectively, of the interval. For example, if the sample size

were 100, n = 100, the 50% quantile is being measured, q = 0.50, and the confidence

interval level is 95%, z1�α/2 = 1.96, then r =
l
100(0.5)− 1.96

p
100(0.5)(1− 0.5)

m
and

s =
l
100(0.5) + 1.96

p
100(0.5)(1− 0.5)

m
. The lower and upper bound of the interval will

be the 41st smallest value and the 60th smallest value, respectively.

x̂q = Xdnqe (47)

P (Xr ≤ x̂q ≤ Xs) ≥ 1− α

r =
l
nq − z1�α/2

p
nq(1− q)

m
s =

l
nq + z1�α/2

p
nq(1− q)

m (48)

The analysis was performed in the same manner as the sample mean and sample variance

CI analysis. The range for sample size was changed to range from 15 to 150 at increments

of 15. Similar to the binomial proportion, there are numerous measures possible for the
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quantile analysis. The quantile measures used are 2.5%, 10%, 25%, 50%, 75%, 90%, and

97.5%. Given that there is an additional dimension to the analysis the results will be

displayed in three figures. The results for quantiles of 2.5%, 10%, 25%, and 50% at the 95%

CI are shown in Figure 89. Only half of the values are displayed because the results are

mostly symmetric about the 50% quantile. The results for quantiles of 2.5%, 10%, 25%,

and 50% at the 85% CI are shown in Figure 90. The results for quantiles of 2.5%, 10%,

25%, and 50% at the 75% CI are shown in Figure 91.

The first observation made is that the quantile CI estimator performs much better than

the binomial proportion CI estimator. An observation made from the three figures is that

as the sample size increases the coverage accuracy improves. Another observation made is

as the quantile measured approaches 50%, the coverage accuracy improves. There is some

evidence that the coverage accuracy fluctuates with sample size and quantile level, but

this is not to the degree that was observed with binomial proportions. Finally, as is with

the binomial proportion, the coverage accuracy does not appear to be strongly influenced

by the distribution. Despite performing better than binomial proportions no heuristic can

be drawn for the number of replications required from these observations. Another set of

analyses must be conducted.
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Figure 89: Coverage Error for Quantiles at 95% Confidence Interval
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Figure 90: Coverage Error for Quantiles at 85% Confidence Interval
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Figure 91: Coverage Error for Quantiles at 75% Confidence Interval
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The previous analysis was unable to draw conclusions on the number of replications

needed for accurate CI estimates for quantiles. A new series of experiments were run

based on different variables. It was concluded from the previous analysis that the skewness

and kurtosis are not significant contributors to the accuracy of the interval; therefore, a

Gaussian Distribution with a mean of zero and a variance of one was used for all cases. The

CI level was varied between 75% and 95% by increments of 5%. The sample size was varied

between 3 and 300 at increments of 1. The binomial proportion ranged from 0.01 to 0.50 at

increments of 0.01. Each combination was repeated 20,000 times to calculate the expected

coverage.

The results are shown in Figure 92. The layout of this figure is the same as Figure 88,

which was used to find the heuristic for binomial proportions. The first observation made

is that the coverage accuracy decreases as the CI level decreases. It is observed that the

error follows an inverse relationship, i.e. n = 1/q̂. Following this inverse relationship there

appears to be ‘waves’ of increased and decreased error. Finally, a conclusion is drawn on a

heuristic for quantiles. This heuristic is n ≥ 5/min(p̂, 1− p̂) and is plotted on each contour

graph in Figure 92.

Figure 92: Coverage Error of Confidence Intervals of Quantiles and n ≥ 5/min(p, 1− p)

5.2.5 Conclusion

Note that these heuristics represent the minimum required sample sizes for accurate CI

estimates. More repetitions may be required based on the needs of the analysis. The

analysis on the coverage accuracy of the sample mean CI showed that the estimate was
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very accurate. A sample size of at least 10 is suggested for the heuristic of the sample mean

CI. For distributions with a skewness of above one, larger sample sizes are required. The

kurtosis of the distribution was not seen to be a significant factor in the required sample

size.

The CI estimator for sample variance was found to be a very poor measure. Interestingly,

the skewness was not found to be a significant factor in the coverage accuracy of the CI

estimate. Kurtosis was found to be critical. For distributions that do not have a kurtosis

of three this measure should not be used. The Bootstrap Percentile Method was found to

accurately estimate the bounds at sample sizes of 640 and larger. For kurtosis above five

more repetitions would be required. In general sample variance was not found to have a

reliable confidence interval estimate for reasonable sample sizes.

The Wilson Interval was selected to estimate the binomial proportion confidence interval.

It was found that the skewness and kurtosis were not significant contributors to the accuracy

of the interval. A Gaussian Distribution with a mean of zero and a variance of one was used

for the analysis. A heuristic for the required sample size was found to be n ≥ 3/min(p̂, 1−p̂).

The CI level was found to have an impact on the accuracy of the interval; therefore, it is

suggested that for CIs of 75% or lower that larger sample sizes are used.

The quantile confidence interval estimator was found to perform much better than the

binomial proportion CI estimators. Similarly, it was found that the skewness and kurtosis

were not significant contributors to the accuracy of the interval. A Gaussian Distribution

with a mean of zero and a variance of one was used for the analysis. A heuristic for the

required sample size was found to be n ≥ 5/min(p̂, 1− p̂). The CI level was found to have

an impact on the accuracy of the interval; therefore, it is suggested that for CIs of 75%

or lower that larger sample sizes are used. As a result of this analysis heuristics can be

presented to answer Research Question 6 shown below.

Research Question 6 Hypothesis: Sample mean confidence interval estima-

tion requires at least a sample size of ten. For distributions with a skewness

above one use a sample size of 50 or more.
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Sample variance confidence interval estimation requires the use of batching. A

sample size of at least 10 is required and 25 batches are suggested.

Binomial proportion confidence interval estimation requires that at least 3/min(p̂, 1−

p̂) samples are used. For a CI of 75% or lower use a larger sample size.

Quantile confidence interval estimation requires that at least 5/min(q̂, 1 − q̂)

samples are used. For a CI of 75% or lower use a larger sample size.

5.3 Heuristics on Regressions of Stochastic Outputs

The heuristics presented in the previous section addressed the questions of “how many

replications are required for confidence interval estimates to hold true?” This does not help

if one were attempting to create a surrogate model of the simulation output data. Therefore,

the next logical question is “which method should be used when creating surrogate models

of stochastic measures?”, which is Research Question 7. Before answering this question,

three explanations need to be given. The first is to define a surrogate model. The second is

to define what makes a good surrogate model. The third, and final, explanation is on how

stochastic data presents challenges to surrogate modeling.

Research Question 7 Which method should be used when creating surrogate

models of stochastic measures?

A surrogate model is a mathematical representation of a data set that relates a set of

input variables to a set of output variables. There are several different types of surrogate

models that can be created. The focus here will be placed on response surfaces. Typically,

data is gathered by executing a series of experiments on either a computer simulation or a

physical test using a Design of Experiments (DoE). A DoE is a series of experiments that

have been designed in such a way as to maximize the information that can be gathered for

a given set of test cases. Once the data is gathered, a polynomial equation is created that

approximates the computational or physical environment. This equation commonly takes

the form of the 2nd Order Response Surface Equation shown in Equation 49 [113], where

x represents the input variable values and b represents the regressors. The regressors are
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then found using least squares method.

R = b0 +
kX
i=1

bixi +
kX
i=1

biix
2
i +

k�1X
i=1

kX
j=i+1

bijxixj + ε (49)

A good surrogate model is one that captures the behavior of the true model with suf-

ficient accuracy. This is tested by determining the Goodness of Fit. The Goodness of Fit

contains five tests [54, 51], which are enumerated below. The Coefficient of Determination,

denoted R2, is an indicator of how well a set of data points fit a line or curve. This measure

will be used extensively in this section. It is calculated by Equation 50. SSres represents

the Residual Sum of Squares and is shown in Equation 51. SStot represents the Total Sum

of Squares and is shown in Equation 52. The remaining steps for assessing the Goodness

of Fit are not needed for the analysis in this section; therefore, the details of the steps will

not be expanded upon.

1. Determine if R2 is sufficient

2. Investigate actual by predicted plot for patterns

3. Investigate residual by predicted plot for patterns

4. Investigate variance and mean of model fit error

5. Investigate variance and mean of model representation error

R2 = 1− SSres
SStot

= 1−
P

i(yi − fi)2P
i(yi − ȳ)2

(50)

SSres =
X
i

(yi − fi)2 (51)

SStot =
X
i

(yi − ȳ)2 (52)

Stochastic data presents challenges for creating surrogate models. If a surrogate model

was developed that perfectly captured the true underlying measure, e.g. mean, then the
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Goodness of Fit tests would indicate some error. This may lead the analyst to believe that

the surrogate model is a worst representation of the data than it truly is. This error arises

as a result of the stochasticity of the output and the fact that every measure, e.g. sample

mean, contains some error.

In addition to the possibility of obtaining misleading results from the Goodness of Fit

test, a common mistake for the use of least squares regressions is to use Ordinary Least

Squares (OLS) with a constant number of replications for each case. The problem with this

approach is that it assumes that the output data is homoscedastic, i.e. constant variance

for each case. As was shown in the previous sections this may not be the case. In fact,

it would be expected that most stochastic simulation outputs with different inputs would

be heteroscedastic; heteroscedasticity was observed in the output of the MCM model in

Figures 73 and 74. The issue with using a constant number of replications for each case for

OLS is that cases with high error are given equal weighting to cases with low error. This

can result in poor model representation because the model will be regressed to the error

from the high error cases. Heteroscedastic simulation outputs can be better regressed by

maintaining a constant CI width or by using Weighted Least Squares (WLS).

Analysis will be performed to compare the performance of using OLS with constant

sample sizes for each case (OLSCS), using OLS with constant CI widths (OLSCI), and

using WLS. The weighting commonly used for WLS for regressing the sample mean is the

inverse of the standard deviation [180]. This weighting will not work well for non-sample

mean regressions, e.g. quantiles, therefore the 95% CI widths will be used instead. Since the

CI width is a linear mapping of the standard deviation of the sample mean it is a natural

alternative. Additionally, CI widths are available for all stochastic measures. For these

reasons the CI width will be used as the weighting for the WLS regressions.

A canonical example will be used to help determine how the regressors should be re-

gressed for a heteroscedastic data set. Once the manner in which stochastic data should

be regressed is decided, e.g. OLSCS , OLSCI , WLS, a heuristic will be presented on the

number of replications required to create a surrogate model of stochastic simulation data.
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5.3.1 Experimental Set Up and Results of a Canonical Example

A canonical problem was developed that contained one output with two inputs: X and Y.

The output follows a Gaussian Distribution. The mean of the output is defined by Equation

53 and is graphed in Figure 93. The variance of the output is defined by Equation 54 and

is shown in Figure 94. The canonical problem was given a large variance to emphasize

the impact of sample size on the performance of the regression methods. The problem is

bounded on the x-axis and y-axis between -5 and 5. The input space is sampled with a four-

level full factorial design giving a total of 16 cases. The mean, binomial proportions, and

quantiles will be regressed using the three least squares approaches. The variance measure

is excluded because it was found in the previous two sections that variance is a poor measure

for stochastic output data. Surrogate models were created for the stochastic measures for

sample sizes ranging from 25 to 500 at intervals of 25. The OLSCI case redistributes the

samples to maintain a constant width while keeping the total number of runs constant. The

true variance was used to calculate the required sample size. The R2 between the sample

values and the true values will be calculated. This measure will determine the amount of

variability that the surrogate model captures of the true model. This process is repeated

1,000 times to determine the expected R2.

M = X + Y + 5Y 2 +X3 +XY (53)

σ2 = 25000(X2 + Y 2) (54)
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Figure 93: True Mean of the Canonical Example

Figure 94: True Variance of the Canonical Example

5.3.1.1 Least Square Regressions of the Mean

All regression methods were regressed using the known model shown in Equations 53. An

exact regression using any of the least squares regression methods would result in the

following coefficients: 1,1,5,1,1. The results of the three regression methods are shown in
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Figure 95 through Figure 98. Figure 95 compares the three methods using the Coefficient

of Determination between the regressed model and the sample mean. It is observed that

OLSCS outperforms the other two methods, OLSCI and WLS, whom perform at the same

level. Additionally, it is observed that the R2 improves asymptomatically as the sample

size increases. This result is enlightening when compared to the result shown in Figure

96. Figure 96 shows the same three methods compared to the true mean as opposed to

the sample mean. It is observed that OLSCS performs the worst when compared to the

true mean. This observation reasserts the claim made earlier that the use of OLSCS for

heteroscedastic data can result in misleading results. This is further emphasized in Figure

97 and Figure 98. Figure 97 compares the Coefficient of Determination of the OLSCS

method for both the sample and true mean. It is observed that performance with respect

to the sample mean initially shows an inflated quality of performance. It is not until the

sample size exceeds 100 that the regressed model performs better for the true mean than

what would be reported for the sample mean. Note that the sample mean comparison

would be the only measure available to test the quality of the fit. Figure 98 makes the same

comparison for the OLSCI and WLS methods. The same observation is made here as in

Figure 97, though for a smaller sample size. The final observation made is that the OLSCI

method slightly outperforms the WLS method. This is best shown by Figure 96

Figure 95: Variability Captured of the Sample Mean for Three Least Squares Methods
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Figure 96: Variability Captured of the True Mean for Three Least Squares Methods

Figure 97: Variability Captured Comparison of the Sample and True Mean for OLSCS
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Figure 98: Variability Captured Comparison of the Sample and True Mean for OLSCS and

WLS

5.3.1.2 Least Square Regressions of the Binomial Proportions

The binomial proportion measurements will be made at the value that occurs for the true

mean for an X and Y value of zero, which is zero. The binomial proportion will report the

portion of observations that occurs greater than or equal to zero. The variance equation

was reduced by two orders of magnitude for this study so that greater variability occurs for

the binomial proportion values.

Resizing the sample sizes for each DOE case for the OLSCI method presents some diffi-

culty. To resize the sample sizes to maintain a constant CI width the following observations

are made. The confidence interval width for the binomial proportions are based on the

sample proportion value measured, e.g. 0.25, and the sample size. The interval width is

at its minimum when the value is zero or one. For this case the Wilson Interval width is

z21�α/2/(n+ z21�α/2). The interval width is at its maximum when the value is 0.5. For this

case the Wilson Interval width is z1�α/2

q
1 + z1�α/2/n2/(1 + z1�α/2/n). Given the true

mean, true variance, and the distribution the true binomial proportion for each of the 16

DOE cases is known. These values will then be taken to manually resize the samples such

that the CI widths are constant and the total number of runs are maintained across the

three least squares methods. The results for sample size 25 is shown in Table 44. This ratio

of sample sizes are maintained as the sample sizes are increased.
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