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Inducing strong convergence into the asymptotic behaviour of
proximal splitting algorithms in Hilbert spaces
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Proximal splitting algorithms for monotone inclusions (and convex optimization problems) in Hilbert
spaces share the common feature to guarantee for the generated sequences in general weak convergence
to a solution. In order to achieve strong convergence, one usually needs to impose more restrictive prop-
erties for the involved operators, like strong monotonicity (respectively, strong convexity for optimization
problems). In this paper, we propose a modified Krasnosel’skiı̆–Mann algorithm in connection with the
determination of a fixed point of a nonexpansive mapping and show strong convergence of the iteratively
generated sequence to the minimal norm solution of the problem. Relying on this, we derive a forward–
backward and a Douglas–Rachford algorithm, both endowed with Tikhonov regularization terms, which
generate iterates that strongly converge to the minimal norm solution of the set of zeros of the sum of two
maximally monotone operators. Furthermore, we formulate strong convergent primal–dual algorithms
of forward–backward and Douglas–Rachford-type for highly structured monotone inclusion problems
involving parallel-sums and compositions with linear operators. The resulting iterative schemes are par-
ticularized to the solving of convex minimization problems. The theoretical results are illustrated by
numerical experiments on the split feasibility problem in infinite dimensional spaces.

Keywords: fixed points of nonexpansive mappings; Tikhonov regularization; splitting methods;
forward–backward algorithm; Douglas–Rachford algorithm; primal–dual algorithm

AMS Subject Classification: 47J25; 47H09; 47H05; 90C25

1. Introduction and preliminaries

Let H be a real Hilbert space endowed with inner product 〈·, ·〉 and associated norm ‖ · ‖ =√〈·, ·〉. Let T : H → H be a nonexpansive mapping, that is ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ H.
One of the most popular iterative methods for finding a fixed point of the operator T is the
Krasnosel’skiı̆–Mann algorithm

xn+1 = xn + λn (Txn − xn) ∀n ≥ 0, (1)

where x0 ∈ H is arbitrary and (λn)n≥0 is a sequence of nonnegative real numbers. Provided
FixT = {x ∈ H : Tx = x} �= ∅, one can show under mild conditions imposed on (λn)n≥0, that
the sequence (xn)n≥0 converges weakly to an element in FixT (see for instance [6]).
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The applications and the impact of this fundamental result go beyond the usual fixed point
theory, representing in fact the starting point for the derivation of algorithms and related con-
vergence statements in connection with the solving of monotone inclusions. In this context,
we mention the classical forward–backward algorithm for determining a zero of the sum of
a set-valued maximally monotone operator and a single-valued and cocoercive one and the
Douglas–Rachford algorithm for determining a zero of the sum of two set-valued maximally
monotone operators. The paradigms behind these classical methods can be transferred to the
solving of convex optimization problems, too (see [6]).

The iterative algorithms mentioned above share the common property that the generated
sequences converge weakly to a solution of the problem under investigation. However, for
applications where infinite dimensional functional spaces are involved, weak convergence is not
satisfactory. In order to achieve strong convergence, one usually needs to impose more restric-
tive properties for the involved operators, like strong monotonicity when considering monotone
inclusions and strong convexity when solving optimization problems. Since there evidently are
applications for which these stronger properties are not fulfilled, the interest of the applied math-
ematics community in developing algorithms which generate iterates that strongly convergence
is justified.

We mention in this sense the Halpern algorithm and its numerous variants designed for find-
ing a fixed point of a nonexpansive mapping (see for instance [13]). In the context of solving
monotone inclusions, we mention the proximal-Tikhonov algorithm

xn+1 = (Id + λn(A + μnId))−1 (xn) ∀n ≥ 0,

where A : H ⇒ H is a maximally monotone operator, Id is the identity operator on H and (λn)n≥0

and (μn)n≥0 are sequences of nonnegative real numbers. Under mild conditions imposed on
(λn)n≥0 and (μn)n≥0, one can prove strong convergence of (xn)n≥0 to the minimal norm solution
of the set of zeros of A (see [19,27]). It is important to emphasize the Tikhonov regularization
terms (μnId)n≥0 in the above scheme, which actually enforces the strong convergence property.
In the absence of the regularization term, the above numerical scheme becomes the classical
proximal algorithm for determining a zero of the operator A, for which in general only weak
convergence can be proved (see [23]). For more theoretical results concerning Tikhonov regular-
ization and more motivational arguments for using such techniques, especially for optimization
problems, we refer the reader to Attouch’s paper [2]. For other techniques and tools in order to
achieve strong convergence we mention also the works of Haugazeau [18] and [5].

In this article, we will first introduce and investigate a modified Krasnosel’skiı̆–Mann
algorithm with relaxation parameters, having the outstanding property that it generates a
sequence of iterates which converges strongly to the minimal norm solution of the fixed points
set of a nonexpansive mapping. In contrast to [13,20,27] (see also the references therein), where
the techniques and tools used have their roots in fixed point theory results for contractions, our
convergence statements follow more directly. Relying on this, we derive a forward–backward
and a Douglas–Rachford algorithm, both endowed with Tikhonov regularization terms, which
generate iterates that strongly converge to the minimal norm solution of the set of zeros of the
sum of two maximally monotone operators. The resulting iterative schemes are particularized to
the minimization of the sum of two convex functions.

Furthermore, we deal with complexly structured monotone inclusions where parallel-sums
and compositions with linear operators are involved. By making use of modern primal–dual tech-
niques (see [10,12,15,17,28] and also [8,9]), we derive strongly convergent numerical schemes of
forward–backward and Douglas–Rachford-type, both involving Tikhonov regularization terms
and having the remarkable property that all the operators are evaluated separately. Moreover, the
designed algorithms solve both the structured monotone inclusion problem and its dual mono-
tone inclusion problem in the sense of Attouch-Théra (see [3]). When particularized to convex
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optimization problems, this means the concomitantly solving of a primal problem and its Fenchel
dual one. For other types of primal–dual algorithms with strong convergence properties and their
applications we refer the reader to [1,4]. Finally, in the last section we carry out numerical exper-
iments on the split feasibility problem in infinite dimensional Hilbert spaces which illustrate the
potential of the algorithm endowed with Tikhonov regularization terms.

In the remaining of this section, we recall some results which will play a decisive role in the
convergence analysis of the proposed algorithms. The following result is related to the conver-
gence of a sequence satisfying a sharp quasi-Fejér monotonicity property and follows as a direct
consequence of [27, Lemma 2.5].

Lemma 1 Let (an)n≥0 be a sequence of nonnegative real numbers satisfying the inequality

an+1 ≤ (1 − θn)an + θnbn + εn ∀n ≥ 0,

where

(i) 0 ≤ θn ≤ 1 for all n ≥ 0 and
∑

n≥0 θn = +∞;
(ii) lim supn→+∞ bn ≤ 0;

(iii) εn ≥ 0 for all n ≥ 0 and
∑

n≥0 εn < +∞.

Then the sequence (an)n≥0 converges to 0.

We close this section with a result that is a consequence of the demiclosedness principle (see
[6, Corollary 4.18]) and it will be used in the proof of Theorem 3, which is the main result of this
paper.

Lemma 2 Let T : H → H be a nonexpansive operator and let (xn)n≥0 be a sequence in H and
x ∈ H be such that w − limn→+∞ xn = x and (Txn − xn)n≥0 converges strongly to 0 as n → +∞.
Then x ∈ FixT.

2. A strongly convergent Krasnosel’skiı̆–Mann algorithm

In order to induce strong convergence into the asymptotic behaviour of the Krasnosel’skiı̆–Mann
algorithm for determining a fixed point of a nonexpansive mapping T : H → H, we propose the
following modified version of it:

xn+1 = βnxn + λn (T(βnxn) − βnxn) ∀n ≥ 0, (2)

where x0 ∈ H is the starting point and (λn)n≥0 and (βn)n≥0 suitably chosen sequences of pos-
itive numbers. In the proof of the theorem below, we denote by projC : H → C, projC(x) =
argminc∈C‖x − c‖, the projection operator onto the nonempty closed convex set C ⊆ H. We
notice that for a nonexpansive mapping T : H → H, its set of fixed points FixT is closed and
convex (see [6, Corollary 4.15]).

Theorem 3 Let (λn)n≥0 and (βn)n≥0 be real sequences satisfying the conditions:

(i) 0 < βn ≤ 1 for any n ≥ 0, limn→+∞ βn = 1,
∑

n≥0(1 − βn) = +∞ and
∑

n≥1 |βn − βn−1| <

+∞;
(ii) 0 < λn ≤ 1 for any n ≥ 0, lim infn→+∞ λn > 0 and

∑
n≥1 |λn − λn−1| < +∞.

Consider the iterative scheme (2) with and arbitrary starting point x0 ∈ H and a nonexpansive
mapping T : H → H fulfilling FixT �= ∅. Then (xn)n≥0 converges strongly to projFixT (0).
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Proof For the beginning, we prove that (xn)n≥0 is bounded. Let x ∈ FixT . Due to the
nonexpansiveness of T, we have for any n ≥ 0:

‖xn+1 − x‖ = ‖(1 − λn)(βnxn − x) + λn (T(βnxn) − Tx) ‖
≤ (1 − λn)‖βnxn − x‖ + λn‖T(βnxn) − Tx‖
≤ ‖βnxn − x‖
= ‖βn(xn − x) + (βn − 1)x‖
≤ βn‖xn − x‖ + (1 − βn)‖x‖.

A simple induction leads to the inequality

‖xn − x‖ ≤ max{‖x0 − x‖, ‖x‖} ∀n ≥ 0,

hence (xn)n≥0 is bounded.
We claim that

‖xn+1 − xn‖ → 0 as n → +∞. (3)

Indeed, by taking into account that T is nonexpansive and that (xn)n≥0 is bounded, we obtain for
any n ≥ 1 the following estimates:

‖xn+1 − xn‖ = ‖(1 − λn)βnxn − (1 − λn−1)βn−1xn−1 + λnT(βnxn) − λn−1T(βn−1xn−1)‖
≤ ‖(1 − λn)(βnxn − βn−1xn−1) + (λn−1 − λn)βn−1xn−1‖

+ ‖λn (T(βnxn) − T(βn−1xn−1)) + (λn − λn−1)T(βn−1xn−1)‖
≤ ‖βnxn − βn−1xn−1‖ + |λn − λn−1|C1,

where C1 > 0.
Further, we derive for any n ≥ 1:

‖xn+1 − xn‖ ≤ ‖βn(xn − xn−1) + (βn − βn−1)xn−1‖ + |λn − λn−1|C1

≤ βn‖xn − xn−1‖ + |βn − βn−1|C2 + |λn − λn−1|C1,

where C2 > 0. Statement (3) is a consequence of Lemma 1, for an := ‖xn − xn−1‖, bn := 0, εn :=
|βn − βn−1|C2 + |λn − λn−1|C1 and θn := 1 − βn, n ≥ 1.

In the following we prove that

‖xn − Txn‖ → 0 as n → +∞. (4)

For any n ≥ 0 we have the following inequalities:

‖xn − Txn‖ ≤ ‖xn+1 − xn‖ + ‖xn+1 − Txn‖
= ‖xn+1 − xn‖ + ‖(1 − λn)(βnxn − Txn) + λn (T(βnxn) − Txn) ‖
≤ ‖xn+1 − xn‖ + (1 − λn)‖βnxn − Txn‖ + λn‖βnxn − xn‖
≤ ‖xn+1 − xn‖ + (1 − λn)‖βnxn − βnTxn‖

+ (1 − λn)‖βnTxn − Txn‖ + λn(1 − βn)‖xn‖
≤ ‖xn+1 − xn‖ + (1 − λn)‖xn − Txn‖

+ (1 − λn)(1 − βn)‖Txn‖ + λn(1 − βn)‖xn‖.
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From here we deduce that for any n ≥ 0:

λn‖xn − Txn‖ ≤ ‖xn+1 − xn‖ + (1 − λn)(1 − βn)‖Txn‖ + λn(1 − βn)‖xn‖.

Taking into account that (xn)n≥0 is bounded, (3) and the properties of the sequences involved, we
derive from the last inequality that (4) holds.

In what follows we show that (xn)n≥0 actually converges strongly to projFixT (0) := x̄. Since T
is nonexpansive, we have for any n ≥ 0:

‖xn+1 − x̄‖ = ‖(1 − λn)(βnxn − x̄) + λn (T(βnxn) − Tx̄) ‖
≤ (1 − λn)‖βnxn − x̄‖ + λn‖T(βnxn) − Tx̄‖
≤ ‖βnxn − x̄‖.

Hence,

‖xn+1 − x̄‖2 ≤ ‖βnxn − x̄‖2

= ‖βn(xn − x̄) + (βn − 1)x̄‖2

= β2
n‖xn − x̄‖2 + 2βn(1 − βn)〈−x̄, xn − x̄〉 + (1 − βn)

2‖x̄‖2

≤ βn‖xn − x̄‖2 + (1 − βn)
(
2βn〈−x̄, xn − x̄〉 + (1 − βn)‖x̄‖2

) ∀n ≥ 0. (5)

Next we show that

lim sup
n→+∞

〈−x̄, xn − x̄〉 ≤ 0. (6)

Assuming the contrary, there would exist a positive real number l and a subsequence (xkj)j≥0

such that

〈−x̄, xkj − x̄〉 ≥ l > 0 ∀j ≥ 0.

Due to the boundedness of the sequence (xn)n≥0, we can assume without losing the general-
ity that (xkj)j≥0 weakly converges to an element y ∈ H. According to Lemma 2, by taking into
consideration (4), it follows that y ∈ FixT . From this and the variational characterization of the
projection we easily derive

lim
j→+∞

〈−x̄, xkj − x̄〉 = 〈−x̄, y − x̄〉 ≤ 0,

which leads to a contradiction. This shows that (6) holds. Thus

lim sup
n→+∞

(
2βn〈−x̄, xn − x̄〉 + (1 − βn)‖x̄‖2

) ≤ 0.

A direct application of Lemma 1 to (5), for an := ‖xn − x̄‖2, bn := 2βn〈−x̄, xn − x̄〉 + (1 −
βn)‖x̄‖2, εn := 0 and θn := 1 − βn, n ≥ 0, delivers the desired conclusion. �

Remark 4 Condition (ii) in the previous theorem is satisfied by every monotonically increasing
(and, in consequence, convergent) sequence (λn)n≥0 ⊆ (0, 1] and also by every monotoni-
cally decreasing (and, in consequence, convergent) sequence (λn)n≥0 ⊆ (0, 1] having as limit
a positive number.

Condition (i) in the previous theorem is satisfied by every monotonically increasing sequence
(βn)n≥0 ⊆ (0, 1] which fulfils limn→+∞ βn = 1 and

∑
n≥0(1 − βn) = +∞, as it is for instance

the sequence with β0 ∈ (0, 1
2 ) and βn = 1 − 1/(n + 1) for any n ≥ 1.



494 R. I. Boţ et al.

An immediate consequence of Theorem 3 is the following corollary, which proposes an itera-
tive scheme that finds a minimal norm solution of the set of fixed points of an averaged operator.
Let α ∈ (0, 1) be fixed. We say that R : H → H is an α-averaged operator if there exists a non-
expansive operator T : H → H such that R = (1 − α)Id + αT . It is obvious that α-averaged
operators are also nonexpansive. The 1

2 -averaged operators are nothing else than the firmly non-
expansive ones and form the most important representatives of this class. For properties and
insights into these families of operators we refer the reader to [6]. The following result will play
in the next section a determinant role in the converge analysis of the forward–backward method
endowed with Tikhonov regularization term.

Corollary 5 Consider the iterative scheme

xn+1 = βnxn + λn (R(βnxn) − βnxn) ∀n ≥ 0, (7)

with x0 ∈ H as starting point, R : H → H an α-averaged operator, for α ∈ (0, 1), such that
FixR �= ∅ and (λn)n≥0 and (βn)n≥0 real sequences satisfying the conditions:

(i) 0 < βn ≤ 1 for any n ≥ 0, limn→+∞ βn = 1,
∑

n≥0(1 − βn) = +∞ and
∑

n≥1 |βn − βn−1| <

+∞;
(ii) 0 < λn ≤ 1/α for any n ≥ 0, lim infn→+∞ λn > 0 and

∑
n≥1 |λn − λn−1| < +∞. Then

(xn)n≥0 converges strongly to projFixR(0).

Proof Since R is α-averaged, there exists a nonexpansive operator T : H → H such that R =
(1 − α)Id + αT . The conclusion follows from Theorem 3, by taking into account that (7) is
equivalent to

xn+1 = βnxn + αλn (T(βnxn) − βnxn) ∀n ≥ 0

and that FixR = FixT . �

3. A forward–backward algorithm with Tikhonov regularization term

This section is dedicated to the formulation and convergence analysis of a forward–backward
algorithm with Tikhonov regularization terms, which generates a sequence of iterates that con-
verges strongly to the minimal norm solution of the set of zeros of the sum of two maximally
monotone operators, one of them being single-valued.

For readers’ convenience, we recall some standard notions and results in monotone operator
theory which will be used in the following (see also [6,7,26]). For an arbitrary set-valued oper-
ator A : H ⇒ H we denote by GrA = {(x, u) ∈ H × H : u ∈ Ax} its graph. Then A−1 : H ⇒ H,
which is the operator with GrA−1 = {(x, u) ∈ H × H : x ∈ Au}, denotes the inverse operator of
A. We use also the notation zerA = {x ∈ H : 0 ∈ Ax} for the set of zeros of A. We say that A is
monotone, if 〈x − y, u − v〉 ≥ 0 for all (x, u), (y, v) ∈ GrA. A monotone operator A is said to be
maximally monotone, if there exists no proper monotone extension of the graph of A on H × H.
The resolvent of A, JA : H ⇒ H, is defined by

JA = (Id + A)−1,

where Id : H → H, Id(x) = x for all x ∈ H, is the identity operator on H. Moreover, if A is
maximally monotone, then JA : H → H is single-valued and maximally monotone (see [6,
Proposition 23.7 and Corollary 23.10]).
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Let γ > 0. We say that B : H → H is γ -cocoercive, if 〈x − y, Bx − By〉 ≥ γ ‖Bx − By‖2 for
all x, y ∈ H.

The following technical result (see [21, Theorem 3(b)] and [16, Proposition 2.4]) gives an
expression for the averaged parameter of the composition of two averaged operators. We refer
also to [6, Proposition 4.32] for other results of this type.

Proposition 6 Let Ti : H → H be αi-averaged, where αi ∈ (0, 1), i = 1,2. Then the composi-
tion T1 ◦ T2 is α-averaged, where

α = α1 + α2 − 2α1α2

1 − α1α2
∈ (0, 1).

Theorem 7 Let A : H ⇒ H be a maximally monotone operator and B : H → H a β-
cocoercive operator, for β > 0, such that zer(A + B) �= ∅. Let γ ∈ (0, 2β]. Consider the iterative
scheme

xn+1 = (1 − λn)βnxn + λnJγ A (βnxn − γ B(βnxn)) ∀n ≥ 0, (8)

with x0 ∈ H as starting point and (λn)n≥0 and (βn)n≥0 real sequences satisfying the conditions:

(i) 0 < βn ≤ 1 for any n ≥ 0, limn→+∞ βn = 1,
∑

n≥0(1 − βn) = +∞ and
∑

n≥1 |βn − βn−1| <

+∞;
(ii) 0 < λn ≤ (4β − γ )/2β for any n ≥ 0, lim infn→+∞ λn > 0 and

∑
n≥1 |λn − λn−1| < +∞.

Then (xn)n≥0 converges strongly to projzer(A+B)(0).

Proof It is immediate that the iterative scheme (8) can be written in the form

xn+1 = βnxn + λn (T(βnxn) − βnxn) ∀n ≥ 0,

where T = Jγ A ◦ (Id − γ B).
We consider two cases. The first one is when γ ∈ (0, 2β).
According to [6, Corollary 23.8 and Remark 4.24(iii)], Jγ A is 1

2 -cocoercive. Moreover, by
[6, Proposition 4.33], Id − γ B is γ /2β-averaged. Combining this with Proposition 6, we derive
that T is 2β/(4β − γ )-averaged. The statement follows now from Corollary 5, by noticing that
FixT = zer(A + B) (see [6, Proposition 25.1(iv)]).

The second case is when γ = 2β. The cocoercivity of B implies that Id − γ B is nonexpansive,
hence the operator T = Jγ A ◦ (Id − γ B) is nonexpansive, too, the conclusion follows in this
situation from Theorem 3. �

Remark 8 The choice λn = 1 for any n ≥ 0 in the previous theorem leads to the iterative scheme

xn+1 = Jγ A (βnxn − γ B(βnxn)) ∀n ≥ 0,

which further becomes in case B = 0

xn+1 = Jγ A (βnxn) ∀n ≥ 0.

This last relation can be equivalently written as

xn ∈ 1

βn
xn+1 + γ

βn
Axn+1 =

(
Id + εnId + γ

βn
A

)
(xn+1),

where εnId (with εn := 1/βn − 1 > 0 and limn→+∞ εn = 0) represents the Tikhonov regulariza-
tion term, which enforces the strong convergence of the sequence (xn)n≥0 to the minimal norm
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solution. For other types of Tikhonov-like methods for monotone inclusion problems we refer
the reader to [19,25,27] and the references therein.

In the remaining of this section we turn our attention to the solving of optimization problems
of the form

min
x∈H

{f (x) + g(x)}, (9)

where f : H → R ∪ {+∞} is a proper, convex and lower semicontinuous function and g : H →
R is a convex and Fréchet differentiable function with 1/β-Lipschitz continuous gradient, for
β > 0.

For a proper, convex and lower semicontinuous function f : H → R ∪ {+∞}, its (convex)
subdifferential at x ∈ H is defined as

∂f (x) = {u ∈ H : f (y) ≥ f (x) + 〈u, y − x〉 ∀y ∈ H},
for x ∈ H with f (x) = +∞ and as ∂f (x) = ∅, otherwise. When seen as a set-valued mapping,
the convex subdifferential is a maximally monotone operator (see [22]) and its resolvent is given
by J∂f = proxf (see [6]), where proxf : H → H,

proxf (x) = argmin
y∈H

{
f (y) + 1

2
‖y − x‖2

}
, (10)

denotes the proximal operator of f.

Corollary 9 Let f : H → R ∪ {+∞} be a proper, convex and lower semicontinuous function
and g : H → R a convex and Fréchet differentiable function with 1/β-Lipschitz continuous gra-
dient, for β > 0, such that argminx∈H{f (x) + g(x)} �= ∅. Let γ ∈ (0, 2β]. Consider the iterative
scheme

xn+1 = (1 − λn)βnxn + λnproxγ f (βnxn − γ∇g(βnxn)) ∀n ≥ 0, (11)

with x0 ∈ H as starting point and (λn)n≥0 and (βn)n≥0 real sequences satisfying the conditions:

(i) 0 < βn ≤ 1 for any n ≥ 0, limn→+∞ βn = 1,
∑

n≥0(1 − βn) = +∞ and
∑

n≥1 |βn − βn−1| <

+∞;
(ii) 0 < λn ≤ (4β − γ )/2β for any n ≥ 0, lim infn→+∞ λn > 0 and

∑
n≥1 |λn − λn−1| < +∞.

Then (xn)n≥0 converges strongly to the minimal norm solution of (9).

Proof The statement is a direct consequence of Theorem 7, by choosing A := ∂f and B := ∇g
and by taking into account that

zer(∂f + ∇g) = argmin
x∈H

{f (x) + g(x)}

and the fact that ∇g is β-cocoercive due to the Baillon–Haddad Theorem (see [6,
Corollary 18.16]). �

4. A Douglas–Rachford algorithm with Tikhonov regularization term

In this section we derive from the Krasnosel’skiı̆–Mann algorithm formulated in Section 2 an
iterative scheme of Douglas–Rachford-type, which generates sequences that strongly converge
to a zero of of the sum of two set-valued maximally monotone operators.
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In what follows, we denote by RA = 2JA − Id the reflected resolvent of a maximally monotone
operator A : H ⇒ H.

Theorem 10 Let A, B : H ⇒ H be two maximally monotone operators such that zer(A + B) �=
∅ and γ > 0. Consider the following iterative scheme:

(∀n ≥ 0)

⎧⎪⎨
⎪⎩

yn = Jγ B(βnxn)

zn = Jγ A(2yn − βnxn)

xn+1 = βnxn + λn(zn − yn)

with x0 ∈ H as starting point and (λn)n≥0 and (βn)n≥0 real sequences satisfying the conditions:

(i) 0 < βn ≤ 1 for any n ≥ 0, limn→+∞ βn = 1,
∑

n≥0(1 − βn) = +∞ and
∑

n≥1 |βn − βn−1| <

+∞;
(ii) 0 < λn ≤ 2 for any n ≥ 0, lim infn→+∞ λn > 0 and

∑
n≥1 |λn − λn−1| < +∞.

Then the following statements are true:

(a) (xn)n≥0 converges strongly to x̄ := projFixRγ ARγ B
(0) as n → +∞;

(b) (yn)n≥0 and (zn)n≥0 converge strongly to Jγ B(x̄) ∈ zer(A + B) as n → +∞.

Proof Taking into account the iteration rules and the definition of the reflected resolvent, the
iterative scheme in the enunciation of the theorem can be equivalently written as

xn+1 = βnxn + λn
[
Jγ A ◦ (2Jγ B − Id)(βnxn) − Jγ B(βnxn)

]
= βnxn + λn

[(
Id + Rγ A

2
◦ Rγ B

)
(βnxn) − Id + Rγ B

2
(βnxn)

]

= βnxn + λn

2
(T(βnxn) − βnxn) ∀n ≥ 0, (12)

where T := Rγ A ◦ Rγ B : H → H is a nonexpansive operator (see [6, Corollary 23.10(ii)]).
From [6, Proposition 25.1(ii)] we have zer(A + B) = Jγ B(FixT), hence FixT �= ∅. By applying
Theorem 3, we obtain that (xn)n≥0 converges strongly to x̄ := projFixT (0) as n → +∞, hence (a)
holds.

Further, by taking into account the definition of the sequence (yn)n≥0 and the continuity of the
resolvent operator, we obtain that (yn)n≥0 converges strongly to Jγ Bx̄ ∈ zer(A + B) as n → +∞.
Finally, by taking the limit in the recursive formula of the sequence (xn)n≥0, we obtain that zn − yn

converges strongly to 0 as n → +∞, thus (b) holds, too. �

Remark 11 The classical Douglas–Rachford method, which reads

(∀k ≥ 0)

⎧⎪⎨
⎪⎩

yn = Jγ B(xn)

zn = Jγ A(2yn − xn)

xn+1 = xn + λn(zn − yn),

produces sequences for which in general only weak convergence to a zero of the A + B can be
proved (see e.g. [6, Theorem 25.6]). In order to ensure strong convergence, one usually needs
to impose restrictive conditions on the monotone operators involved, like uniform monotonicity
(which is a generalization of strong monotonicity). This is not the case for the iterative scheme
stated in Theorem 10, where we are able to guarantee strong convergence in the very general
situation of maximally monotone operators.



498 R. I. Boţ et al.

Further, we look at optimization problems of the form

min
x∈H

{f (x) + g(x)}, (13)

where f , g : H → R ∪ {+∞} are proper, convex and lower semicontinuous functions. We denote
by

dom f = {x ∈ H : f (x) < +∞}
the effective domain of the function f.

In order to proceed, we need the following notion. For S ⊆ H a convex set, we denote by

sqri S := {x ∈ S : ∪λ>0λ(S − x) is a closed linear subspace of H}
its strong quasi-relative interior. Notice that we always have intS ⊆ sqriS (in general this inclu-
sion may be strict). If H is finite-dimensional, then sqriS coincides with riS, the relative interior
of S, which is the interior of S with respect to its affine hull. The notion of strong quasi-relative
interior belongs to the class of generalized interiority notions and plays an important role in the
formulation of regularity conditions, which are needed in convex optimization in order to guar-
antee duality results and also subdifferential sum formulas. The one considered in the next result
is the so-called Attouch-Brézis regularity condition. We refer to [6,7,26,29] for more interiority
notions and their impact on the duality theory.

Corollary 12 Let f , g : H → R ∪ {+∞} be proper, convex and lower semicontinuous func-
tions such that argminx∈H{f (x) + g(x)} �= ∅ and 0 ∈ sqri(domf − domg) and γ > 0. Consider
the following iterative scheme:

(∀n ≥ 0)

⎧⎪⎨
⎪⎩

yn = proxγ g(βnxn)

zn = proxγ f (2yn − βnxn)

xn+1 = βnxn + λn(zn − yn)

with x0 ∈ H as starting point and (λn)n≥0 and (βn)n≥0 real sequences satisfying the conditions:

(i) 0 < βn ≤ 1 for any n ≥ 0, limn→+∞ βn = 1,
∑

n≥0(1 − βn) = +∞ and
∑

n≥1 |βn − βn−1| <

+∞;
(ii) 0 < λn ≤ 2 for any n ≥ 0, lim infn→+∞ λn > 0 and

∑
n≥1 |λn − λn−1| < +∞.

Then the following statements are true:

(a) (xn)n≥0 converges strongly to x̄ := projFixT (0) as n → +∞, where T = (2proxγ f − Id) ◦
(2proxγ g − Id);

(b) (yn)n≥0 and (zn)n≥0 converge strongly to proxγ g(x̄) ∈ argminx∈H{f (x) + g(x)} as n → +∞.

Proof The result is a direct consequence of Theorem 10 for A = ∂f and B = ∂g and by
noticing that the regularity condition 0 ∈ sqri(dom f − dom g) ensures the relation (see [6,
Proposition 7.2])

zer(∂f + ∂g) = argmin
x∈H

{f (x) + g(x)}. �

5. Strongly convergent primal–dual algorithms

The aim of this section is to induce strong convergence in the nowadays so popular primal–dual
algorithms designed for solving highly structured monotone inclusions involving parallel-sums
and compositions with linear operators.
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5.1 A primal–dual algorithm of forward–backward-type with Tikhonov regularization terms

In this subsection, the following monotone inclusion problem will be in the focus of our
investigations.

Problem 13 Let A : H ⇒ H be a maximally monotone operator and C : H → H a μ-
cocoercive operator, for some μ > 0. Let m be a strictly positive integer and for any i = 1, . . . , m,
let Gi be a real Hilbert space, Bi, Di : Gi ⇒ Gi be maximally monotone operators such that Di

are νi-strongly monotone, for some νi > 0, and Li : H → Gi be a nonzero linear continuous
operator. The problem is to solve the primal inclusion

find x̄ ∈ H such that 0 ∈ Ax̄ +
m∑

i=1

L∗
i (Bi�Di)(Lix̄) + Cx̄, (14)

together with the dual inclusion of Attouch-Théra type (see [3,15,28])

find v̄1 ∈ G1, . . . , v̄m ∈ Gm such that ∃x ∈ H :

⎧⎪⎨
⎪⎩

−
m∑

i=1

L∗
i v̄i ∈ Ax + Cx

v̄i ∈ (Bi�Di)(Lix), i = 1, . . . , m.

(15)

Some of the notations used above are to be specified. The operator L∗
i : Gi → H, defined

via 〈Lix, y〉 = 〈x, L∗
i y〉 for all x ∈ H and all y ∈ Gi, denotes the adjoint of the linear continuous

operator Li : H → Gi, for i = 1, . . . , m. We say that Di : Gi ⇒ Gi is νi-strongly monotone, for
some νi > 0, if 〈x − y, u − v〉 ≥ νi‖x − y‖2 for all (x, u), (y, v) ∈ GrDi, i = 1, . . . , m. The parallel
sum of the set-valued operators Bi, Di : Gi ⇒ Gi is defined as Bi�Di : Gi ⇒ Gi, Bi�Di = (B−1

i +
D−1

i )−1, for i = 1, . . . , m.
We say that (x̄, v̄1, . . . , v̄m) ∈ H× G1 × · · · × Gm is a primal–dual solution to Problem 13, if

−
m∑

i=1

L∗
i v̄i ∈ Ax̄ + Cx̄ and v̄i ∈ (Bi�Di)(Lix̄), i = 1, . . . , m. (16)

It is easy to see that, if (x̄, v̄1, . . . , v̄m) ∈ H× G1 × · · · × Gm is a primal–dual solution to Prob-
lem 13, then x̄ is a solution to (14) and (v̄1, . . . , v̄m) ∈ G1 × · · · × Gm is a solution to (15).
Moreover, if x̄ ∈ H is a solution to (14), then there exists (v̄1, . . . , v̄m) ∈ G1 × · · · × Gm such
that (x̄, v̄1, . . . , v̄m) is a primal–dual solution to Problem 13 and, if (v̄1, . . . , v̄m) ∈ G1 × · · · × Gm

is a solution to (15), then there exists x̄ ∈ H such that (x̄, v̄1, . . . , v̄m) is a primal–dual solution to
Problem 13.

Theorem 14 In Problem 13, suppose that

0 ∈ ran

(
A +

m∑
i=1

L∗
i ◦ (Bi�Di) ◦ Li + C

)
. (17)

Let τ and σi, i = 1, . . . , m, be strictly positive numbers such that

2 · min{τ−1, σ−1
1 , . . . , σ−1

m } · min{μ, ν1, . . . , νm}
⎛
⎝1 −

√√√√τ

m∑
i=1

σi‖Li‖2

⎞
⎠ ≥ 1.
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Let be the starting point (x0, v1,0, . . . , vm,0) ∈ H × G1 × · · · × Gm and set:

(∀n ≥ 0)

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pn = JτA

[
βnxn − τ

(
βn

m∑
i=1

L∗
i vi,n + C(βnxn)

)]

xn+1 = βnxn + λn(pn − βnxn)

For i = 1, . . . , m⌊
qi,n = JσiB

−1
i

[
βnvi,n + σi

(
Li(2pn − βnxn) − D−1

i (βnvi,n)
)]

vi,n+1 = βnvi,n + λn(qi,n − βnvi,n)

(18)

where (λn)n≥0 and (βn)n≥0 are real sequences satisfying the conditions:

(i) 0 < βn ≤ 1 for any n ≥ 0, limn→+∞ βn = 1,
∑

n≥0(1 − βn) = +∞ and
∑

n≥1 |βn − βn−1| <

+∞;
(ii) 0 < λn ≤ (4βρ − 1)/2βρ for any n ≥ 0, lim infn→+∞ λn > 0 and

∑
n≥1 |λn − λn−1| < +∞,

for

β = min{μ, ν1, . . . , νm}
and

ρ = min{τ−1, σ−1
1 , . . . , σ−1

m }
⎛
⎝1 −

√√√√τ

m∑
i=1

σi‖Li‖2

⎞
⎠ .

Then there exists a primal–dual solution (x̄, v̄1, . . . , v̄m) to Problem 13 such that the sequence of
primal–dual iterates (xn, v1,n, . . . , vm,n) converges strongly to (x̄, v̄1, . . . , v̄m) as n → +∞.

Remark 15 (i) Since Di : Gi ⇒ Gi is νi-strongly monotone, we have that D−1
i : Gi → Gi is νi-

cocoercive, for i = 1, . . . , m.
(ii) The resolvent of the inverse operator of a maximally monotone operator M : H ⇒ H can be

computed as follows (see [6]):

Id = Jγ M + γ Jγ −1M −1 ◦ γ −1Id. (19)

Proof The idea is to apply Theorem 7 in an appropriate product space under the use of appro-
priate renorming techniques (see [28]). We consider the Hilbert space K = H × G1 × · · · × Gm

endowed with inner product and associated norm defined, for (x, v1, . . . , vm), (y, q1, . . . , qm) ∈ K ,
via

〈(x, v1, . . . , vm), (y, q1, . . . , qm)〉K = 〈x, y〉H +
m∑

i=1

〈vi, qi〉Gi

and ‖(x, v1, . . . , vm)‖K =
√√√√‖x‖2

H +
m∑

i=1

‖vi‖2
Gi

,

(20)

respectively. Furthermore, we consider the set-valued operator

M : K ⇒ K , (x, v1, . . . , vm) �→ (Ax, B−1
1 v1, . . . , B−1

m vm),

which is maximally monotone, since A and Bi, i = 1, . . . , m, are maximally monotone (see [6,
Propositions 20.22 and 20.23]), and the linear continuous operator

S : K → K , (x, v1, . . . , vm) �→
(

m∑
i=1

L∗
i vi, −L1x, . . . , −Lmx

)
,
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which is skew-symmetric (i.e. S∗ = −S) and hence maximally monotone (see [6, Exam-
ple 20.30]). We also consider the single-valued operator

Q : K → K , (x, v1, . . . , vm) �→ (
Cx, D−1

1 v1, . . . , D−1
m vm

)
,

which is once again maximally monotone, since C and Di are maximally monotone
for i = 1, . . . , m. Therefore, since dom S = K , M + S is maximally monotone (see [6,
Corollary 24.4(i)]). According to [28, page 672]

Q is β − cocoercive.

Further, one can easily verify that (17) is equivalent to zer(M + S + Q) �= ∅ and (see also [15,
page 317])

(x, v1, . . . , vm) ∈ zer (M + S + Q)

⇔ (x, v1, . . . , vm) is a primal–dual solution to Problem 13.
(21)

We also introduce the linear continuous operator

V : K → K , (x, v1, . . . , vm) �→
(

x

τ
−

m∑
i=1

L∗
i vi,

v1

σ1
− L1x, . . . ,

vm

σm
− Lmx

)
,

which is self-adjoint and ρ-strongly positive (see [28]), namely, the following inequality holds

〈x, Vx〉K ≥ ρ‖x‖2
K ∀x ∈ K .

Therefore, its inverse operator V−1 exists and it fulfils ‖V−1‖ ≤ 1/ρ.
The algorithmic scheme (18) in the statement of the theorem can be written by using this

notations as

(∀n ≥ 0)

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

βn

(
τ−1xn −

m∑
i=1

L∗
i vi,n

)
− τ−1pn +

m∑
i=1

L∗
i qi,n − C(βnxn) ∈ Apn +

m∑
i=1

L∗
i qi,n

xn+1 = βnxn + λn(pn − βnxn)

For i = 1, . . . , m⌊
βn(σ

−1
i vi,n − Lixn) − σ−1

i qi,n + Lipn − D−1
i (βnvi,n) ∈ B−1

i (qi,n) − Lipn

vi,n+1 = βnvi,n + λn(qi,n − βnvi,n),
(22)

By introducing the sequences

xn = (xn, v1,n, . . . , vm,n), and yn = (pn, q1,n, . . . , qm,n) ∀n ≥ 0,

the scheme (22) can equivalently be written in the form

(∀n ≥ 0)

⌊
βnV(xn) − V(yn) − Q(βnxn) ∈ (M + S) (yn)

xn+1 = βnxn + λn
(
yn − βnxn

)
.

(23)

Furthermore, we have for any n ≥ 0

βnV(xn) − V(yn) − Q(βnxn) ∈ (M + S) (yn)

⇔ (βnV − Q ◦ (βnId)) (xn) ∈ (M + S + V)(yn)

⇔ yn = (M + S + V)−1 (βnV − Q ◦ (βnId)) (xn)

⇔ yn = (Id + V−1(M + S)
)−1 (

βnId − V−1 ◦ Q ◦ (βnId)
)
(xn)

⇔ yn = JA (βnxn − B(βnxn)) ,
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where

A := V−1 (M + S) and B := V−1Q. (24)

Let KV be the Hilbert space with inner product and norm defined, for x, y ∈ K , by

〈x, y〉KV = 〈x, Vy〉K and ‖x‖KV =
√

〈x, Vx〉K , (25)

respectively. As the set-valued operators M + S and Q are maximally monotone on K , the oper-
ators A and B are maximally monotone on KV (see also [28]). Furthermore, B is βρ-cocoercive
on KV . Moreover, since V is self-adjoint and ρ-strongly positive, weak and strong convergence
in KV are equivalent with weak and strong convergence in K , respectively.

Taking this into account, it follows that (23) becomes

(∀n ≥ 0) xn+1 = βnxn + λn (JA (βnxn − B(βnxn)) − βnxn) ,

which is the algorithm presented in Theorem 7 for determining the zeros of A + B in case γ = 1.
However, we have

zer(A + B) = zer(V−1 (M + S + Q)) = zer(M + S + Q).

According to Theorem 7, xn converges strongly to projzer(A+B)(0, 0, . . . , 0) in the space KV as
n → +∞ and the conclusion follows from (21). �

In the remaining of this subsection we investigate the convergence property of the
algorithm (18) in the context of simultaneously solving complexly structured convex opti-
mization problems and their Fenchel duals. The problem under investigation is the following
one.

Problem 16 Let f ∈ 
(H) and h : H → R be a convex and differentiable function with a
μ−1-Lipschitz continuous gradient, for some μ > 0. Let m be a strictly positive integer and
for i = 1, . . . , m, let Gi be a real Hilbert space, gi, li ∈ 
(Gi) such that li is νi-strongly convex,
for some νi > 0 and Li : H → Gi a nonzero linear continuous operator. Consider the convex
optimization problem

inf
x∈H

{
f (x) +

m∑
i=1

(gi�li)(Lix) + h(x)

}
(26)

and its Fenchel-type dual problem

sup
vi∈Gi, i=1,...,m

{
− (f ∗�h∗) (−

m∑
i=1

L∗
i vi

)
−

m∑
i=1

(
g∗

i (vi) + l∗i (vi)
)}

. (27)

We denote by 
(H) the set of proper, convex and lower semicontinuous functions defined
on H with values in the extended real line R ∪ {+∞}. The conjugate of a function f is
f ∗ : H → R, f ∗(p) = sup {〈p, x〉 − f (x) : x ∈ H} for all p ∈ H. Moreover, if f ∈ 
(H), then
f ∗ ∈ 
(H), as well, and (∂f )−1 = ∂f ∗. Finally, having two proper functions f , g : H → R, their
infimal convolution is defined by f �g : H → R, (f �g)(x) = infy∈H{f (y) + g(x − y)} for all
x ∈ H.
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Corollary 17 In Problem 16, suppose that

0 ∈ ran

(
∂f +

m∑
i=1

L∗
i ◦ (∂gi�∂li) ◦ Li + ∇h

)
. (28)

Let τ and σi, i = 1, . . . , m, be strictly positive numbers such that

2 · min{τ−1, σ−1
1 , . . . , σ−1

m } · min{μ, ν1, . . . , νm}
⎛
⎝1 −

√√√√τ

m∑
i=1

σi‖Li‖2

⎞
⎠ ≥ 1.

Let be the starting point (x0, v1,0, . . . , vm,0) ∈ H × G1 × · · · × Gm and set:

(∀n ≥ 0)

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pn = proxτ f

[
βnxn − τ

(
βn

m∑
i=1

L∗
i vi,n + ∇h(βnxn)

)]

xn+1 = βnxn + λn(pn − βnxn)

For i = 1, . . . , m⌊
qi,n = proxσig∗

i

[
βnvi,n + σi

(
Li(2pn − βnxn) − ∇l∗i (βnvi,n)

)]
vi,n+1 = βnvi,n + λn(qi,n − βnvi,n),

(29)

where (λn)n≥0 and (βn)n≥0 are real sequences satisfying the conditions:

(i) 0 < βn ≤ 1 for any n ≥ 0, limn→+∞ βn = 1,
∑

n≥0(1 − βn) = +∞ and
∑

n≥1 |βn − βn−1| <

+∞;
(ii) 0 < λn ≤ (4βρ − 1)/2βρ for any n ≥ 0, lim infn→+∞ λn > 0 and

∑
n≥1 |λn − λn−1| < +∞,

for

β := min{μ, ν1, . . . , νm}
and

ρ := min{τ−1, σ−1
1 , . . . , σ−1

m }
⎛
⎝1 −

√√√√τ

m∑
i=1

σi‖Li‖2

⎞
⎠ .

Then there exists (x̄, v̄1, . . . , v̄m) ∈ H × G1 × · · · × Gm such that (xn, v1,n, . . . , vm,n) converges
strongly to (x̄, v̄1, . . . , v̄m) as n → +∞ and x̄ is an optimal solution of the problem (26),
(v̄1, . . . , v̄m) is an optimal solution of (27) and the optimal objective values of the two optimization
problems coincide.

Remark 18 The proximal-point operator of the conjugate function can be computed via the
Moreau’s decomposition formula

proxγ f + γ prox(1/γ )f ∗ ◦ γ −1Id = Id, (30)

which is valid for γ > 0 and f ∈ 
(H) (see [6]).

Proof Consider the maximal monotone operators

A = ∂f , C = ∇h, Bi = ∂gi and Di = ∂li, i = 1, . . . , m.

The Baillon–Haddad Theorem (see [6, Corollary 18.16]) ensures that C is μ-cocoercive.
Since li is νi-strongly convex, Di is νi-strongly monotone, for i = 1, . . . , m. According to [6,
Proposition 17.10, Theorem 18.15], D−1

i = ∇l∗i is a monotone and ν−1
i -Lipschitz continuous
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operator for i = 1, . . . , m. The strong convexity of the functions li guarantees that gi�li ∈ 
(Gi)

(see [6, Corollary 11.16, Proposition 12.14]) and ∂(gi�li) = ∂gi�∂li, i = 1, . . . , m, (see [6,
Proposition 24.27]).

Hence, the monotone inclusion problem (14) reads

find x̄ ∈ H such that 0 ∈ ∂f (x̄) +
m∑

i=1

L∗
i (∂gi�∂li)(Lix̄) + ∇h(x̄), (31)

while the dual monotone inclusion problem (15) reads

find v̄1 ∈ G1, . . . , v̄m ∈ Gm such that ∃x ∈ H :

⎧⎪⎨
⎪⎩

−
m∑

i=1

L∗
i v̄i ∈ ∂f (x) + ∇h(x)

v̄i ∈ (∂gi�∂li)(Lix), i = 1, . . . , m.

(32)

One can see that if (x̄, v̄1, . . . , v̄m) ∈ H × G1 × · · · × Gm is a primal–dual solution to (31)–(32),
namely,

−
m∑

i=1

L∗
i v̄i ∈ ∂f (x̄) + ∇h(x̄) and v̄i ∈ (∂gi�∂li)(Lix̄), i = 1, . . . , m, (33)

then x̄ is an optimal solution of the problem (26), (v̄1, . . . , v̄m) is an optimal solution of (27)
and the optimal objective values of the two problems coincide. Notice that (33) is nothing
else than the system of optimality conditions for the primal–dual pair of convex optimization
problems (26)–(27).

The conclusion follows now from Theorem 14. �

Remark 19 (i) The relation (28) in the above theorem is fulfilled if the primal problem (26) has
an optimal solution x̄ ∈ H and a suitable regularity condition holds. Under these auspices there
exists an optimal solution to (27) (v̄1, . . . , v̄m) ∈ G1 × · · · × Gm, such that (x̄, v̄1, . . . , v̄m) satisfies
the optimality conditions (33) and, consequently, (28) holds.

(ii) Further, let us discuss some conditions ensuring the existence of a primal optimal solution.
Suppose that the primal problem (26) is feasible, which means that its optimal objective value
is not identical +∞. The existence of optimal solutions for (26) is guaranteed if, for instance,
f + h is coercive (that is lim‖x‖→∞(f + h)(x) = +∞) and for all i = 1, . . . , m, gi is bounded from
below. Indeed, under these circumstances, the objective function of (26) is coercive (use also [6,
Corollary 11.16 and Proposition 12.14] to show that for all i = 1, . . . , m, gi�li is bounded from
below and gi�li ∈ 
(Gi)) and the statement follows via [6, Corollary 11.15]. On the other hand,
if f + h is strongly convex, then the objective function of (26) is strongly convex, too, thus (26)
has a unique optimal solution (see [6, Corollary 11.16]).

(iii) We discuss at this point a suitable regularity condition as mentioned at item (i)
above. Since dom(gi�li) = domgi + domli, i = 1, . . . , m, one can use to this end the regularity
condition of interiority-type (see also [15])

(0, . . . , 0) ∈ sqri

(
m∏

i=1

(dom gi + dom li) − {(L1x, . . . , Lmx) : x ∈ dom f }
)

. (34)

This is fulfilled provided that one of the following conditions is verified (see [15, Proposi-
tion 4.3]):

(a) domgi + domli = Gi, i = 1, . . . , m;
(b) H and Gi are finite-dimensional and there exists x ∈ ri dom f such that Lix − ri ∈ ri dom gi +

ri dom li, i = 1, . . . , m.
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5.2 A primal–dual algorithm of Douglas–Rachford-type with Tikhonov regularization terms

The problem that we investigate in this section reads as follows.

Problem 20 Let A : H ⇒ H be a maximally monotone operator. Let m be a strictly positive
integer and for any i = 1, . . . , m, let Gi be a real Hilbert space, Bi, Di : Gi ⇒ Gi be maximally
monotone operators and Li : H → Gi a nonzero linear continuous operator. The problem is to
solve the primal inclusion

find x̄ ∈ H such that 0 ∈ Ax̄ +
m∑

i=1

L∗
i (Bi�Di)(Lix̄) (35)

together with the dual inclusion

find v̄1 ∈ G1, . . . , v̄m ∈ Gm such that (∃x ∈ H)

⎧⎪⎨
⎪⎩

−
m∑

i=1

L∗
i v̄i ∈ Ax

v̄i ∈ (Bi�Di)(Lix), i = 1, . . . , m.

(36)

Different to Problem 13, the operators Di, i = 1, . . . , m are general maximally monotone oper-
ators, thus they will have to be addressed through their resolvents. This is why in this context a
primal–dual algorithm relying on the Douglas–Rachford paradigm is more appropriate.

Theorem 21 In Problem 20, suppose that

0 ∈ ran

(
A +

m∑
i=1

L∗
i ◦ (Bi�Di) ◦ Li

)
. (37)

Let τ , σi > 0, i = 1, . . . , m, be strictly positive numbers such that

τ

m∑
i=1

σi‖Li‖2 < 4.

Let be the starting point (x0, v1,0, . . . , vm,0) ∈ H × G1 · · · × Gm and set:

(∀n ≥ 0)

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1,n = JτA

(
βnxn − τ

2
βn

m∑
i=1

L∗
i vi,n

)

w1,n = 2p1,n − βnxn

For i = 1, . . . , m⌊
p2,i,n = JσiB

−1
i

(
βnvi,n + σi

2
Liw1,n

)
w2,i,n = 2p2,i,n − βnvi,n

z1,n = w1,n − τ

2

m∑
i=1

L∗
i w2,i,n

xn+1 = βnxn + λn(z1,n − p1,n)

For i = 1, . . . , m⌊
z2,i,n = JσiD

−1
i

(
w2,i,n + σi

2
Li(2z1,n − w1,n)

)
vi,n+1 = βnvi,n + λn(z2,i,n − p2,i,n),

(38)

where (λn)n≥0 and (βn)n≥0 real sequences satisfying the conditions:
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(i) 0 < βn ≤ 1 for any n ≥ 0, limn→+∞ βn = 1,
∑

n≥0(1 − βn) = +∞ and
∑

n≥1 |βn − βn−1| <

+∞;
(ii) 0 < λn ≤ 2 for any n ≥ 0, lim infn→+∞ λn > 0 and

∑
n≥1 |λn − λn−1| < +∞.

Then there exists an element (x̄, v̄1, . . . , v̄m) ∈ H × G1 · · · × Gm such that the following
statements are true:

(a) by setting

p̄1 = JτA

(
x̄ − τ

2

m∑
i=1

L∗
i v̄i

)
,

p̄2,i = JσiB
−1
i

(
v̄i + σi

2
Li(2p̄1 − x̄)

)
, i = 1, . . . , m,

the element (p̄1, p̄2,1, . . . , p̄2,m) ∈ H × G1 × · · · × Gm is a primal–dual solution to
Problem 20;

(b) (xn, v1,n, . . . , vm,n) converges strongly to (x̄, v̄1, . . . , v̄m) as n → +∞;
(c) (p1,n, p2,1,n, . . . , p2,m,n) and (z1,n, z2,1,n, . . . , z2,m,n) converge strongly to (p̄1, p̄2,1, . . . , p̄2,m) as

n → +∞.

Proof For the proof we use Theorem 10 (see also [8]) in the same setting as in the proof
of Theorem 14, namely, by considering K = H × G1 × · · · × Gm endowed with inner product
and associated norm defined in (20). Furthermore, we consider again the maximally monotone
operator

M : K ⇒ K , (x, v1, . . . , vm) �→ (Ax, B−1
1 v1, . . . , B−1

m vm),

the linear continuous skew-symmetric operator

S : K → K , (x, v1, . . . , vm) �→
(

m∑
i=1

L∗
i vi, −L1x, . . . , −Lmx

)

and the (this time not necessarily single-valued) maximally monotone operator

Q : K ⇒ K , (x, v1, . . . , vm) �→ (
0, D−1

1 v1, . . . , D−1
m vm

)
.

Since dom S = K , both 1
2 S + Q and 1

2 S + M are maximally monotone (see [6,
Corollary 24.4(i)]). Furthermore,

(37) ⇔ zer (M + S + Q) �= ∅

and
(x, v1, . . . , vm) ∈ zer (M + S + Q)

⇔ (x, v1, . . . , vm) is a primal–dual solution to Problem 20.
(39)

We introduce the linear continuous operator

V : K → K , (x, v1, . . . , vm) �→
(

x

τ
− 1

2

m∑
i=1

L∗
i vi,

v1

σ1
− 1

2
L1x, . . . ,

vm

σm
− 1

2
Lmx

)
,

which is self-adjoint and ρ-strongly positive (see also [8]), for

ρ :=
⎛
⎝1 − 1

2

√√√√τ

m∑
i=1

σi‖Li‖2

⎞
⎠min

{
1

τ
,

1

σ1
, . . . ,

1

σm

}
> 0,
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namely, the following inequality holds

〈x, Vx〉K ≥ ρ‖x‖2
K ∀x ∈ K .

Therefore, its inverse operator V−1 exists and it fulfils ‖V−1‖ ≤ 1/ρ.
The algorithmic scheme (38) is equivalent to

(∀n ≥ 0)

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

βnxn − p1,n

τ
− 1

2

m∑
i=1

L∗
i (βnvi,n − p2,i,n) ∈ 1

2

m∑
i=1

L∗
i p2,i,n + Ap1,n

w1,n = 2p1,n − βnxn

For i = 1, . . . , m⎢⎢⎢⎣ βnvi,n − p2,i,n

σi
− 1

2
Li(βnxn − p1,n) ∈ −1

2
Lip1,n + B−1

i p2,i,n

w2,i,n = 2p2,i,n − βnvi,n

w1,n − z1,n

τ
− 1

2

m∑
i=1

L∗
i w2,i,n = 0

xn+1 = βnxn + λn(z1,n − p1,n)

For i = 1, . . . , m⎢⎢⎢⎣ w2,i,n − z2,i,n

σi
− 1

2
Li(w1,n − z1,n) ∈ −1

2
Liz1,n + D−1

i z2,i,n

vi,n+1 = βnvi,n + λn(z2,i,n − p2,i,n).

(40)

By considering for any n ≥ 0 the notations

xn = (xn, v1,n, . . . , vm,n), yn = (p1,n, p2,1,n, . . . , p2,m,n) and zn = (z1,n, z2,1,n, . . . , z2,m,n),

the iterative scheme (40) can be written as

(∀n ≥ 0)

⎢⎢⎢⎣ V(βnxn − yn) ∈ ( 1
2 S + M

)
yn

V(2yn − βnxn − zn) ∈ ( 1
2 S + Q

)
zn

xn+1 = βnxn + λn
(
zn − yn

)
,

(41)

which is further equivalent to

(∀n ≥ 0)

⎢⎢⎢⎢⎣ yn = (Id + V−1( 1
2 S + M)

)−1
(βnxn)

zn = (Id + V−1( 1
2 S + Q)

)−1 (
2yn − βnxn

)
xn+1 = βnxn + λn

(
zn − yn

)
.

(42)

Let KV be the Hilbert space with inner product and norm defined, for x, y ∈ K , via

〈x, y〉KV = 〈x, Vy〉K and ‖x‖KV =
√

〈x, Vx〉K , (43)

respectively. As the set-valued operators 1
2 S + M and 1

2 S + Q are maximally monotone on K ,
the operators

B := V−1 ( 1
2 S + M

)
and A := V−1 ( 1

2 S + Q
)

(44)

are maximally monotone on KV . Furthermore, since V is self-adjoint and ρ-strongly positive,
strong convergence in KV is equivalent with strong convergence in K .
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Taking this into account, (42) becomes

(∀n ≥ 0)

⎢⎢⎢⎣ yn = JB (βnxn)

zn = JA
(
2yn − βnxn

)
xn+1 = βnxn + λn

(
zn − yn

)
,

(45)

which is the Douglas–Rachford algorithm formulated in Theorem 10 in case γ = 1 for
determining the zeros of A + B. It is easy to see that

zer(A + B) = zer(V−1 (M + S + Q)) = zer(M + S + Q).

By Theorem 10(a), there exists x = (x̄, v̄1, . . . , v̄m) ∈ Fix(RARB), such that JBx ∈ zer(A + B) =
zer(M + S + Q). The claim follows from Theorem 10, (39) and by writing JBx in terms of the
resolvents of the operators involved in the expression of B. �

We close this section by considering the variational case.

Problem 22 Let f ∈ 
(H), m be a strictly positive integer and for i = 1, . . . , m, let Gi be a real
Hilbert space, gi, li ∈ 
(Gi) and Li : H → Gi a nonzero linear continuous operator. Consider the
convex optimization problem

inf
x∈H

{
f (x) +

m∑
i=1

(gi�li)(Lix)

}
(46)

and its conjugate dual problem

sup
(v1,...,vm)∈G1×···×Gm

{
−f ∗

(
−

m∑
i=1

L∗
i vi

)
−

m∑
i=1

(
g∗

i (vi) + l∗i (vi)
)}

. (47)

Corollary 23 In Problem 22, suppose that

0 ∈ ran

(
∂f +

m∑
i=1

L∗
i ◦ (∂gi�∂li) ◦ Li

)
. (48)

Let τ , σi > 0, i = 1, . . . , m, be strictly positive numbers such that

τ

m∑
i=1

σi‖Li‖2 < 4.

Let be the starting point (x0, v1,0, . . . , vm,0) ∈ H × G1 · · · × Gm and set:

(∀n ≥ 0)

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1,n = proxτ f

(
βnxn − τ

2
βn

m∑
i=1

L∗
i vi,n

)

w1,n = 2p1,n − βnxn

For i = 1, . . . , m⌊
p2,i,n = proxσig∗

i

(
βnvi,n + σi

2
Liw1,n

)
w2,i,n = 2p2,i,n − βnvi,n

z1,n = w1,n − τ

2

m∑
i=1

L∗
i w2,i,n

xn+1 = βnxn + λn(z1,n − p1,n)

For i = 1, . . . , m⌊
z2,i,n = proxσil∗i

(
w2,i,n + σi

2
Li(2z1,n − w1,n)

)
vi,n+1 = βnvi,n + λn(z2,i,n − p2,i,n),

(49)
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where (λn)n≥0 and (βn)n≥0 are real sequences satisfying the conditions:

(i) 0 < βn ≤ 1 for any n ≥ 0, limn→+∞ βn = 1,
∑

n≥0(1 − βn) = +∞ and
∑

n≥1 |βn − βn−1| <

+∞;
(ii) 0 < λn ≤ 2 for any n ≥ 0, lim infn→+∞ λn > 0 and

∑
n≥1 |λn − λn−1| < +∞.

Then there exists an element (x̄, v̄1, . . . , v̄m) ∈ H × G1 · · · × Gm such that the following
statements are true:

(a) by setting

p̄1 = proxτ f

(
x̄ − τ

2

m∑
i=1

L∗
i v̄i

)
,

p̄2,i = proxσig∗
i

(
v̄i + σi

2
Li(2p̄1 − x̄)

)
, i = 1, . . . , m,

the element (p̄1, p̄2,1, . . . , p̄2,m) ∈ H × G1 × · · · × Gm is a primal–dual solution to Prob-
lem 20, namely,

−
m∑

i=1

L∗
i v̄i ∈ ∂f (x̄) and v̄i ∈ (∂gi�∂li)(Lix̄), i = 1, . . . , m, (50)

hence p̄1 is an optimal solution to (46) and (p̄2,1, . . . , p̄2,m) is an optimal solution to (47);
(b) (xn, v1,n, . . . , vm,n) converges strongly to (x̄, v̄1, . . . , v̄m) as n → +∞;
(c) (p1,n, p2,1,n, . . . , p2,m,n) and (z1,n, z2,1,n, . . . , z2,m,n) converge strongly to (p̄1, p̄2,1, . . . , p̄2,m) as

n → +∞.

Remark 24 The hypothesis (48) in Theorem 23 is fulfilled, if the primal problem (46) has an
optimal solution, the regularity condition (34) holds and

0 ∈ sqri(dom g∗
i − dom l∗i ) for i = 1, . . . , m.

According to [6, Proposition 15.7], the latter also guarantees that gi�li ∈ 
(Gi), i = 1, . . . , m.

6. Numerical experiments: applications to the split feasibility problem

Let H and G be real Hilbert spaces and L : H → G a bounded linear operator. Let C and Q
be nonempty, closed and convex subsets of H and G, respectively. The split feasibility problem
(SFP) searches a point x ∈ H with the property

x ∈ C and Lx ∈ Q. (51)

The (SFP) was originally introduced by Censor and Elfving [11] for solving inverse problems in
the context of phase retrieval, medical image reconstruction and intensity modulated radiation
therapy.

We show that the strongly convergent primal–dual algorithms which we have investigated in
Section 5 are excellently suited to solve the (SFP), especially in the case when infinite dimen-
sional Hilbert spaces are involved. For this purpose, we note that problem (51) can be written
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equivalently in the form

min
x∈H

{
δC(x) + δQ(Lx)

}
, (52)

where

δS(x) :=
{

0, if x ∈ S

+∞, else

denotes the indicator function of a subset S of a Hilbert space. Another alternative way to write
problem (51) is as the minimization problem

min
x∈H

{
1

2
d2

C(x) + δQ(Lx)

}
, (53)

where dC(x) = infu∈C ‖x − u‖ denotes the distance of the point x ∈ H to the set C. Both opti-
mization problems are special instances of Problem 16, consequently, we will solve them by
making use of the algorithm stated in Corollary 17.

The optimization problem (52) can be stated in the framework of Problem 16 by taking f = δC ,
m = 1, g1 = δQ, l1 = δ{0}, L1 = L and h = 0. The iterative scheme stated in Corollary 17 reads:

(∀n ≥ 0)

⎢⎢⎢⎢⎢⎣
pn = PC(βnxn − τβnL∗vn)

xn+1 = βnxn + λn(pn − βnxn)

qn = βnvn + σL(2pn − βnxn) − σPQ(σ−1βnvn + L(2pn − βnxn))

vn+1 = βnvn + λn(qn − βnvn).

(54)

The optimization problem (52) can be stated in the framework of Problem 16 by taking f = 0,
m = 1, g1 = δQ, l1 = δ{0}, L1 = L and h = 1

2 d2
C . Noticing that ∇( 1

2 d2
C) = Id −PC , the iterative

scheme stated in Corollary 17 reads:

(∀n ≥ 0)

⎢⎢⎢⎢⎢⎣
pn = βnxn − τ(βnL∗vn + βnxn − PC(βnxn))

xn+1 = βnxn + λn(pn − βnxn)

qn = βnvn + σL(2pn − βnxn) − σPQ(σ−1βnvn + L(2pn − βnxn))

vn+1 = βnvn + λn(qn − βnvn).

(55)

For the numerical example we consider the following setup: let H = G = L2([0, 2π ]) := {f :
[0, 2π ] → R :

∫ 2π

0 |f (t)|2 dt < +∞} equipped with the scalar product 〈f , g〉 := ∫ 2π

0 f (t)g(t) dt

and the associated norm ‖f ‖ := (
∫ 2π

0 |f (t)|2 dt)1/2 for all f , g ∈ L2([0, 2π ]). The sets

C :=
{

x ∈ L2([0, 2π ]) :
∫ 2π

0
x(t) dt ≤ 1

}

and

Q :=
{

x ∈ L2([0, 2π ]) :
∫ 2π

0
|x(t) − sin(t)|2 dt ≤ 16

}

are nonempty, closed and convex subsets of L2([0, 2π ]). Notice that C = {x ∈ L2([0, 2π ]) :
〈x, u〉 ≤ 1} and Q = {x ∈ L2([0, 2π ]) : ‖x − f ‖ ≤ 4}, where u : [0, 2π ] → R, u(t) = 1 for all
t ∈ [0, 2π ], and f : [0, 2π ] → R, f (t) = sin t for all t ∈ [0, 2π ]. We define the linear continuous
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operator L : L2([0, 2π ]) → L2([0, 2π ]) as

(Lx)(t) :=
(∫ 2π

0
x(s) ds

)
· t.

Let x, y ∈ L2([0, 2π ]). Then

〈Lx, y〉 =
∫ 2π

0
Lx(t)y(t) dt =

∫ 2π

0
x(s)

∫ 2π

0
ty(t) dt ds,

and therefore

(L∗y)(t) =
∫ 2π

0
sy(s) ds.

Furthermore, by using the Cauchy-Schwarz inequality yields

‖L‖2 = sup
‖x‖=1

∫ 2π

0
Tx(t)2 dt = sup

‖x‖=1

∫ 2π

0
t2 dt

(∫ 2π

0
x(s) ds

)2

≤ sup
‖x‖=1

8

3
π3
∫ 2π

0
x(s)2 ds · 2π = 16

3
π4.

The projection onto the set C can be computed as (see [6, Example 28.16])

PC(x) =

⎧⎪⎨
⎪⎩

1 − ∫ 2π

0 x(t) dt

2π
+ x, if

∫ 2π

0
x(t) dt > 1

x, else.

On the other hand PQ is given by [6, Example 28.10]

PQ(x) =

⎧⎪⎨
⎪⎩

sin + 4(x − sin)

(
∫ 2π

0 |x(t) − sin(t)|2 dt)1/2
, if

∫ 2π

0
|x(t) − sin(t)|2 dt > 16

x, else.

We implemented the algorithms (54) and (55) in MATLAB used symbolic computation for
generating the sequences of iterates. One can easily notice that, in this particular setting, the split
feasibility problem and, consequently, both addressed optimization problems are solvable. The
numerical experiments confirmed that the primal–dual algorithms involving Tikhonov regular-
ization terms outperform the ones without Tikhonov regularization terms, which correspond to
the case when βn = 1 for every n ≥ 0 and for which is known that they weakly convergence
to a primal–dual solution of the corresponding KKT system of optimality conditions (Tables 1
and 2).

In the two tables above we present the numbers of iterations needed by the two algorithms to
approach a solution of the split feasibility problem (SFP). We consider as stopping criterion

E(xn) := 1
2‖PC(xn) − xn‖2 + 1

2‖PQ(Lxn) − Lxn‖2 ≤ 10−3,

while taking as relaxation variables λn = 0.4 for every n ≥ 0 and as Tikhonov regularization
parameters βn := 1 − 1/(n + 1) for every n ≥ 0, respectively, βn = 1 for every n ≥ 0 for the
variants without Tikhonov regularization terms.
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Table 1. Comparison of the variants without and with Tikhonov regu-
larization terms of the primal–dual algorithm (54), for different starting
values and step sizes τ = 0.1 and σ = 0.01.

Number of iterations

x0 v0 βn = 1 βn = 1 − 1
n+1

t2
10

t2
10 13 1

t2
10

1
2 et 20 11

t2
10 et + t2

24 21 12
1
2 et t2

10 > 150 11
1
2 et 1

2 et 20 12
1
2 et et + t2

24 21 13

et + t2

24
t2

10 > 150 15

et + t2

24
1
2 et 20 13

et + t2
24 et + t2

24 21 13

Table 2. Comparison of the variants without and with Tikhonov
regularization terms of the primal–dual algorithm (55), for different
starting values and step sizes τ = 0.1 and σ = 0.01.

Number of iterations

x0 v0 βn = 1 βn = 1 − 1
n+1

t2
10

t2
10 24 1

t2
10

1
2 et 46 10

t2
10 et + t2

24 46 10
1
2 et t2

10 30 6
1
2 et 1

2 et 24 11
1
2 et et + t2

24 35 21

et + t2

24
t2

10 32 6

et + t2

24
1
2 et 36 12

et + t2
24 et + t2

24 24 11

7. Further work

We point out some directions of research related to proximal methods with Tikhonov reg-
ularization terms, which merit to be addressed starting from the investigations made in this
paper:

(1) To consider in the numerical algorithms of type forward–backward and Douglas–Rachford
proposed in this paper dynamic step sizes, which are known to increase the flexibility of
the algorithms. This can be for instance done by formulating first a Krasnosel’skiı̆–Mann–
type algorithm for determining an element in the intersection of the sets of fixed points of
a family of nonexpansive operators (Tk)k≥0. Suitable choices of the operators in this family,
in the spirit of the investigations we made in the Sections 3 and 4, can lead to iterative
algorithms with dynamic step sizes (see [14]).
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(2) To employ in the iterative schemes discussed in this article inertial and memory effects,
which are known to contribute to the acceleration of the convergence behaviour of the
algorithms.

(3) To translate the proposed numerical methods to a framework that goes beyond the Hilbert
space setting considered in this article, in order to allow applications where functional spaces
are involved. We refer the reader to [24,25,27] and the references therein for tools and tech-
niques which allow to prove convergence statements in Banach spaces with some particular
underlying geometric structures.
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