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ABSTRACT

The atomic force microscope (AFM) is a versatile, high-resolution tool used to characterize

the topography and material properties of a large variety of specimens at nano-scale. The

interaction of the micro-cantilever tip with the specimen causes cantilever deflections that are

measured by an optical sensing mechanism and subsequently utilized to construct the sample

topography. Recent years have seen increased interest in using the AFM to characterize soft

specimens like gels and live cells. This remains challenging due to the complex and competing

nature of tip-sample interaction forces (large tip-sample interaction force is necessary to achieve

favorable signal-to-noise ratios). However, large force tends to deform and destroy soft samples.

In situ estimation of the local tip-sample interaction force is needed to control the AFM can-

tilever motion and prevent destruction of soft samples while maintaining a good signal-to-noise

ratio. This necessitates the ability to rapidly estimate the tip-sample forces from the cantilever

deflection during operation. This work proposes a first approach to a near real-time framework

for tip-sample force inversion. The inverse problem of extracting the tip-sample force as an

unconstrained optimization problem. A fast, parallel forward solver is developed by utilizing

graphical processing units (GPU). This forward solver shows an effective 30000 fold speed-up

over a comparable CPU implementation, resulting in milli-second calculation times. The for-

ward solver is coupled with a GPU based particle-swarm optimization implementation. The

proposed framework is demonstrated over a series of tip-sample interaction models of increasing

complexity. Most of these inversions are performed in sub-second timings, showing potential

for integration with on-line AFM imaging and material characterization.
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CHAPTER 1. Introduction

1.1 Motivation

The ability to characterize soft materials on the micro/nano-scale has significant implica-

tions to several areas in science ranging from fundamental studies in polymer physics (1; 2; 3)

to applied bio-engineering (4; 5), where understanding nanoscale behavior and evolution is

essential.

Figure 1.1 AFM diagram

Dynamic AFM imaging (6) is a very effective technique to interrogate surface topography

of soft samples (1; 7), particularly for live biological samples in their physiologically friendly

liquid environment (8; 9)1. Dynamic atomic force microscopy (dAFM) or intermittent contact

mode AFM utilizes a micro-cantilever fixed-free beam to interrogate samples. The cantilever

base is driven by a piezo-actuator to oscillate, causing the free tip to tap (i.e., come into

intermittent contact with the sample). The oscillation amplitude and phase with respect to

the cantilever base are measured and the amplitude is maintained around a set-point value via

1For instance, by using dynamic AFM imaging, time evolving phenomena like crystallization of polymers (2)
and the dehydration process of collagen (5; 15) have been experimentally revealed for the first time.
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feedback control. The measured phase and amplitude data are then utilized to construct the

sample topography and also related to the material properties of the sample (10; 11).

To give an example of the capabilities of the AFM, fig. 1.2 shows an image of Bacillus

atrophaeus (12) taken by the AFM. The image show a wide view, then images of hydrated

and dehydrated Bacillus atrophaeus respectively. Such images and data gathered provide the

opportunities to make more accurate models and develop a stronger understanding of the life-

cycles of living cells. Ultimately leading to new methods of detection and treatment of viral

and bacterial infections(12).

Figure 1.2 a) Wide image of Bacillus atrophaeus; b) Close image of hydrated Bacillus at-
rophaeus; c) Close image of dehydrated Bacillus atrophaeus; Image taken from
(12)

Although by using dynamic-mode imaging, the detrimental sliding force on the sample has

been largely reduced, the applied normal (tapping) force can still be large and result in not only

imaging distortion, but more seriously, sample deformation and damage that can completely

modify the sample (7). Large normal force, however, is needed in dynamic-mode AFM imaging

to ensure imaging quality (i.e., high signal to noise ratio). The requirement of rapid scanning
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(high-speed) imaging of specimens further exacerbates these problems (13; 14). The challenge

in tackling these hurdles lies in the need to maintain a small tip-sample interaction force during

the scanning process. Therefore, as a key first step to tackle this challenge, estimating the tip-

sample interaction force – accurately and in real-time – is essential.

1.2 Background

Current methods for tip-sample force inversion generally require significant post-processing

time and are, thus, incapable of addressing sample deformation and destruction in real-time (16).

Off-line inverse problems have been formulated to estimate tip-sample interaction forces using

conjugate gradient optimization (17) with limited success. The availability of newer computing

methods, such as general purpose graphical processing unit computing, opens up the possibility

of near real-time inversion.

1.3 Research objectives

Overall the goal of this project is to integrate analysis and manipulation of AFM cantilever

tip-sample interactions, numerical computation and optimization and advanced control together

to expand the capabilities of the AFM. Recent years have witnessed significant progress in

both the understanding and manipulation of the non-linear cantilever tip-sample dynamics

(in particular, in the dAFMs operation) (10; 11; 14; 16; 18; 19; 20; 21; 22; 23; 24) and the

development of control techniques towards high-speed AFM imaging (see recent reviews (24; 25;

26; 27) and references therein) and material property measurements (28; 29; 30; 31). However,

seldom have we seen efforts to marriage these two sides of work. We believe that a dynamics-

control integrated approach is needed in developing the next-generation AFM technology for

understanding and manipulation of dynamic evolutions of soft samples.

This paper focuses on formulating and implementing a parallel computational framework for

fast inversion of tip-sample forces by using the hardware and software capabilities of GPU’s and

Compute Unified Device Architecture (CUDA), respectively. To the authors best knowledge,

this is the first time that near real-time (sub-second) inversion of tip-sample forces has been
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showcased. Other contributions include:

1. Formulating the problem of estimating the tip-sample interaction force as an inverse

problem posed as an unconstrained optimization problem

2. Developing an ultra-fast predictive model for AFM dynamics based on parallel algorithms

implemented on GPUs

3. Applying gradient-free optimization techniques to quickly find a solution to the optimiza-

tion problem

4. Showcasing a hierarchy of models for inversion

Figure 1.3 Thesis layout

To display the progress toward these objectives the paper’s organization is displayed in fig. 1.3

and is as follows; In Chapter 2 we formulate the problem definition and pose the forward and

inverse problems. Chapter 3 details the computational developments and algorithms along with

some timing and complexity studies. In Chapter 4 we showcase the fast inversion framework on

several examples of increasing complexity. Chapter 5 with give conclusions and suggest future

work.
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CHAPTER 2. Problem/Model development

2.1 Introduction

The physics of the sensing process demonstrates the difficulty in extracting the tip-sample

interactions from the measured deflection data. A schematic of the AFM sensing process is

shown in Fig. 2.1.

Figure 2.1 Dynamic atomic force microscope force interaction process.

An AC input voltage (Vin(t)), usually a sinusoidal wave is sent to a piezo-electric actuator

attached to the base of the cantilever (see Fig. 1.1), resulting in the oscillation of the base

of the cantilever, yex(t). Then as the vibrating tip is brought into intermittent contact with

the sample, the tip-sample interaction force (fex(x, t)) is induced, which in-turn, results in the

change of the oscillation (or vibration) pattern at the cantilever tip, U(x). The tip deflection

is measured using an optical sensing scheme. We approach the problem of extracting the tip-

sample interaction force fex(x, t) in two stages – first solve the forward dynamics problem of

calculating cantilever deflections given a tip-sample interaction force and subsequently solving

associated inverse problem of calculating interaction forces given a cantilever deflection.

2.2 The forward problem: Quantification of force effects on AFM

cantilever

The forward problem quantifies the relationship between the cantilever base displacement

yex(t) and the tip sample interaction fex(x, t) with the tip deflection U(x, t). Formally, the
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definition of the forward problem is as follows:

FP: Given the cantilever properties, (E, I, µ), the cantilever base displacement yex(t), and the

parametrized tip-sample interaction force, calculate the cantilever deflection U(x, t).

We model the cantilever forward dynamics by using Euler-Bernoulli (EB) beam theory. The

choice is driven by the following rational:(a) the EB model provides a more accurate description

of AFM cantilever dynamics than the conventional simple harmonic oscillator model (32); (b)

from an inverse problem standpoint the EB model is computationally more tractable then finite

element formulations (16; 32), with minimal loss in fidelity (14; 33); and (c) all assumptions

made in EB beam theory is satisfied by an AFM cantilever (18; 19). In the following subsection

the details of EB model will be shared.

2.2.1 Cantilever model

Figure 2.2 Cantilever model coordinate system.

The development and discussion of the cantilever model follows from the work of Meirovitch’s

book “Fundamentals of Vibrations” and selections from Massachusetts Institute of Technology

Open Course Ware Mechanics and Materials II 2.001 (34; 35). Consider a fixed/free beam

with coordinates system given as having the x axis extending from the fixed end through the

free end of the beam and a u axis, perpendicular to the x axis, with origin at the fixed end of

the beam. This beam will also be under an interaction force of f(x, t). For a visual descrip-

tion of this coordinates set-up see Fig. 2.2. For this model, the following symbols are used:
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u = displacement of cantilever from neutral axis,

x = distance along cantilever from base,

t = time,

E = elasticity,

I = inertia,

µ = mass per unit length,

f = forces interacting with cantilever,

y = displacement on the u axis of cantilever base from its neutral axis.

Also, the following simplifying assumptions are being made:

1. The cross-section of the beam is uniform.

2. The length of the beam L is very large compared the width b and b is very large compared

to h height.

3. The cantilever is fully elastic.

4. The amplitude of vibration of the cantilever is much smaller than the length or width.

To develop an equation to describe the motion of this beam, consider an infinitesimal piece of

it. As shown in figure 2.3, this infinitesimal piece, under force f, will obey the laws of linear

and angular momentum. Consider linear momentum. Equation 2.1 shows in this case that the

acceleration of the beam (in the case of linear momentum) is caused by the force on the beam

plus the change in momentum.

µdx
∂2u(x, t)

∂t2
= Q(x+ dx, t)−Q(x, t) + f(x, t)dx (2.1)

In consideration of angular momentum:

0 = Q(x+ dx, t)dx+M(x+ dx, t)−M(x, t)− f(x, t)dx
dx

2
(2.2)

Using Taylor series to the first term, equations 2.1 and 2.2 can be rewritten as follows:

µdx
∂2u(x, t)

∂t2
=
∂Q(x, t)

∂x
dx+ f(x, t)dx (2.3)

0 = (Q(x, t) +
∂Q(x, t)dx

∂x
)dx+

∂M(x, t)

∂x
dx− f(x, t)dx

dx

2
(2.4)
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Figure 2.3 Infinitesimal piece of the cantilever. Figure adapted from (35) for this paper.

Using the fact that the cantilever piece is infinitesimal in size, the second order dx terms would

be sufficiently small to neglect. Rewriting equation 2.4 neglecting second order terms yields:

∂M(x, t)

∂x
= −Q(x, t), 0 < x < L (2.5)

The bending moment M(x, t) and sheer force of Q(x, t) can be related to the bending displace-

ment by:

M(x, t) = EI
∂2u(x, t)

∂x2
(2.6)

Q(x, t) = −EI ∂
3u(x, t)

∂x3
(2.7)

If eqn. 2.4 is divided through by dx and eqns. 2.6 and 2.7 are considered, the following is the

result:

µ
∂2u(x, t)

∂t2
= −∂

4u(x, t)

∂x4
dx+ f(x, t)dx, (2.8)

which is the Euler-Bernoulli beam equation. To eqn. 2.8, a viscous damping term is added

resulting in:

µ
∂2u(x, t)

∂t2
+ 2ζ

∂u(x, t)

∂t
= −EI∂

4u(x, t)

∂x4
dx+ f(x, t)dx (2.9)

with boundary conditions (BC’s) of:

u(0, t) = u′(0, t) = u′′(L, t) = u′′′(L, t) = 0, (2.10)
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with general initial conditions. To solve this problem, we consider the homogeneous problem

of equation 2.9. The resulting equation becomes a differential eigenvalue problem:

∂4u

∂x4
+

µ

EI

∂2u

∂t2
+

2ζ

EI

∂u

∂t
= 0, (2.11)

with BC’s from equation 2.10. The solution is via separation of variables,

u(x, t) = Φ(x)η(t), (2.12)

which yields,

η
∂4Φ

∂x4
+
µΦ

EI

∂2η

∂t2
+

2ζΦ

EI

∂η

∂t
= 0 (2.13)

grouping like terms,

β

Φ

∂4Φ

∂x4
+

1

η

∂2η

∂t2
+

2ζ

βµη

∂η

∂t
= 0 (2.14)

where β = EI
µ . Next we assume that each variable has solution of the form −λ4, focusing on

the spatial variable first, we have:

β

Φ

∂4Φ

∂x4
= −λ4 (2.15)

Equation 2.15 has a solution of the form:

Φ(x) = C sin(ωx) +D cos(ωx) + E sinh(ωx) + F cos(ωx), (2.16)

where λ/β = ω and C, D, E, F are constants. Applying the boundary conditions of equation

2.10 to equation 2.16 yields:

Φ(0) = 0⇒ 0 = D + F, (2.17)

Φ′(0) = 0⇒ 0 = C + E, (2.18)

Φ′′(L) = 0⇒ 0 = −C sin(ωL)−D cos(ωL) + E sinh(ωL) + F cosh(ωL), (2.19)

Φ′′′(L) = 0⇒ 0 = −C cos(ωL) +D sin(ωL) + E cosh(ωL) + F sinh(ωL), (2.20)

Substituting equations 2.17 and 2.18 into 2.19 and 2.20 gives us:

0 = −C(sin(ωL) + sinh(ωL))−D(cos(ωL) + cosh(ωL)), (2.21)

0 = −C(cos(ωL) + cosh(ωL))−D(− sin(ωL) + sinh(ωL)). (2.22)
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Equations 2.21 and 2.22 imply:

0 = − sin2(ωL) + sinh2(ωL) = cos2(ωL) + 2 cos(ωL) cosh(ωL) + cosh2(ωL), (2.23)

after simplifying,

0 = cos(ωL) cosh(ωL) + 1. (2.24)

Equation 2.24 is our characteristic equation for this differential eigenvalue problem. Solution

for ω in equation 2.24 develops unique solutions to the spatial domain of this problem. The

first three such solutions are approximately ω1 ≈ 1.8751, ω2 ≈ 4.6941, ω3 ≈ 7.8548.

With AFM cantilevers, sometimes considering the mass of the tip is important. When

considering the tip mass to be significant the following boundary condition is changed:

Φ′′′(L) +
M

m
ω4Φ(L) = 0 (2.25)

where M is the is the magnitude of the mass. The change of boundary condition displayed in

eqn. 2.25 only affects the characteristic eqn. 2.24 and changes it to:

Cω3[− cos(ωL)− cosh(ωL)− sin(ωL) + sinh(ωL)

cos(ωL) + cosh(ωL)
(sin(ωL)− sinh(ωL)) (2.26)

+
M

m
ω(sin(ωL)− sinh(ωL)− sin(ωL) + sinh(ωL)

cos(ωL) + cosh(ωL)
cos(ωL)− cosh(ωL))] = 0

The rest of the discussion with be in the context of cantilevers without lumped mass, however

should still apply will substituting eqn. 2.26 for the characteristic eq.

Using equations 2.21 and 2.22 we have:

D = − sin(ωL) + sinh(ωL)

cos(ωL) + cosh(ωL)
C, (2.27)

thus using equations 2.16, 2.17, 2.18, and 2.27 we have:

Φi(x) = Ci[sin(ωix)− sinh(ωix)− sin(ωiL) + sinh(ωiL)

cos(ωiL) + cosh(ωiL)
cos(ωix)− cosh(ωix)], (2.28)

for the ith solution to the characteristic equation. We can use Ci to change equation 2.28 in to

a form most suitable to our needs. To that end, we will choose Ci such that,∫
Φ2
i (x)dx = 1. (2.29)
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It will be useful at this point to define the inner product of two functions f and g as,

〈f, g〉 =

∫ L

0
fgdx. (2.30)

In order to solve for the temporal dependence of this model we will multiply both sides of

equation 2.9 by Φj(x), taking the inner product of both sides, and using the orthogonality

property of < Φi(x)Φj(x) >= δij yields:

η̈i(t) + 2ζωiη̇i(t) + ω2
i ηi(t) = Fi(t), (2.31)

where Fi(t) =< f(x, t)Fi(x)dx >, note: d4Φi(x)
dx4

= ω4
i Φi(x). With equations 2.28 and 2.31 we

are able to mathematically solve this model with solutions of the form:

u(x, t) =

∞∑
1

Φi(x)ηi(t), (2.32)

with Φi(x) representing the ith modal function and ηi(t) representing the ith modal coefficient.

The modal functions provide a basis for a ”Cantilever Space” to describe the motion of a

cantilever. Then the modal coefficients yield a position in this ”Cantilever Space.” In other

words the modal function act like basis vectors and the modal coefficients tell us what multiple

of these basis vectors describe a given deflection.

2.2.2 Tip-sample interaction models

Solving Eq. 2.31 and hence the original beam dynamics equation 2.9 to obtain the cantilever

displacement U(x, t) requires that the tip-sample interaction force to be known. Tip-sample

interactions are usually parametrized to account for different types of forces. The simplest

tip-sample interaction is an elastic response that can be modeled by Hooke’s law (36):

fspring = −k(u− h) (2.33)

where u − h is the distance the cantilever tip has pressed into the sample (h is the datum),

and k is the local stiffness of the sample. More complex materials respond in a visco-elastic

manner, dissipating some of the energy of the tip-sample interaction (16). This response is
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modeled using a spring-damper system given by:

fspring−damper = −k(u− h)− ζsu̇ (2.34)

In the following paragraphs, complex models will be developed. The primary references for

these paragraphs are from works by Israelachvili (37), Johnson (38), and an online class by

Reifenberger and Raman (39). Elastic contact is commonly modeled using Hertzian contact

mechanics (40) and has successfully match with experiments for low surface energies (41). For

our model we use the contact between two spheres of radii Rtip the radius of the tip and

Rsample = ∞ treating the sample as an infinite half-plane. Using the geometry as specified

results in an equilibrium equation of:

wtip + wsample = δ − 1

2Rtip
r2 (2.35)

where w’s are the constrained displacements of points within the contact radius, δ is the

summation of the displacement of distant points of the two spheres and r is the distance from

the center of contact. Hertzian pressure is given by:

p = p0

√
1− (

r

a
)2 (2.36)

where p0 is the maximum pressure and a is the contact radius. What is currently unknown in

eqn. 2.35 are the values for w’s. Seeking an expression for w’s we use eqn. 2.36 with the law

of cosines to describe the affect of pressure from one point on another resulting in:

p(s, φ) =
p0

a

√
a2 − r22rs cos(φ)− s2 (2.37)

w =
1− ν2

πE

∫ ∫
p(s, φ)dsdφ (2.38)

⇒ w =
1− ν2

E

πp0

4a
(2a2 − r2) (2.39)

where ν is the Poisson’s ratio of the material, s is the radius from one point to another, and φ

is the angle from one point to another. Substituting eqn. 2.39 into eqn. 2.35 yields:

πp0

4aE∗
(2a2 − r2) = δ − 1

2Rtip
r2 (2.40)
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Figure 2.4 Diagram of tip point interaction with infinitesimal volume of the sample.

with E∗ = (
1−ν2tip
Etip

+
1−ν2sample

Esample
)−1, δ = πp0a

2E∗ , and a =
2Rtipπp0

4E∗ . To summarize and complete the

model, the elastic deformation caused by the cantilever tip tapping on the sample leads to a

force exchange which can be modeled when the tip and sample are in contact as:

fhertz =


4E∗R

1/2
tip (h−u)3/2

3 , if u ≤ h

0, if u > h
(2.41)

where E∗ = (
1−ν2tip
Etip

+
1−ν2sample

Esample
)−1, ν is Poisson’s ratio, Rtip is the cantilever tip radius, and h

is the location of the top of the sample.

To add adhesion to Hertzian contact, Van der Waal forces are added to create the DMT

model(42) which applies to low adhesion situations and matches with experiments(43; 44). Van

der Waal (VdW) forces add an attractive component due to atom-atom pair interactions. Like

with the Hertzian model, the interaction between two spheres will be used. In the case of VdW

forces the total potential will be developed from points. The potential of VdW has the form:

V (r) =
−c
r6

(2.42)

where r is the radius between the two points. Using the geometry set up in fig. 2.4, the

potential of a point of the cantilever with the sample is:

V (r) = −2πρsamplec

∫ ∫
x

(
√
x2 + y2)6

dxdy (2.43)

⇒ V (d) =
−πcρsample

6d3
(2.44)
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where d is the shortest distance from the point to the sample. Integrating over the volume of

the sphere representing the tip:

V (d) =
−πcρsampleρtip

6d3

∫ −2Rtip

0

π(2Rtip − y)y

(d+ y)3
dy (2.45)

⇒ V (d) =
HRtip

6d
(2.46)

where H is the hamaker’s constant. Finishing of the formulation, the DMT model is as follows:

fdmt =


4E∗R

1/2
tip (h+a0−u)3/2

3 − HRtip

6a20
, if u < h+ a0

− HRtip

6(h−u)2
, if u ≥ h+ a0

(2.47)

where H is the Hamaker constant and a0 is the intermolecular distance.

When imaging in a humid ambient environment the affects of capillary forces need to be

considered. This is due to a layer of water which forms on the surface of samples. Using the

model from Kober et al.(45):

fcap =


2∆E
D2

0
((h− u)−D0), if h+ a0 < u < D0

2∆E
D2

0
(a0 −D0), if u < h+ a0 < D0

0, if u > D0

(2.48)

where ∆E is energy dissipation and D0 is the height at which the water neck breaks from the

cantilever tip.

For the samples which demonstrate viscoelastic behavior, the tip-sample interaction can

be modeled using the Kelvin-Voigt (KV) model(46; 47). Following the idea of a spring and

damper in parallel KV is modeled as:

fKV =


0, u > h+ a0

0, u ≤ h+ a0 and u̇ > 0

−ηsu̇
√
Rtip(h− u), u ≤ h+ a0 and u̇ < 0

(2.49)

where ηs is the viscous damping coefficient of the sample.

2.3 Inverse problem

The inverse problem is defined as follows:

IP: Given the cantilever properties, (E, I, µ), the measured cantilever tip deflection U(x, t), and
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the given cantilever base displacement yext, calculate the parametrized tip-sample interaction

fex(x, t).

One approach to solving the inverse problem is to convert it into an unconstrained opti-

mization problem through the minimization of a chosen cost functional J that minimizes the

difference between U(x, t) and u(x, t). An appropriate choice of the cost functional J acts as

a metric that quantifies the mismatch between a guess value of the tip-sample interaction and

the true tip-sample interaction. The choice of the cost functional plays a significant part in

the accuracy and efficiency of the inversion process. The proper choice of the cost functional

ensures reasonable speed of calculation and a smooth phase space. Extensive computational

experiments suggested the use of the following cost functional:

J 2
L2(F ) =

∫ tmax

0
[U(x, t)− u(x, t)]2 dt (2.50)

where U is the experimentally measured tip deflection. u is the calculated tip deflection for

given the tip-sample interaction F (i.e., by solving the forward problem FP).

The unconstrained optimization problem is posed as follows:

Given cantilever properties (E, I, µ), cantilever base movement yex(t), and the experimental

cantilever tip deflection (U(x, t)), find the parametrized tip-sample interaction F ∗ such that

JL2(F ∗) ≤ JL2(F ) for any F , where JL2 is defined in Eqn. 2.50.
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CHAPTER 3. High-speed GPU framework development

This section details the computational framework for solving the forward and inverse prob-

lems formulated in the previous chapter. A key challenge is the necessity of very fast force-

inversion for real time dAFM imaging of soft samples to be possible. Posing the direct problem

as a set of ODE’s and the force inversion as an unconstrained optimization problem over these

ODEs allows to leverage the computational advantages provided by GPUs. The rational for

using GPU’s is guided by the following reasons: (1) ability to construct a large set of forward

problems in parallel; (2) faster analysis given faster memory accesses compared to CPUs; (3)

GPU compute architecture is well suited for problems with minimal parallel dependencies; and

(4) GPU compute architecture is well suited for problems where the computation-to-memory-

access ratio is larger than one. A brief description of GPU hardware and CUDA software

concepts utilized in the developed framework follows.

3.1 Introduction

Utilizing GPU’s for computation is different than on CPU’s. GPU’s require a large number

of threads of execution that are processed in parallel to be efficient. In contrast, CPU’s are

generally more efficient with few threads.

Memory: GPUs (running CUDA) have very large computation capability compared to the

speed at which they can access memory. GPU’s hide this memory latency by performing com-

putation and memory grabs simultaneously. While sets of threads (called warps) are waiting for

their data from memory, other warps get computed. The availability of hierarchies of memory

allows significant room for designing algorithms to optimize memory access, thus enhancing

speed. We briefly describe the memory modes that are used in the current formulation; global,
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shared, texture, and constant.

1. Global memory is the main memory storage on GPU and is the slowest to access requiring

hundreds of clock cycles. Global memory is retrieved in groups of bytes for warps based

on the requirements of the threads. Warps can only grab memory that is in sequential

order.1

2. Shared memory is a very fast, small block of memory (16 kb on compute capability 1.3

and below, up to 48 kb for compute capability 2.0) which is accessible only within each

block of threads.

3. Texture memory is a cached global memory.

4. Constant memory can only be assigned by the CPU and is a cached read-only memory.

Given the finite memory resources and speed, memory management is critical as most GPU

algorithms are limited by their memory throughput (48).

Computation: Through the use of CUDA architecture and programming tools, the man-

agement and control of GPU computation and data parallelism is possible2. In CUDA, threads

are organized into blocks which are executed on the same streaming multi-processor (SMP).

Each GPU only has a finite number of SMPs and as a result can only computer a finite number

of blocks at the same time. SMPs execute threads in groups (or warps). Warps are chosen

to be processed based on the availability of the requested memory resources. Thus, optimally

choosing threads and threads per block can significantly enhance memory access and perfor-

mance.

Communication: Any data dependency between threads requires special considerations.

Shared memory is the best method of dealing with any data dependencies. This means that

inter-thread communication is best handled within each block. Communication between blocks

can occur through a global sync between all GPU and CPU threads but is very inefficient.

1So if thread 0 needs memory from array position 0 and thread 1 requires array position 1000000, the warp
will request two accesses to global memory (costing several hundred clock cycles twice). Alternatively, if the
memory in array position 1000000 was in position 1 instead, only one memory access would be required.

2CUDA provides a compiler and basic functions to perform computational tasks. The CUDA tool-kit also
includes a best practices guide which describes the advantages and limitations of GPU computing and how to
get the best performance.
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Figure 3.1 Flowchart of serial forward problem solver initialization process

Through the use of good parallel programming practices, the shared memory can be used

efficiently to communicate between threads.

We utilize CUDA programming to implement both the forward and inverse problems on

GPU’s. Our approach takes advantage of the GPU compute structure by designing an algorithm

which minimizes data dependency between threads, maximizes the number of computations per

global memory access, and minimizes CPU/GPU data communication. The optimization prob-

lem approach allows for minimal data dependency through the solving of many forward prob-

lems, that are independently solved on multiple threads on the GPU.

3.2 Forward Problem

Fast calculations of solutions to Eqn. 2.31 are achieved through a CUDA based high-order

ODE solver. The three key stages in solving the forward problem (FP) are: initialization

(see fig. 3.1), including memory set-up and modal function calculation; calculation of modal

coefficients via high-order ODE solvers; and using modal functions and modal coefficients to

calculate displacements.

Computational issues A Newton root solver and Simpson integration modules are used

to solve for the modal resonance frequency (ωi) and normalization factor (to make the modal

functions orthogonal), respectively. Calculating the modal functions using the hyperbolic

trigonometric form generally presented in texts (34) causes over-flow errors for higher modes.

We recast the calculation to the following equivalent exponential form to enable accurate cal-
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culation without overflow:

Φi(x) =
2 sin(βix)− 2G cos(βix) + (G− 1) expβix +(G+ 1) exp−βix

2
, (3.1)

G =
2 exp−βiL sin(βiL)− exp−2βiL +1

2 exp−βiL cos(βiL)− exp−2βiL +1
, (3.2)

where βi is the ith solution of cos(βL)cosh(βL) + 1 = 0 and ωi = β2
i

√
EI
µL4 .

Note that ω2
i grows very quickly with increasing mode order i, making Eqn. 2.31 a stiff ODE.

We utilize an explicit 4th order Runge-Kutta (RK) or an implicit first order Euler method to

solve the ODEs.3 Explicit schemes were tested because they are efficient and the RK fourth

order method converged in the range of time steps typical for AFM experiments. Implicit first

order Euler was tested and found to give accurate solutions with less computational overhead

that explicit RK fourth order when the implicit system was solved by hand and hard coded.

Figure 3.2 Memory Allocation and Parallelization: A schematic of the forward problem par-
allel algorithm. Squares represents an individual thread. Each row represents an
individual forward problem. Each mode of each forward problem is given a thread.
Thus, each block will solve several forward problem solutions simultaneously.

Memory allocation Solutions of the forward problem are obtained by calculating the

modal functions (Φi) and the modal coefficients (ηi). The modal functions remain invariant and

3First order explicit Euler method was tested but failed to converge to a solution with practical time-step
size of greater than 10−8. Second or third order methods have not been tested and could be a possible method
of reducing calculation time if they converge.
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thus only need to be calculated once. We calculate and store the modal functions serially as part

of the initialization process. Two parallel strategies are possible to assist in solving Eq. 2.31

for ηi(t): parallel prefix for force inner products and direct parallelism across modes. Moreover,

assuming that the force is variable separable (into spatial and temporal components), the

spatial component of the force can be determined during initialization. This allows converting

the computation of integrals involved on the RHS of Eqn. 2.31 to a one time calculation.

Pre-calculating force integrals leaves implementing a framework with parallelism across modes.

Every modal coefficient ODE solve is handled by a unique thread. Thus, two dimensional blocks

of threads are set-up as (m,nfpb), where m is the number of modes and nfpb is the number of

forward problem solutions per block, as shown in Fig. 3.2. For example, on compute capability

1.3 GPUs, using eight modes, the current parallel framework can run up to 64 problems per

block.

We next analyze the memory complexity of the framework. This elucidates the rational for

deploying the various data structures in the available memory hierarchies. The major memory

needs are as follows:

• The cantilever parameters, E, I, µ. Since the cantilever parameters are assigned as part

of the initialization process and require little memory, they are a good choice for constant

memory.

• Parameters of the tip-sample interaction. This requires 4 bytes for each parameter, thus

requiring 8nfps bytes for nfps simultaneous forward problem solutions using the visco-

elastic model Eqn. 2.34. Interaction parameters are left in the global memory since they

have to be optimized in the inverse problem4.

• Modal coefficients ηi require 4mnfps bytes, where m is the number of modes used. The

output deflection points require ndpnfps bytes, where ndp is the number of deflection

points computed. Usually deflections at three points on the AFM cantilever are measured

(ndp = 3). The modal coefficients and deflection points are stored in shared memory

because of the constant updating during the forward solve.

4The access speed of the interaction force parameters could potentially be improved by utilizing texture
memory but has not been implemented in this work.
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3.3 Forward problem runtime analysis

Complexity analysis For the forward problem, the main calculations affecting runtime

complexity are the force integral calculations and the ODE solve. The runtime complexity

for the serial forward problem is O([ntnx + nt]m), where m is the number of modes, nt is

the number of time steps and nx is the number of spatial points used to compute the force

integral. However, assuming variable separation of the forces reduces serial runtime complexity

to O(mnt). By deploying across m threads on a GPU, the parallel runtime complexity is O(nt).

Figure 3.3 Convergence compared to 8 modes for simple sinusoidal base movement

3.3.1 Speedup characteristics: Comparing CPU vs GPU implementation

In addition to the GPU based implementation discussed in the preceding section, we also

implemented a CPU based version of the ODE solver for comparison. The validity of the results

of both implementations are ensured by comparing with analytical solutions that are obtained

using a sinusoidal base movement and constant forces (34)(see Appendix A).

We discuss runtime trends and accuracy details in this subsection. Each forward problem

is run for 1000 time steps (unless otherwise stated) using time-step, ∆t = 10−7. A maximum

of eight modes are used. Eight modes can satisfactorily track the cantilever evolution (with an

error of 3.310−6). Error is defined as |Vt−Vc|L2

|Vt|L2
, where Vt is the true value and Vc is computed.

In testing convergence, the L2 error of various modes are compared to the solution obtained
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Figure 3.4 Number of time points vs. runtime in seconds for CPU framework

Figure 3.5 Number of modes vs. runtime in seconds for CPU based framework

using eight modes. Fig. 3.3 shows the plot of error versus number of modes. For this simple

case, four modes are sufficient for resolving a sinusoidal deflection.

While considering runtime complexity three parameters are most dominant; number of

modes, number of points used to describe modal functions, and number of time points. We

analyze all three of them independently, first for the CPU based implementation and subse-

quently for the GPU based implementation. Runtime as a function of the number of modes is

shown in Fig. 3.5 with the number of time points fixed at 1000 (note that 8 modes take 0.482

seconds). Fig. 3.4 plots runtime as a function of the number of time points. When seeking

real-time inversions, runtime must be of the order of few hundred milliseconds. These runtime
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analyses show that calculation times using CPUs are too slow to solve the inverse problem in

real time.

Figure 3.6 Number of blocks vs. runtime in seconds

In contrast to the CPU results, the GPU based results are very promising. With the goal

of solving several hundreds of forward problems to solve one inverse problem, we utilize two

metrics to illustrate the capabilities of the GPU based framework: (a) runtime of individual

forward solves; (b) the number of forward solves which can be calculated in parallel. Both

metrics depend on multiple factors: number of time steps (nt), number of modes (m), number

of solutions per block (nfpb), and total number of forward problem solutions (nfps). A Nvidia

Quadro FX 5800 GPU is used which limits the number of blocks that can run in parallel to 30

(2 blocks per streaming multiprocessor(SMP), 15 SMP’s)5. Beyond this, with all SMPs filled,

the blocks have to wait for an open SMP. This can be clearly seen in Fig. 3.6 where the runtime

jumps after 30 and 60 blocks. Fixing the number of blocks (
nfps

nfpb
) to 30 and modes (m) to

8, runtime is analyzed by varying the number of time steps and number of solutions per block.

Fig. 3.7 show the effect of nfpb on runtime. As the number of solutions per block increases, the

runtime increases in a non-linear way. Using 32 solutions per block most efficiency utilize GPU

resources giving forward solves with 100 millisecond runtime. Furthermore, as nfpb increases

beyond 32, the solutions per second gain is small while 32 solutions only requires half of the

shared memory. Fig. 3.8 shows that increasing nt causes a linear increase in runtime (as

5For more details on the system used for testing and implementation, see appendix C.
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Figure 3.7 Number of solutions per block vs. runtime in seconds

Figure 3.8 Number of time points vs. runtime in seconds

predicted by the complexity analysis in the previous section).

By appropriately choosing the number of solutions per block to ensure proper memory

allocation, the runtime for a single forward solve on the GPU took 0.0151 seconds. This is

a speed-up of 32 over the CPU framework. More importantly, the GPU based framework

can execute several forwards solves simultaneously. 960 forward solves are computed in

0.0151 seconds, translating to an effective speed-up of 30000. Effective speed-up is

the direct comparison between our CPU (single-core) performance and GPU performance.
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3.4 Inverse problem

The choice of the optimization algorithm is driven by the following constraints:

1. The GPU based forward solver implementation is able to compute several forward solution

in parallel.

2. The parametrization of the cost function J may be high dimensional.

3. Furthermore, the landscape of J may be non-smooth, necessitating a gradient free

method.

4. The existence of multiple local minima that have to be discarded.

A gradient-free, global search algorithm that satisfies these constraints is the particle swarm

optimization (PSO) (49). PSO finds the global minima by starting with a large population

of candidate solutions (or particles), and moving these particles around in the search-space

according to certain rules over the particle position and velocity. Each particle is influenced

by its local best known position and the best known positions in the search-space, which are

updated at every iteration as better positions are found by other particles. Generally, particle

locations and velocities are chosen using a uniform distribution in the search space (50; 51).

The update of velocity uses the following equation:

vi = wvi−1 + c1r1(bl − xi−1) + c2r2(bg − xi−1), (3.3)

where vi is the velocity at iteration i, w, c1, and c2 are weighting factors, r1 and r2 are random

numbers, bl and bg are the local and global bests respectfully, and xi is the position of the

particle at iteration i. Recent theoretical results suggest that an appropriate choice of the pa-

rameters guarantee convergence (50; 51). We utilize an optimized GPU based implementation

of the PSO algorithm (52). In an attempt to save communication costs, the framework devel-

oped by (52) uses a ring topology (ie. particles only communicate best information to their

neighbours in memory), resulting in a delay in all particles knowing the global best information.

To further demonstrate how PSO works an example is presented. For this example we will use

PSO on the function f(x) = x2 with two particles looking for a minima. These two particles



26

Figure 3.9 PSO example initial set-up. One particle is “randomly” positioned at x = −1
with a negative velocity, the other particle is “randomly” placed at x = 2 with a
negative velocity.

would normally start at a random location but for simplicity let us assume the particles are

“randomly” placed at x = −1 and x = 2. Still further let us assume that the random initial

velocities are −1 and −1 respectively. This initial set-up of the particles locations and velocities

is shown in fig. 3.9. For eqn. 3.3 we will use parameter values as follows for simplicity,

w = 0.33, c1 = 0.33, and c2 = 0.33. A typical set of generations of PSO using the details just

specified goes as follows:

Particle 1 Particle 2 Global Best

x = −1, y = 1 x = 2, y = 4 x = −1

x = −2, y = 4 x = 1, y = 1 x = −1, 1

x = −2.07326, y = 4.29841 x = 0.66667, y = 0.4489 x = 0.66667

x = −1.88529, y = 3.55433 x = 0.55777, y = 0.31111 x = 0.55777

The process of successive generations will continue until a specified goal value for cost

function (or functional) value is met.
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CHAPTER 4. Results

4.1 Introduction

This section discusses a hierarchy of increasingly complex inverse problems. We start with

the simpler problem of extracting the base vibration characteristics given tip deflections. This

problem also explores the choice of the search space parameters and their effect on runtime.

The next two subsections deal with real time inversions of elastic and visco-elastic tip-sample

interactions, followed by inversions of more complex tip-sample interactions.

4.2 Forced vibration

’Experimental’ tip deflection data was computed by forcing the base to vibrate to a simple

sinusoidal driven signal:

y(t) = a sin(2πft), (4.1)

where a is the amplitude and f is the frequency of cantilever base vibration. The ’experimental’

tip deflection was obtained by setting a = 2nm and f = 25600 Hz. This ’experimental’ tip

deflection – subsequently used to drive the inverse problem – is obtained using the CPU based

serial framework, thus resolving the issue of inverse crime (53).

We analyze the performance of the inversion framework by starting with a one dimensional

search space for the amplitude of base vibrations and fixing f = 25600 Hz. We provide

physically meaningful bounds on the amplitude, [0 nm, 100 nm] and set nt = 1000. The

number of time steps was chosen to provide a sufficient number of data points per oscillation

period given the typical time-step used. Fig. 4.1 shows that the mean and variance of the

number of generation for convergence shrinks as the number of particles used in the PSO
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increases. Faster convergence is expected since the density of the particles in the search space

is increasing. Given that the framework produces a generation about every 16 milliseconds, the

mean convergence time for the 1D case is just over 48 milliseconds for 512 particles.

Figure 4.1 Number of particles effect on mean(�) and variance(∇) of generations to conver-
gence with 1D search space

Figure 4.2 Search Space effect on mean(�) and variance(∇) of generations to convergence
with 1D search space

We next investigate the affect of search space size on the performance of the inversion

framework, as shown in Fig. 4.2. In general, as the particle density in the search space

decreases, the mean number of generations required for convergence increases. For the case of

the largest search space ([0 nm, 500 nm]) the mean number of generation of 6.8767 corresponds
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to a runtime of around 112 milliseconds. This suggests that a tight bound on the unknown force

parameters can significantly decrease inversion times.

The affect of convergence cutoff on convergence is shown in Fig. 4.3. The general trend

of increasing accuracy requirements raises the mean number of generations required for con-

vergence. To achieve an error of 0.001 requires an average of 7.99 generations (taking 128

milliseconds) verses the 48 milliseconds required for achieving a relative error of 0.01. The

effect of nt on mean generations was also tested. The number of time steps was varied from

1,000 to 10,000 and did not show any effect on the result.

Figure 4.3 JL2 target effect on mean(�) and variance(∇) of generations to convergence with
1D search space

Figure 4.4 Search Space effect on mean(�) of generations to convergence with 2D search space
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We next tested the inversion framework by using a 2D search space (making both a and f

unknown). Fig. 4.4 shows a similar trend to the 1D case where the mean number of generations

required for convergence increases as the search space increases. With a search space of 1000

Hz, 19.0458 generation on average is required for convergence resulting in a compute time of

about 320 milliseconds.

To explore frequency dependent properties, the AFM can be driven by a chirp base vibra-

tion. This linearly varies the frequency of base oscillation with time:

y(t) = a sin(2π[f + gt]t), (4.2)

where g is defined as the frequency gain parameter. We utilize the inversion framework to

extract the parameters of this chirp signal. Matching a chirp base movement requires exploring

a 3D search space for (a, f, g). The ’experimental’ tip deflection was obtained by setting

a = 2 nm, f = 10, 000 Hz and g = 20, 000, 000 Hz
Sec . Using a search space of [0 nm, 100 nm]×

[7, 500Hz, 12, 500Hz]×[19, 000, 000 Hz
Sec , 21, 000, 000 Hz

Sec ], the framework extracts correct values

of (a, f, g) in 14.9 generations corresponding to a runtime of about 240 milliseconds.

4.3 Spring tip-sample interaction

Figure 4.5 JL2 Space of spring and cantilever-sample separation

A simple yet extensively used model for tip-sample interaction is one that assumes an elastic

response of the soft sample. Extracting spatial variation in elasticity is important for a variety



31

Figure 4.6 JL2 requirement effect on mean(�) of generations to convergence with spring
tip-sample search space

of applications in addition to non-destructive scanning of the sample (e.g., tumors have higher

stiffness that normal cells; as collagen dehydrates there is a change in elasticity (5; 15)).

We utilize a Hooke’s law based parametrization for the elastic response of the sample. The

modelling of the tip-sample interaction as a spring is in-line with most AFM experimental force

calculation models. This model has the following form:

f(t) = −k(u− h) (4.3)

where u − h is the distance the cantilever tip has pressed into the sample and k is the tip-

sample spring constant. With the base movement parameters known, only two tip-sample

force parameters are unknown, the cantilever-sample separation and sample spring constant.

Cantilever-sample separation is defined as distance from the cantilever’s neutral axis to the

sample. The ’experimental’ tip deflection was created using the following parameters: h =

50 nm, and k = 4N/m, where h is the cantilever-sample separation and k is the sample spring

constant. These parameters were chosen to mimic results found in (16).

Calculating the force parameters for a spring sample is computationally complex due to the

non-convex nature of the phase space as shown in Fig. 4.5, and results in more calculation time

being required shown in Fig. 4.6. Fig. 4.5 shows that several combinations of k and h produce

similar values, creating a symmetrical valley near the basin of the global minima. The resulting
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valley of similar combinations is expected because both k and h only affect the amplitude of

vibration and not the phase. Using a cutoff convergence threshold of JL2 = 0.0005 results in

a 5% error in calculating k and h resulting in a mean convergence of about 18 generations,

resulting in an average runtime of 288 milliseconds.

Figure 4.7 JL2 Space of spring and damper

Figure 4.8 JL2 requirement effect on mean(�) of generations to convergence with
spring/damper tip-sample search space
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4.4 Spring/damper tip-sample interaction

We increase the complexity of the tip-sample interaction parametrization by next assuming

a visco-elastic response of the sample. Understanding the visco-elastic variations is particularly

important in understanding aspects of polymer physics(46). A Kelvin-Voigt parametrization is

extensively used to model visco-elastic tip-sample interactions (16). This is essentially a spring

damper system:

f(x, t) = −k(u− h)− ζsu̇ (4.4)

where ζs is the viscous damping coefficient. We assume that the sample separation for the

AFM cantilever neutral axis is known. This inversion consists of estimating two material

properties. The ’experimental’ tip deflections were obtained by using the following parameters:

h = 50 nm, k = 4N/m, and ζs = 0.1Nsm . Using a search space of [0 N/m, 25 N/m]×[0 Ns
m , 2 Ns

m ]

the convergence profile with increasing number of generations of the PSO scheme is shown in

Fig. 4.8.

The phase space for inverting the visco-elastic tip-sample interaction is highly corrugated

and has multiple local minima as shown in Fig. 4.7. The shape of search space clearly demon-

strates the need for gradient free optimization methods. The large number of local minima is

due to the phase change caused by the damping force. The average runtime for inversion (with

16 generations) was 256 milliseconds.

4.5 Hertzian contact model

For the first tip-sample model that is applied in practice we present the Hertzian contact

model (40). Hertz contact provides a realistic model for tip-sample interactions which do not

include adhesion (41). The model is:

f(t) =


4E∗R

1/2
tip (h−u)3/2

3 , if u ≤ h

0, if u > h
(4.5)

where E∗ = (
1−ν2tip
Etip

+
1−ν2sample

Esample
)−1, ν is Poisson’s ratio, Rtip is the cantilever tip radius, and

h is the location of the top of the sample. Our approach for this inversion is to estimate
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the equivalent elasticity E∗ . To create the ’experimental’ deflections, UHMWPE and PDMS

are used as sample models to simulate real data. The important data for this model are

UHMWPE: ν = 0.4, E = 0.104 GPa (54); PDMS: ν = 0.5, E = 750 kPa (55; 56); Other data:

h = 81.5 nm, a = 2 nm, and f = 25000 Hz. Using a search space of [0, 100E∗] runtime tests

for UHMWPE and PDMS were preformed for various accuracy criteria. A quick note on the

determination of maximum error of calculated material properties. To determine maximum

error, a cost functional data set is produced similar to previous plots (see fig. 4.7) and a level

set of parameter values is evaluated using our standard for error calculation, the maximum

error is the parameter values who produce the largest error in that level set.

Figure 4.9 Runtime vs accuracy in calculating E∗ for UHMWPE

UHMWPE As shown in fig. 4.9, equivalent elasticity for UHMWPE presents no diffi-

culty for the computational framework to calculate accurate solutions very quickly. For calcu-

lating the most accurate reconstruction of E∗ with an error of less than 2.7%, mean calculation

time does not exceed 90 milliseconds.

PDMS Figure 4.10 shows the E∗ results for PDMS. Like with UHMWPE, E∗ is able to

be calculated quickly and accurately with the lowest error maximum error for this test of 1%

and a mean runtime of less than 80 milliseconds.



35

Figure 4.10 Runtime vs accuracy in calculating E∗ for PDMS

4.6 DMT model

Adding a layer of complexity to the Hertz contact model we present work using the DMT

contact model. DMT adds adhesion to the Hertzian contact through the addition of Van der

Waal(VdW) forces(42) which applies to low adhesion situations and matches with experiments(43;

44). The DMT model is as follows:

f(t) =


4E∗R

1/2
tip (h+a0−u)3/2

3 − HRtip

6a20
, if u < h+ a0

− HRtip

6(h−u)2
, if u ≥ h+ a0

(4.6)

where H is the Hamaker constant and a0 is the intermolecular distance. This particular inver-

sion has presented some difficulties and as a result will need further explanation of the details of

the process that was used. As a result of these difficulties, only data for PDMS will be shared.

When approaching the DMT inversion there are three parameters which need to be estimated,

equivalent elasticity E∗, Hamaker constant H, and intermolecular radius a0. The important

data for creating the ’experimental’ data PDMS: H = 4.4e − 20, a0 = 0.165nm; Other data:

h = 5.2 nm, a = 2 nm, f = 20000 Hz, and number of time points to analyze nt = 30000. Note

the changes in forcing frequency and the number of time points analyzed. The frequency was

changed to highlight the VdW affects. As a result the span of time in-which the force affects

need to be considered increased for this particular scenario, resulting in increased calculation

times. To minimize this increase in calculation time the following procedure for search was
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Figure 4.11 Hamaker’s constant and equivalent elasticity search space

followed:

1. Determine a0.

Set H constant to zero.

Take a reasonable guess for E∗ and set search space accordingly.

Set cost functional threshold accordingly for accuracy.

2. Determine H and E∗ simultaneously.

Set a0 search space to above calculated value.

Set cost functional threshold accordingly for accuracy.

Firstly approaching step one with a guess equivalent elasticity of E∗ = 9999946.5 and search

space of [0.1a0, 10a0]. With a maximum error of 1% the mean inversion time was 9.85 seconds.

Given the linear runtime scaling, if the number of time points analyzed could be reduced to

1000 like with previous models, the runtime would reduce to approximately 0.328 seconds.

Addressing the calculation of step two, the search space for H and E∗ were set-up in a similar

manner to a0. Figure 4.11 shows the search space for various H and E∗ values with fixed a0.

This search space presents a curved valley similar to the spring/height search space presented

in fig. 4.5. The runtime results were tested for a maximum error of 1% and yielded a mean
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calculation time of 22.22 seconds which would be approximately 0.741 seconds if the analysis

could be reduced to 1000 time steps. In total, the mean calculation time for the DMT model

for PDMS is 32.07 seconds.
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CHAPTER 5. Conclusion and future work

5.1 Conclusion

The atomic force microscope (AFM) is a versatile, high-resolution scanning tool used to

characterize topography and material properties of a large variety of specimens. Its applicability

to characterize soft specimens like tissue and gels is currently constrained by the inability to

appropriately control tip-sample interaction forces. A major bottleneck to control tip-sample

interaction is the ability to extract these tip-sample forces in real time from the deflection

signal. This paper illustrates a first approach to a near real-time framework for tip-sample force

inversion. We utilize the hardware advantages and parallel capabilities of GPUs to develop a

fast inversion strategy. A fast, parallel forward solver is developed that shows a 30000 fold

speed-up over a comparable CPU implementation, resulting in milli-second calculation times.

Posing the inverse problem as an unconstrained optimization problem allows us to integrate

a GPU based gradient-free global Particle Swarm Optimization framework with the forward

solver. We illustrated the framework on three classes of tip-sample interaction inversions. Each

of these inversions is performed in sub-second timings showing potential for on-line integration

with the AFM.

5.2 Future work

To improve this computational framework, efforts need to be made to this proof of concept

into application. Some examples of extensions of this work to meet application needs include:

1. Integrating with AFM hardware for deployment

2. Investigating additional complex tip-sample parametrization that account for other tip-



39

sample interactions

3. Investigate other cost functionals

One example of a cost functional to investigate would be to account for both deflec-

tion amplitude and phase changes. Current implementation only accounts for amplitude

changes.

4. Perform nano-composition mapping of soft tissue

5. Further develop strategies to minimize the number of time points required for calculation

and analysis.



40

APPENDIX A. Extra information

A.1 Dynamic cantilever model data

L2 error 0.00333531

Length 525 microns

Elasticity 1.76 ∗ 1011 Pa

Width 35 microns

Height 5 microns

Inertia 3.64583 kg m2

Mass per unit length 4.0775 ∗ 10−7 kg
m

Start Time 0 Sec

End Time 0.004 Sec

Time step 4 ∗ 10−8 Sec

Number of modes 8

Number of modal function points 501

Amplitude 5 nm

Frequency 25500 Hz

First natural frequency 25468.9 Hz

Steady State Deflection Amplitude 3.2 microns

A.2 Modal analysis

The deflection of the cantilever then is represented as:

u(x, t) =
N∑
i=1

ηi(t)Φi(x), (A.1)
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where Φi(x) represents a set of orthogonal modal shape functions which are computed by solving

the homogeneous eigenvalue problem (34) and ηi(t) are corresponding modal coefficients. In

order to determine the modal coefficients, we define an inner product as:

〈f, g〉 =

∫
L
fgdx, (A.2)

where f and g are functions.

A.3 Hardware

Testing and implementation of the proposed framework occurred on a GPU mini-cluster

consisting of two Dell Precision T7500 workstations. Each node is equipped with 12 GB of

DDR3 RAM, 500 GB of 10K RPM hard drives and 2 Intel Xeon 2 GHz quad-core CPUs.

The main computational power comes from 4 GPUs donated to us by NVIDIA: each node is

accelerated with 2 NVIDIA QUADRO FX 5800. One such card provides 240 cores, 4 GB of

RAM with 102 GB/s bandwidth and is CUDA compatible (with 1.3 compute capability). The

nodes are connected via dedicated Gbit Ethernet.
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