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ABSTRACT 

The objective of this dissertation is to develop a comprehensive Structural Identification 

(St-Id) framework with damage for bridge type structures by using cameras and computer vision 

technologies. The traditional St-Id frameworks rely on using conventional sensors. In this study, 

the collected input and output data employed in the St-Id system are acquired by series of vision-

based measurements. The following novelties are proposed, developed and demonstrated in this 

project: a) vehicle load (input) modeling using computer vision, b) bridge response (output) using 

full non-contact approach using video/image processing, c) image-based structural identification 

using input-output measurements and new damage indicators. The input (loading) data due 

vehicles such as vehicle weights and vehicle locations on the bridges, are estimated by employing 

computer vision algorithms (detection, classification, and localization of objects) based on the 

video images of vehicles. Meanwhile, the output data as structural displacements are also obtained 

by defining and tracking image key-points of measurement locations. Subsequently, the input and 

output data sets are analyzed to construct novel types of damage indicators, named Unit Influence 

Surface (UIS). Finally, the new damage detection and localization framework is introduced that 

does not require a network of sensors, but much less number of sensors. 

The main research significance is the first time development of algorithms that transform 

the measured video images into a form that is highly damage-sensitive/change-sensitive for bridge 

assessment within the context of Structural Identification with input and output characterization. 

The study exploits the unique attributes of computer vision systems, where the signal is continuous 

in space. This requires new adaptations and transformations that can handle computer vision 

data/signals for structural engineering applications. This research will significantly advance 
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current sensor-based structural health monitoring with computer-vision techniques, leading to 

practical applications for damage detection of complex structures with a novel approach. By using 

computer vision algorithms and cameras as special sensors for structural health monitoring, this 

study proposes an advance approach in bridge monitoring through which certain type of data that 

could not be collected by conventional sensors such as vehicle loads and location, can be obtained 

practically and accurately. 
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utilized for developing a damage identification algorithm (e.g. damage detection and damage 

localization). This research advances current sensor-based SHM for bridges by using camera-

based implementation, enabling practical applications for broad adoption in Bridge Health 

Monitoring (BHM). The schema of research is illustrated as in Figure 1, and the detail objectives 

are listed as follows. 

 

Figure 1: Schema of the vision-based bridge St-Id system 

 Objective 1 – A new fully non-contact displacement measurement for bridge structure 

by means of image key-points: Selection of structural response type to be measured and 

method for acquisition is always the first step of any SHM implementation. Since 

displacement is a sort of powerful structural response that can be acquired wirelessly, 

introducing a fully contactless displacement measurement method is the first objective 

of this study. Besides, the fully contactless displacement measurement proposed for 
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Figure 2: Overview of the non-target vision-based displacement measurement method 

Vision Acquisition System 

As an important goal of this study, a low-cost and practical vision acquisition system is 

designed so that data can be acquired very easily. Minimum requirements for this vision system 

include: 

 A low-cost high density (HD) camcorder with a sample rate of 60 frames per second 

(e.g. Canon VIXIA HF R42 or similar ones)  

 A laser distance measurer which can obtain both distance and angle between the 

measurement location and the camera  

 Miscellaneous equipment such as a tripod, a checkerboard, etc. 

Acquiring Video Clip

at Measurement Locations

Key-points Extraction from 

Video Clip Frames as Virtual Markers

Matching Key-points

False Matches Detection using

Outliers Discarding Algorithm

Final Matches to Get Dynamic

Pixel Displacement 

Converting Pixel Displacement To Engineering Unit

using Camera Calibration









18 
 

      𝐹 =  𝐴𝐵 − 𝐶2 − 𝑘(𝐴 + 𝐵)2  (7) 

where k is an empirical factor, k = 0.04-0.06. 

 

Figure 3: Key-points (red dots) as corner points of a checkboard 

Scale Invariant Feature Transform (SIFT) Algorithm 

The SIFT algorithm is a robust key-point detection technique that can extract the key-points 

that are highly invariant with respect to rotation, translation, scale, and changing of illumination 

condition. Following the SIFT method, an input image I(x, y) is filtered by using the Gaussian 

kernel to discard noise that commonly dominate key-point candidates. Since it is impossible to 

find the most suitable Gaussian kernel, a scale-space of Gaussian functions corresponding to 

different standard deviation values of σi, namely G(x,y,σi), is utilized to scan all potential 

candidates of key-points at every scale of filtering. The scale space of filtered images L(x,y,σi) is 

derived following Equation 8.  

      𝐿(𝑥, 𝑦, 𝜎𝑖) =  𝐺(𝑥, 𝑦, 𝜎𝑖) ⊗ 𝐼(𝑥, 𝑦) (8) 

Where  
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      𝐺(𝑥, 𝑦, 𝜎𝑖) =  12𝜋𝜎𝑖2 𝑒−(𝑥2 + 𝑦2 )/2𝜎𝑖2 (9) 

To efficiently detect key-point locations, differences of two adjacent filtered images (e.g. 

filtered images L(x,y,σi) and L(x,y,σi+1)) have been determined in which the local extrema detection 

algorithm is then applied. Those differences of filtered images D(x,y,σi) can be calculated as 

follows. 

      𝐷(𝑥, 𝑦, 𝜎𝑖) =  𝐿(𝑥, 𝑦, 𝜎𝑖+1) −  𝐿(𝑥, 𝑦, 𝜎𝑖) (10) 

Subsequently, a key-point can be detected at the location which has a local extrema value 

on the differences of filtered images D(x,y,σi). That local extrema detection process is to compare 

the candidate intensity value (marked with X) to its (26) neighbors in 3 x 3 regions at the current 

and adjacent scales (marked with circles) as shown in Figure 4. Consequently, the key-points found 

from the previous step have been tested their robustness to reject the low contract and the poor 

location (e.g. along an edge) candidates. The detailed explanation as well as all related equations 

can be found in (Lowe, 2004).  

 

 

Figure 4: Key-point identification using the local extrema detection algorithm – Modified from a 

figure in (Lowe, 2004) 

Figure 5 shows the detected key-points from an image of a measurement position located 

under the bottom flange of an I-section steel girder. The girder is from a football stadium and is 

D(x,y,ˋi+1)

D(x,y,ˋi)

D(x,y,ˋi-1)

Key-point 

Candidate
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supported at an elevation of more than 10 meters. Although the coating paint layer makes the 

image low in contrast, more than sixty (60) key-points were detected around the bolt and along the 

weld on the member. 

  

Figure 5: Detected key-points (red stars) on the bottom flange of the I-section steel girder at an 

elevation of more than 10 meters 

Matching Key-points Between Consecutive Images  

The key-points are obtained from a sequence of images following the process described in 

the previous section. To track the key-points over time, key-point matches between two 

consecutive images need to be determined by matching their descriptor vectors. Commonly, a 

descriptor vector of a key-point is extracted from image intensity values of a small patch around 

the key-point since its neighborhood tells more information than itself. A good descriptor describes 

the patch in a way that it is invariant with respect to the image changes (rotation, translation, and 

changing of illumination condition, etc.). As an intuitive example, fingerprint is a very good 

descriptor to identify a person. Although many algorithms have been proposed to obtain different 

types of descriptors, they can be categorized into two families: gradients and orientations based 

descriptors and binary based descriptors.  
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accelerometer data in frequency domain as shown in Figure 27. Although accelerometer data 

shows additional frequencies for the higher frequency band especially beyond 10 Hz, it is seen that 

the first three natural frequencies identified by two different methods are perfectly matching at 

2.37 Hz, 4.75 Hz, and 6.62 Hz, respectively. This observation confirms the quality of vibration 

data acquired from the proposed method, and enables a potential complement for the most common 

sensors deployed in SHM including LVDTs and accelerometers for the type of real-life 

applications where access might be an issue. In addition, data can be collected from any locations 

with an engineer or inspector.            

 

Figure 27. Comparison of natural frequencies of the supported beam identified by the proposed 

vision based method and processed acceleration data 

Accuracy of the Proposed Method 

Unlike classical measurement approaches, in which sensor accuracy is provided by its 

manufacturer with a roughly stable value, accuracy of a vision-based measurement system depends 

on several parameters. In such parameters, the distance from cameras to measurement positions 
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Figure 30. The relationship between the accuracy of the proposed measurement vs. the camera 

distance of Z obtained for Canon VIXIA HF R42 camcorder 

Conclusions 

This study demonstrates a completely contactless SHM system for obtaining displacements 

and vibrations of structures using a low-cost camera and computer vision techniques. The new 

method makes it possible to obtain not only static displacements but also displacements with 

vibration characteristics, from which structural frequencies are identified. The advantage of this 

proposed method is that it does not require any type of physical targets attached on structures 

which are commonly required by other vision-based methods. Non-contact monitoring is achieved 

by means of a new type of virtual markers instead of physical targets. The key-points of 

measurement locations are extracted by using robust computer vision algorithms, and their 

characteristics show a potential ability to replace physical targets. Key-point matches among image 

frames are further improved by using an outlier detection algorithm to discard false matches. 
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CHAPTER THREE: DETECTION AND LOCALIZATION OF VEHICLES 

ON A BRIDGE USING COMPUTER VISION APPROACH  

Introduction 

Loading estimation is a very important task as for both designing a new civil engineering 

project and the assessment of existing structures. In the field of Structural Identification (St-Id), 

these loads are commonly utilized as input parameters in conjunction with output structural 

responses for identifying damage. Additionally, the loads and corresponding responses are also 

continuously updated to obtain calibrated FE (Finite Element) models for numerous aims such as 

safety evaluation, damage detection, and eventually prediction of the remaining life of structure. 

In general, bridge loading effects might be exemplified as wind, temperature, earthquake, pre-

stressed tension, vehicles etc. However, the influence of vehicle loading is strongly being 

interested in Bridge Health Monitoring (BHM) since it can be easily controlled by inspectors. In a 

common monitoring study, the pre-weighted trucks are located or crawled on the monitored bridge 

following predefined configurations. The axle weights of the trucks are obtained by a weight-scale 

or a Weight-In-Motion (WIM) system (in some exceptional cases), while their locations are 

determined using labor (Figure 31). This manual process requires bridge closures as well as being 

time consuming and labor-intensive that makes bridge inspection and monitoring costly and 

ineffective.  
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Figure 31. Pre-weighted trucks deployed in a common bridge monitoring study 

The goal of this section is to propose an alternative approach employing traffic vehicles 

instead of using the testing trucks for BHM, thereby mitigating some previously noted 

shortcomings of the current practices. The proposal process is immensely based on vision 

technologies for obtaining information about the traffic passing on the bridge deck, such as vehicle 

weights and positions. The protocol hardware simply consists of a surveillance camera system 

with the aim of capturing traffic scenes on the bridge. Subsequently, the acquired images are 

analyzed by a computer vision software package for firstly detecting and then classifying traffic 

vehicles into classes. The weight-distribution of a particular vehicle class can be developed from 

manufactures specifications coupling with weight-in-motion (WIM) database. Thus, the weight of 

a classified vehicle is assigned equal to its class weight-distribution that has been pre-developed. 

In addition to estimating vehicle weights, the detected vehicles are located in terms of geometric 

transformation between the image coordinate system (acquired by the surveillance camera) and 

the world coordinate system by which the bridge deck is defined in real life. Once the vehicle 

information is obtained, this data (instead of manually obtained data from the testing trucks) is 

transmitted to a St-Id system for structural assessment. Data acquisition without the constraint of 

bridge closure saves time and labor work in bridge monitoring practices, and also mitigates 
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technology in computer vision to recover 3-D objects from two 2-D images captured by two 

synchronized cameras. Since the pixel disparity of a certain point on both left and right cameras 

can be measured, a distance from that point to cameras is resolved for archiving its 3-D 

coordinates. Although both mentioned approaches could localize vehicles, camera calibration can 

be complicated and challenging, especially for in field deployment.       

Motivation and Objectives 

It is seen that vision based vehicle detection protocols have been immensely developing in 

the last decade. These studies are categorized into two groups named motion-based and 

appearance-based methods. Based on numerous fundamental algorithms in computer vision such 

as background subtraction, frame differencing, and optical flow, motion-based techniques seem to 

attract more interest at the beginning; however, some noted shortcomings have been pointed out 

later on. Due to fast evolution of high-level imaging features, such as symmetry, SIFT, Gabor, 

HOG, Haar-like, etc., vehicle detection algorithms are recently switching to the appearance-based 

group, especially using outperforming HOG and Haar-like approaches. While HOG features are 

obtained by calculating pixel intensity gradients and orientations of cells inside an image window, 

Haar-like features are determined by convolving Haar wavelets kernels. The features extracted 

either by HOG or Haar-like approaches are transmitted to training programs such SVM and/or 

Boost classifiers for obtaining detectors. The trained detectors are then employed on an image of 

highway (road) traffic for distinguishing hypothesized vehicles. Although it is difficult to conclude 

which feature (HOG or Haar-like) surpasses another, Haar-like based techniques are more efficient 

in computation because these features are calculated by means of the integral image execution. 
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Theoretical Background 

The flowchart illustrating the implementation for detection and localization of traffic 

vehicles passing over a bridge is seen in Figure 32. In brief, a surveillance camera is mounted at a 

high position overlooking the whole deck of the bridge. The images acquired by the surveillance 

camera are analyzed to detect every type of vehicles that may appear on the bridge deck. The 

detected vehicles are then labeled by bounding boxes matching with their types. Finally, the 

positions of bounding boxes on the 2-D image coordinates corresponding to detected vehicles are 

transformed to the 2-D bridge deck coordinates based on the plane geometry transformation.    

 

Figure 32. Protocol for detection and localization of traffic vehicles passing over a bridge based 

on computer vision approach 

Acquiring Video Clips
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Imaging Features: Histograms of Oriented Gradients (HOG) Descriptors 

Histograms of Oriented Gradients (HOG) descriptors are introduced as a sort of robust 

features for human detection (Dalal & Triggs, 2005). In that study, the HOG based human 

detection significantly outperforms the other human detection techniques upon a certain time. 

From then, the HOG descriptors have been successfully being utilized for detecting other types of 

objects including vehicles. As suggested in the name itself, Histograms of Oriented Gradients 

(HOG) descriptor is a vector comprising intensity gradient orientations and magnitudes of cells 

inside an image window (so-called patch).       

To determine an HOG descriptor of an image window W(x,y), the intensity gradient 

magnitudes and orientations of the window W are required. The equations leading to the derivation 

of descriptor are as follows: 

 𝑚(𝑥, 𝑦) =  √(𝑊(𝑥 + 1, 𝑦) − 𝑊(𝑥 − 1, 𝑦))2 + (𝑊(𝑥, 𝑦 + 1) − 𝑊(𝑥, 𝑦 − 1))2  (28) 

 𝜃(𝑥, 𝑦) =  𝑡𝑎𝑛−1 (𝑊(𝑥, 𝑦 + 1) − 𝑊(𝑥, 𝑦 − 1)𝑊(𝑥 + 1, 𝑦) − 𝑊(𝑥 − 1, 𝑦)) (29) 

where m(x,y) is the gradient magnitude, and θ(x,y) is the orientation at a pixel location (x,y) in the 

image window W. Subsequently, the image window W is divided into cells, for instance, 16 x 16 

cells. A block is developed from 4 neighboring cells. Each block is then placed on each other by 

50% overlap across the image window. For an image window defined by 128 x 128 pixels, the 

number of blocks yield to be 15 x 15 = 225.As the cell size is of 8 x 8 pixels, each block has its 

size of 8 x 8 pixels. The details of separation on the given 128 x 128 pixels image window are 

illustrated in Figure 33. Apparently, other division scenarios can be conducted for a particular case; 

however, performances of the descriptors corresponding to these scenarios are not greatly changed 

(Dalal & Triggs, 2005). 
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Figure 33. Protocol for determining HOG features; example for a given 128 x 128 pixels image 

window with cell size of 8 x 8 pixels and block size of 4 x 4 cells 

Since the cell size is of 8 x 8 pixels, there are sixty four (64) values of gradient magnitudes 

as well as another sixty four (64) values of gradient orientations, which are calculated from 

Equation 28 and 29. These (64) values of gradient orientations are quantized into nine (9) bins 

such as 10o, 30o, 50o, … , 170o, and the vote for each orientation is its gradient magnitude. After 

quantizing, a cell information is presented by nine (9) values of summarized-vote magnitudes 

corresponding to the (9) bins of angles. As the HOG descriptor vector of an image window W(x,y) 

is constructed by concatenated information of every cell, number of elements in the vector yields 

as illustrated in Equation 30. 

 n =  blocks x cells x bins =  225 x 4 x 9 

n = 8,100 (elements) 

(30) 

Let H be a certain HOG vector, then it is represented as below.  
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 𝐻 = {𝑣1, 𝑣2, … , 𝑣𝑛−1, 𝑣𝑛} (31) 

where v is the voted histogram value; and n is number of histograms (e.g. 8,100 elements) 

calculated from Equation 30. Some examples for HOG extraction on various objects such as a 

sedan car, a bike, and a bottle are shown in Figure 34. Herein, the H vectors are depicted as imaging 

fashion to observe the shapes of objects having been reflected by HOG descriptors.  

 

Figure 34. HOG feature extraction represented as imaging fashion for example (a) a bike, (b) a 

sedan, and (c) a bottle 

Detection of Vehicle Types based on AdaBoost Technique and Cascade Classifier with HOG 

Features 

Detecting objects from images is one of the most interesting challenges in computer vision. 

Generally, a detector is developed to detect a particular type of object such as human, conveyance 

means (bikes, vehicles, planes, boats, etc.), animal (cats, dogs, birds, horses etc.), and other 

miscellaneous. Mathematically, a detector comprises complex mathematical functions that can 

discriminate and then recognize a certain object from a scene based on the object features. Despite 
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inputs that have high rate of positive objects, the detection rate of the whole cascade immensely 

increases.        

A detector is obtained by training the AdaBoost based cascade classifier with labeled 

image datasets of positive images and negative images respectively. For instance, a truck-detector 

is developed by means of learning from a set of truck images that are called as positive images 

followed by negative images which can be another set of non-truck images such as landscape 

images or other types of vehicle (sedan, bus, etc.) images. In this Chapter, an off-the-shelf 

AdaBoost based cascade classifier embedded in MatLab is used for obtaining detectors 

corresponding to each vehicle classes. Obviously, the training image datasets (positive and 

negative image sets) must be manually prepared by the user. The training process is illustrated in 

Figure 36.      

 

 Figure 36. The training process for obtaining a detector  

Once the detector is obtained, it is utilized for identifying the objects by a scanning window 

at any region on an image. At a particular region, the scanning window crops the input image 

getting an image window. Then, the image window is fed to the detector developed by AdaBoost 

based cascade classifier to find out if the constituents of the window is either object or non-object. 
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Since object sizes are varied, scanning window dimensions must be scaled from the smallest up to 

the biggest possible ratios to detect all available objects on the input image. If there are multiple 

detectors for different types of objects, the procedure will be repeated for each detector one at a 

time. The detection scheme is described in Figure 37.      

 

Figure 37. The detection scheme using a trained detector  

Verification of the detection framework for vehicle types based on AdaBoost technique 

and cascade classifier with HOG features is conducted on subsequent section. The results, 

shortcomings, and how to overcome false detection are also discussed therein.  

Localizing Detected Vehicles based on Geometry Transform Approach 

As it is mentioned at the beginning of this Chapter, determining the positions of loads on 

structures is as essential as attaining their amplitudes. This is due to the fact that altering load 

locations on a structure might come off in forms of extremely fluctuated magnitudes of responses. 

Since vehicles can be detected and then matched with predefined catalog of vehicle classes, 

weights of these vehicles are assigned to the mean weight of corresponding classes. Furthermore, 

the detected vehicles are also localized on the 2-D image coordinates by bounding boxes, which 

are appointed by the detector (Figure 38). 
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Figure 39. Geometry transformation between the 2-D image and the 2-D bridge deck coordinates 

Laboratory Verification 

Experiment Design: UCF 4-Span Bridge, Camera, and Vehicle Classes 

The verification for detection of vehicle type framework, which is expressed on the 

“Theoretical Background” section, is conducted at the Structural Lab of UCF. To simulate traffic 

passing over a bridge, multiple small-size cars are driven back and forth on the deck of the UCF 

4-Span Bridge. As it is described on Chapter 2, that apparatus bridge consists of two 300cm main 

continuous spans and two 120cm approach spans. The bridge deck includes a 3.18mm steel sheet 

at 120cm wide which turns out the deck dimension of 600 x 120 cm to length and width 

respectively. To view the whole bridge deck, a camera is mounted on a steel pole placed at the end 
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configurations. Finally, the clips are analyzed using the proposed framework. Details of results 

including problems and challenges are discussed in subsequent section. 

 

Figure 41. Vehicle classes and their specifications 

Training Detectors using AdaBoost and Cascade Classifiers 

As there are three vehicle classes, three vehicle detectors are developed namely Detector 

1, Detector 2, and Detector 3 corresponding to these classes in Figure 41. The procedure to train 

the detectors is explained in Figure 36. First, a set of positive images is prepared. For example, a 

total number of 102 images of the Class 1 are labeled manually by cropping image windows of 

the Class 1 vehicles from testing images. Those images for cropping are also subjectively selected 

by the engineer to make positive images covering all facets of a particular vehicle Class such as 

image window sizes of vehicle class (image scale) and views of vehicle poses. Although selecting 
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Class Vehicle Detection Results, and False Detection 

Each Detector developed from the training module is consecutively used to scan across an 

input image at multiple scales and locations to find out the corresponding vehicle classes. The aim 

for using scalable windows is that vehicle image at any size appeared on the input image would be 

possibly identified (e.g. a vehicle that is further from the camera has a smaller size in the input 

image, and vice versa). The locations of the Detectors are obtained by shifting those scalable 

windows for some number of pixels. Selecting small values of scale for windows as well as shifting 

pixels yield more accurate creation of bounding-boxes, but tedious computation in return. Due to 

the fact that dimension and location of bounding boxes are both essential for the next vehicle 

localization task, the detection parameters are selected at small rates values, for example the scale 

ratio of 1.05, and the shifting pixel of one (1 pixel).    

The results of vehicle detection for several different test scenarios such as single or multiple 

vehicles appearing on the deck are presented in Figure 43. It is seen that the detected vehicles are 

labeled by bounding boxes that have yellow, green, and red colors corresponding to the Class 1, 

Class 2, and Class 3 respectively. Although vehicles can successfully be identified in most cases, 

some false detections are also recognized and depicted in Figure 44. The types of false detection 

encountered are undetectable vehicles, detected background regions, wrong type of class, and 

inaccurate dimensions of bounding boxes.  
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Figure 43. True positive of class vehicle detection   



87 
 

 

Figure 44. Examples of False Detection   

The efficiency of detection procedure is evaluated based on the number of false detections 

out of 5826 images that are captured from forty tests. Since there is no ground-truth image database 

for verification, the accuracy of all 5826 images is visually verified by the researcher. The 

evaluation is conducted by comparing detection rates among three classes (Table 7) as well as 

between single vehicle and multiple vehicle scenarios (Table 8).  Table 7 shows that the detection 

rate of the Class 1 (95.9 %) is the best while the one of the Class 2 (88.9 %) is the worst. That 

observation can be explained with front part of the Class 1 vehicle having more textures that makes 

discrimination easier for classifier. During the evaluation process, it is also realized that most of 

the false detections occur when vehicles are far away from the webcam. This is due to the fact that 

vehicles driven away from the webcam commonly become smaller sized and blurry (textureless) 
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LED # X (cm) Y (cm) 
u 

(pixel) 
v 

(pixel) 
Xverified 

(cm) 
Yverified 
(cm) 

Error_X 
(cm) 

Error_Y 
(cm) 

C1 C2 C3 C4 C5 C6 C7 C8 C9 

10 0 150 833.22 191.15 0.32 157.42 -0.32 -7.42 

11 60 150 944.94 192.07 60.17 157.51 -0.17 -7.51 

12 120 150 1055.51 191.38 120.27 152.27 -0.27 -2.27 

13 0 0 856.53 153.06 -0.21 0.03 0.21 -0.03 

14 60 0 946.79 153.06 60.63 -4.28 -0.63 4.28 

15 120 0 1035.43 153.52 121.20 -6.14 -1.20 6.14 

Conclusions 

 This chapter demonstrates a framework for obtaining loads induced by traffic vehicles 

passing over a bridge for BHM based only on computer vision techniques. The implementation 

consists of two main objectives: (1) to estimate vehicle loading amplitudes and (2) to localize 

vehicle positions. The highlight of the proposal framework is that neither bridge closure nor any 

conventional sensors are needed. Briefly, a surveillance camera is placed at a relatively higher 

position on the bridge for acquiring images of traffic vehicles moving on the deck. Those images 

are analyzed to identify vehicles and then categorize them into classes based on series of advanced 

computer vision algorithms and features including AdaBoost technique, cascade classifier and 

HOG descriptors. The detected vehicles are then labeled by bounding boxes corresponding to their 

types. Eventually, the positions of these bounding boxes (pixel metric) in image coordinates are 

converted to the positions defined by real-life coordinate system affixed on the bridge deck for 

localizing vehicle positions. The transformation process is achieved by adjusting the camera model 

equation based on the fact that vehicles move on a planar bridge deck.  
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CHAPTER FOUR: OBTAINING UNIT INFLUENCE SURFACES FROM 

VISION BASED MEASUREMENTS: A NEW STRUCTURAL DAMAGE 

INDICATOR  

Introduction 

A very basic definition for Structural Identification (St-Id) is the development of a 

mathematical model to characterize input-output behaviors of a structure by analyzing 

experimental data. Common practice is to first identify, and then to classify these behaviors for 

assessment and decision making. Determination of damage or non-damage state, quantification of 

damage as well as locations of damage occurrences are some instances of this practice. Similar to 

any classifiers, a St-Id system makes use of various features, sometimes termed as structural 

damage indicators (or just damage indicators as in the context of this study) that are generated 

establish input-output interactions and later used to detect any change over time that can be related 

to damage. To successfully achieve this objective, a damage indicator has to provide evidence 

when there is variation from the established or defined healthy condition of a structure. For 

example, the curvature of a mode shape may be highly sensitive to discontinuity such as local 

cracking at a point and can be an effective damage indicator. Generally, damage indicators are 

determined by interpreting the measured data through signal processing and statistical pattern 

recognition techniques. Although numerous St-Id systems have been proposed for the last several 

decades, damage features can be categorized into two groups namely non-parametric based and 

parametric based indicators.  

In non-parametric approach, damage indicators are extracted directly from SHM data in 

time domain. There is no information requirement associated with structural model such as 

geometric, material, and even loads as these methods only require the measured data from a sensor 
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& Frangopol, 2010). The strain UILs herein are determined from crawl tests, which are commonly 

conducted by slowly driving a pre-weighted vehicle (so-called a testing vehicle) on a bridge deck 

following a pre-assigned path. Correlation analysis such as moving principle component analysis 

(MPCA) and robust regression analysis (RRA) on measured displacement and tilt UILs are studied 

by Cavadas et al. (Cavadas, Smith, & Figueiras, 2013). The correlation parameters gained from 

that implementation illustrates capability of damage detection on a frame structure. Using UIL as 

s damage indicator is also preferred on long cable bridges such as cable-stayed and suspension 

bridges (Z.-W. Chen, Zhu, Xu, Li, & Cai, 2014; Zhu, Xu, & Xiao, 2014). Since cable bridges are 

very complex structures consisting of cables, trusses, beams etc., it is very difficult to extract modal 

parameters for assessment purposes. By capturing strain UILs as a result of deploying crawl tests 

or using train (metro shuttle) loading, some induced damage could be identified in these 

monitoring studies. An alternative approach for determining UIL without using a pre-weighted 

vehicle is proposed by Catbas and Zaurin (F. Necati Catbas et al., 2012; R. Zaurin & Catbas, 2010). 

In these studies, the authors try to utilize a traffic vehicle instead of a testing truck. The information 

of a traffic truck such as type of vehicle, weight, and locations on a bridge deck is estimated by 

means of computer vision techniques.  The UILs determined in these papers are employed not only 

for damage detection but also for bridge load rating.  

Motivation and Objectives 

Obtaining a sensitive damage indicator for engineering decision making is an ultimate aim 

for Structural Health Monitoring studies since this feature can be employed towards safety, 

serviceability, maintenance and operational decision in relation to the “the health condition” of a 

particular structure. After three decades of practice in SHM, a large pool of damage indicators has 
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Theoretical Background 

Theory of Unit Influence Surface (UIS) 

Unit Influence Surface (UIS) of a certain response (displacement, strain, etc.) at a 

measurement location on a beam-type or plate-type structure (e.g. single or multi-span bridge with 

its deck) is defined as a response function of the unit load with respect to the any location on that 

structure. Since the value of the unit load equals to one (1), a UIS can be mathematically presented 

as a two-variable function S as shown in Equation 51.  

      𝑈 = 𝑆(𝑋, 𝑌) (51) 

where (X, Y) represents the location of the unit load on the bridge deck coordinate system. U which 

is called as the normalized response is the response at the measurement point due to the unit load 

at (X, Y). An example of UIS is depicted in Figure 46. 

 

Figure 46. An example of Unit Influence Surface  

 As mentioned previously, a UIS is used to calculate internal forces and responses at a 

position on a bridge girder induced by moving loads such as vehicles passing over the deck. Let a 
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group of loads on a bridge be denoted by {P1, P2, … , Pk}, and corresponding locations by {(x1, y1), 

(x2, y2), … , (xk, yk)} as illustrated in Figure 46. Then, the vertical coordinates of the UIS under 

those loads derived from Equation 51 are  

      𝑈𝑘 = 𝑆(𝑥𝑘 , 𝑦𝑘) (52) 

 Thus, the internal force or response R (depending on type of UIS) can be determined as 

follows 

      𝑅 = ∑𝑈𝑘𝑃𝑘𝑘
1  (53) 

Using UIS for structural analysis is quite convenient and simple, especially when dealing 

with movable loads. Moreover, a UIS is not function of the loading but the structural characteristics 

including geometry and stiffness, which makes UIS as a potential damage/change indicator. 

However, determining a UIS in real life following its definition is not a direct measurement for 

the reason that the unit load is an unreal effect. Hence, structural responses to the unit load cannot 

be measured. As a remedy, a practical approach is introduced for constructing UIS from direct 

measurements.     

Construction of Unit Influence Surface (UIS) from Direct Measurement  

In this study, displacement Unit Influence Surface (UIS) is developed from measured data. 

Obviously, other types of UIS derived from strain, tilt (rotation), and also other capably measured 

responses can be also obtained in the same manner proposed in this Chapter. Herein, the 

displacement UIS is constructed from direct measurements including vehicle axle weights, vehicle 

locations, and structural displacements (Figure 32). All of these measurement protocols are 

introduced in Chapter 2 (i.e. structural displacement measurement) & 3 (remaining vehicle-info 
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The Configuration Location  

The configuration location is the representation of equivalent location that accounts for a 

certain vehicle configuration (combination of multiple vehicle locations) on the bridge deck. At a 

particular instant, the scene of traffic vehicles is acquired by the surveillance camera. Then, those 

vehicles are identified by their weight and localized by their positions on the bridge deck (Chapter 

3). For example, the estimated loads of each wheel are {W1, W2, … , Wj} while the positions of 

these loads are {(x1, y1), (x2, y2), … , (xj, yj)}. In this study, the coordinates of the configuration 

location (X, Y) are subjectively appointed as the centroid of the load group, which can be 

determined as          

      𝑋 = 𝑊1𝑥1 + 𝑊2𝑥2 + ⋯+ 𝑊𝑗𝑥𝑗 𝑊1 + 𝑊2 + ⋯+ 𝑊𝑗  (54) 

      𝑌 = 𝑊1𝑦1 + 𝑊2𝑦2 + ⋯+ 𝑊𝑗𝑦𝑗 𝑊1 + 𝑊2 + ⋯+ 𝑊𝑗  (55) 

The Normalized Displacement  

The normalized displacement U is defined as the vertical coordinates of the UIS at the 

configuration location (X, Y). Assuming that the surface S is the two-variable function of the UIS 

that needs to be found, the measured displacement D induced by the vehicle configuration must 

be constrained with the function S following Equation 53.   

      𝐷 = 𝑊1𝑆(𝑥1, 𝑦1) + 𝑊2𝑆(𝑥2, 𝑦2) + ⋯+ 𝑊𝑗𝑆(𝑥𝑗 , 𝑦𝑗) (56) 

On the other hand, another constrain is expressed as follows:  

      𝐷 = 𝑊𝑒𝑞𝑢𝑖𝑣𝑈 

Similarly: 𝐷 = 𝑊𝑒𝑞𝑢𝑖𝑣𝑆(𝑋, 𝑌) 

(57) 

Where Wequiv is an equivalent load placed at the configuration location.    
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      𝑊𝑖𝑒𝑞𝑢𝑖𝑣 = ∑𝑊𝑗𝑖𝑟𝑗𝑖
𝑗𝑖
1   

o Obtain the normalized displacement Ui (Equation 57) 

      𝑈𝑖 = 𝐷𝑖𝑊𝑖𝑒𝑞𝑢𝑖𝑣  

 Step 4: Utilize surface fitting algorithm for Ui, which yields the surface function S. 

 Step 5: Update all weighted-factors based on the function S 

      𝑟𝑗 = 𝑆(𝑥𝑗 , 𝑦𝑗)𝑆(𝑋, 𝑌)   

 Loop through the Step 3, Step 4, and Step 5 until the error is less than a pre-established 

threshold. The error value is calculated as the percentage difference of the S volumes 

between two consecutive fitting implementations. In this study, 1% of difference is 

selected as the threshold to stop the iteration. 

Surface Fitting for Discrete Data  

Surface fitting is the core analysis for constructing UIS in this study. In general, surface 

fitting is the process to develop a 2-D surface that fits the best to a set of 3-D points. Since the 2-

D surface is a mathematical function with two variables and numerous of constant parameters, that 

fitting surface is regulated if its function type and also corresponding parameters are determined. 

The common procedure to construct a fitting surface is to hypothesize a mathematical function, 

and then to estimate its parameters to achieve the best fit with a given discrete data set. Due to the 

hypothesized mathematical function being subjectively appointed by users, the approach for its 

selection is an iterative process based on evaluating the accuracy of fit such as SSE (sum of squares 

due to error), R-square (coefficient of determination), and RMSE (root mean squared error).  
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Laboratory Verification 

Experiment Setup on UCF 4-Span Bridge 

The displacement Unit Influence Surface (UIS) is obtained for the UCF 4-Span Bridge: an 

SHM apparatus on the UCF Structural Lab detailed in the previous Chapters. To obtain the 

displacement UIS from direct measurements, two groups of data are needed to be acquired 

including traffic vehicle information and bridge girder displacements. Since the experimental setup 

for simulating traffic and for determining info of vehicles is described in Chapter 3, this section 

only focuses on the illustration of the experimental setup for measuring displacements of bridge 

girders caused by those simulated traffic configurations.             

The displacement UIS’s are extracted from a number of positions on UCF 4-Span Bridge 

girders in a comparative fashion and also localization of damage locations, which are introduced 

in the next Chapter. Since the bridge has two continuous spans consisting of two main girders, the 

measurement locations are assigned below the girder flanges and along these girders as depicted 

in Figure 51. The displacement of a measured location can be obtained by using the non-target 

vision based method as proposed in Chapter 2. To be able demonstrate UIS for several locations, 

the displacements from other twelve (12) monitored positions are obtained by a set of LVDTs. The 

vision based displacement method is also conducted at a location for verification as presented in 

Chapter 2. A National Instrument data acquisition system (NI-SCXI) is employed to acquire data 

from these LVDTs. To synchronize the image data of vehicles and the displacement data of the 

bridge girders, both the NI data acquisition and the webcam for capturing small-scale cars passing 

over the bridge deck are triggered from a shared LABVIEW code.  
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Figure 51: The twelve (12) measured locations on the UCF 4-Span Bridge girders 

Unit Influence Surfaces Results and Discussion 

As mentioned in the Chapter 3, a total of forty (40) crawling tests are conducted to get 

enough data for obtaining numerous UIS’s for every measurement locations. For each test, the 

vehicles are driven one-turn (back and forth) from the starting point to the end of the bridge. 

Meanwhile, dynamic displacements caused by the vehicles are collected at the twelve (12) 

measurement locations simultaneously. As only static responses of dynamic displacements are of 

interest for constructing UIS, a low-pass filter (filtering off high frequencies from the raw data) is 

employed to discard the dynamic part of the raw data while keeping the static response. The static 

displacements that are extracted from dynamic raw data of the L1 location at a particular test are 

depicted in Figure 52a. The filtering process is applied to data for all measurement locations. The 

static displacement results of several locations, for instance from L1 to L6 that are acquired 

simultaneously, are also shown in Figure 52b. 
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Figure 52: Experimental displacement data; a) The raw data and extracted static part at the 

location L1; b) The static displacements at the locations from L1 to L6 

Since a UIS is constructed by surface fitting to a number of discrete data points, a combined 

data set from several tests is a need for the fitting analysis. To verify the consistency of the 

proposed UIS constructing algorithm, a number of fifteen (15) UIS’s are developed for each 

measurement position by randomly selecting ten (10) tests out of forty (40) from the test database. 

A particular combination of data sets from 10 selected tests for constructing UIS’s is named a Set, 

one of which is shown in Figure 53. As seen in this figure, each colored dot represents a UIS-point 

in the Set. The locations of these UIS-points in the plan view (X-bridge width, Y-bridge length) 

present vehicle configuration locations (ref. The Configuration Location section) while the U-unit 

displacement values of that color dot are the normalized displacements determined by means of 

the iterative algorithm (ref. The Normalized Displacement section). The plan view (Figure 53b) 

also illustrates that vehicle routes can be anywhere on the bridge deck; and these vehicles even do 

not travel straightly. Hence, it should be a convenience of using UIS instead of UIL for real-life 

bridges since constructing a UIL has a limitation of a certain pre-routed vehicle pathway. 
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Conclusions 

This chapter introduces a novel type of damage indicator involving structural parameters 

for Bridge Health Monitoring (BHM). The proposed damage indicator is Unit Influence Surface 

(UIS) that is a 3-D version of Unit Influence Line (UIL), another interest catcher damage indicator 

in BHM recently. The procedure for constructing a UIS requires series of measurements that are 

proposed previously in Chapter 2 and Chapter 3. Since the measurements introduced in this 

dissertation are all vision based, the UIS can be extracted by means of a non-sensor monitoring 

protocol that brings about a potent and convenient implementation alternative for real-life bridges. 

In brief, a UIS is constructed by deploying surface fitting algorithms (e.g. Bilinear Interpolation 

and Thin-plate Spline Interpolation) to a set of UIS-points, each of which describes a state of 

vehicle loading-structural response (input-output) interaction while traffic passes on the bridge 

deck. Hence, a UIS-point (Xj, Yj, Uj) is developed from a configuration location (Xj, Yj) derived 

from vehicle positions and a normalized displacement Uj at the measurement location. While the 

configuration location can be effortlessly calculated from the detected vehicle positions, the 

normalized displacement is determined by operating an iterative approximate procedure on 

coupled information of vehicle and structural displacement data.     

The UIS’s are extracted for the 4-Span Bridge in UCF Structural Lab. To validate the 

outcomes of the proposed protocol, a total of twelve (12) positions under main girder flanges are 

selected for constructing the UIS’s. Since these positions are placed symmetrically over two 

symmetrical axes (middle-support axis and median of the deck), the UIS’s at the symmetrical 

locations illustrate identical shapes and maxima values (error values from 0.2% to 7.2%). In 

addition, the UIS’s determined from neighboring positions are observed complying with structural 

analysis perspective to supplement the UIS plausibility. The UIS consistency is also verified since 
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CHAPTER FIVE:  DETECTION AND LOCALIZATION OF DAMAGE 

USING UIS OBTAINED WITH LIMITED NUMBER OF SENSORS 

Introduction 

Structural Identification (St-Id), among others, is a broadly interdisciplinary research area 

in Structural Health Monitoring (SHM) involving various implementations such as structural-

characteristics extraction, structural inspection, structural control, and also physics-based model 

updating for constructed systems (F. Catbas, Kijewski-Correa, & Aktan, 2011). Since the ultimate 

aim of a St-Id system is to prevent failures likely to occur during routine operation of constructed 

structures, damage identification is always an essential component that provides clues and proofs 

for decision making. Ideally, a comprehensive damage identification scheme should be developed 

in three steps including 1) damage detection, 2) damage localization, and 3) damage quantification, 

sequentially. Following that scheme, the first step involving damage detection is to predict 

problems as well as to provide information for the next steps. The second and third steps of 

interpretation aim to support the proofs of damage, which help inspectors and also project owners 

for better decision-making. In practice, damage qualification is commonly a very particular 

implementation since critical levels of damage are ranked differently for each specific constructed 

structure. Examples of these are the structure type, importance of the structure in the infrastructure 

network, age of the structure, and specific requirements of owners. In scope of this work, only the 

two first steps of a damage identification paradigm are studied including damage detection and 

localization for bridges.  

Damage detection module of a St-Id system is developed as a sort of anomaly detection 

that yields either damaged structure or non-damaged structure states. In this type of anomaly 

detection, a damage condition is identified as an outlier due to the damage data creating an 
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from the structure is introduced to the classifier that points out the structural status. This approach 

is introduced in (Masoud Malekzadeh, 2014) and is successfully conducted with limited damage 

locations. 

Motivation and Objectives 

Damage identification is the ultimate aim of SHM studies that provides early notification 

for profound inspection on constructed systems. An impeccable damage identification framework 

comprises three steps of evaluation namely 1) damage detection, 2) damage localization, and 3) 

damage qualification. However, in academia, damage qualification is of less interest for the reason 

that qualification criteria are biased for a specific structure. Thus, only damage detection and 

localization schemes are introduced by means of the novel damage indicators that is proposed in 

Chapter 4 of this dissertation.    

In general, damage detection is about defining two likelihoods that are damaged structure 

or non-damaged structure by making use of binary classifiers. In regards to this, damage detection 

is commonly developed by employing anomaly detection techniques categorized as unsupervised 

and supervised learning. It is seen that the unsupervised damage detection is more popular and can 

be implemented in most of SHM studies. This is due to the fact that the technique only requires 

the measurement data obtained from the sound structural condition (positive data sets) for training 

and then determining damage thresholds. On the other hand, the supervised damage detection 

demands additional measurement data of a damaged state that is to serve as negative data sets for 

learning task. Obviously, supplementary damage data assists the supervised damage detection to 

have more robust classifiers, which, in return, yield more confident and reliable thresholds along 

with damage types or damage locations. The main shortcoming of the supervised technique is the 
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ordinates that correspond to the unit loading locations. Since those finite vertical ordinates can be 

extracted at any locations along a bridge deck, a damage occurrence and its location can be 

discovered by quantifying these. Moreover, since the proposed method does not require a network 

of sensor, it enables the possibility of a limited sensor SHM framework.            

The details of the theoretical background are described in next sections. The accuracy of 

the framework is verified on a small-scale bridge in the UCF Structural Lab, where several damage 

scenarios are simulated for damage identification purposes.               

Theoretical Background 

Classical Approach: Damage Identification based on a Network of Measurement Positions 

The damage identification method based on the conventional approach using the new 

damage indicator (UIS) consists of two phases. The first phase is to establish thresholds for the 

healthy structural scenario (so-called Baseline) as illustrated in Figure 58. In brief, a series of UIS’s 

is constructed for the Baseline case following the framework described in Chapter 4. Due to the 

UIS being a fitted surface function, it is discretized and then represented in matrix form for 

convenient analysis purposes. Subsequently, the Baseline UIS-volumes are calculated (Equation 

67) to develop the Baseline distribution. Thresholds are then defined equal to ± 2 times of the 

standard deviation away from the mean value of Baseline distribution (corresponding to a 

confidence level of 95%) as illustrated in Equation 68.  

    

Figure 58: Establishing thresholds for the healthy structural scenario (Baseline) 
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      𝑉 = ∑∑𝑈𝑖,𝑗601
𝑗=1

81
𝑖=1  (67) 

Where Ui,j is a vertical discretized ordinate of the UIS at location (X, Y) of (i-1 cm, j-1 cm). This 

value is an element in the matrix UIS81 x 601 at row-i and column-j.  

Thresholds of the UIS-Volume (V) 

      𝑇ℎ =  ± 2𝜎 +  𝜇 (68) 

Where σ is the standard deviation of the V distribution; and µ  is the mean of the V distribution. 

Detecting and Localizing Bridge Damage Simultaneously based on UIS’s Obtained from Limited 

Measurement Locations  

In general, a damage indicator solely demonstrates structural behaviors with its capability 

of tracking structural alteration so that deterioration on constructed systems could be directly 

detected. On the contrary, the vicinities of damage are pinpointed indirectly via sensor locations 

thereby requiring a dense array of sensors which can be of high cost and complicated to be 

deployed. In this dissertation, it is fortunately observed that the UIS consists of not only structural 

responses (represented by vertical ordinates U) but also positions of these responses (represented 

by coordinate X and Y). That insight empowers the idea to utilize UIS’s for both objectives: damage 

detection and damage localization without the need for a sensor network. Success of such a 

framework with limited number of sensors is a promising progress involving improvement of a 

fast, low-cost and portable SHM system for a broad adoption. .    

The UIS based damage identification is proposed by quantifying changes of every cell on 

the first derivative of the UIS matrix on the Y axis (the bridge-length axis), named as the UIS-Y 

matrix. In a few words, this new framework is a combination of finite classifiers that are developed 





137 
 

The First Derivative of the UIS matrix 

The parameter deployed for developing the new UIS based damage identification is the 

first derivative of the UIS on the Y-axis (the bridge-length axis). Since the UIS obtained herein is 

the displacement UIS, its first derivative is the slope (tilt) UIS. Due to the inability of measuring 

displacements of structures at supports, using slope (tilt) is expected to address the challenge of 

damage identification at (or near) supports. The first derivative of the UIS matrix can be 

determined by convolving the derivative kernel ky on the matrix UIS81 x 601 as follows: 

      𝑈𝐼𝑆_𝑌 =  𝑘𝑦 ⊗ 𝑈𝐼𝑆 

𝑤ℎ𝑒𝑟𝑒 𝑘𝑦 = [−1 0 1−1 0 1−1 0 1] (69) 

Where UIS_Y is the first derivative of the matrix UIS; and ⊗ is a mathematical operator called 

convolution applied to two matrices in this certain case.  

Laboratory Verification 

Simulation of Damage Scenarios on UCF 4-Span Bridge 

Since the UCF 4-Span Bridge is an SHM apparatus in UCF Structural Lab, it is designed 

in such a way that a number of common damage scenarios encountered in bridges can be simulated. 

The scenarios simulated in the 4-Span model are typical damages (global and local) that are found 

as a result of comprehensive investigations carried out by SHM research group in UCF and with 

the help from Florida Department of Transportation engineers (F Necati Catbas et al., 2010; R. 

Zaurin & Catbas, 2010). Global damage is the deterioration related to changes in boundary 

conditions such as corrosion, a roller support being stuck, and support settlement (or movement). 

This type of damage causes internal-force redistribution and also affects other elements 
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Damage Detection and Localization based on a Network of Measurement Locations 

Baseline Results and Thresholds for the Healthy Condition of the Bridge Model  

As mentioned previously in Chapter 4, a total of fifteen (15) Sets of data are acquired for 

calculating UIS’s in the bridge model. For every Set, the UIS’s at all (12) measurement locations 

are constructed so as to have fifteen (15) UIS’s for each location. The volumes of (15) UIS’s for 

all (12) measurement locations are calculated in terms of Equation 67 that are shown in Figure 63. 

Finally, thresholds which are calculated by Equation 68 are assigned to be equal to ± 2 times of 

the standard deviation away from the mean value of those volume distributions. Measurement 

locations and their categorization groups are re-illustrated in Figure 62. 

 

Figure 62: The measurement locations (L1 to L12), and their groups (Group I, II, III) 

Damage Detection 

Similar to the Baseline scenario, fifteen (15) Sets of data are acquired for each Damage 

scenario to simulate monitoring of the structure with damage. For each Set of data, twelve (12) 

UIS’s are constructed corresponding to twelve (12) locations from L1 to L12. The volumes of 

those UIS’s are calculated, and then are compared with the thresholds established in the Baseline 

case. If the volume values are outside the range of thresholds, the particular Set of data is classified 

as belonging to a damage case, and vice versa.    
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