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ABSTRACT  

Robots are used for various jobs such as dangerous and repetitive jobs that are boring, 

stressful, or labor-intensive for humans, like cleaning the main circulating pump 

housing in the nuclear power plant. The subject of this thesis is to presents an 

implementation of fuzzy modeling methodology for controlling robot manipulator 

using TSK fuzzy controller. In this thesis, the control method depends mainly on 

mathematical modeling, analysis and synthesis. The mathematical model of robot 

based on the Euler-Lagrange formalism represents the main tool for analysis and 

synthesis of robot control algorithms. Deriving both forward and inverse kinematics is 

an important step in robot modeling based on Denavit Hartenberg (DH) representation.  

The control objective is to make the 3-DOF robot manipulator traces desired trajectory 

using TSK fuzzy model. Computer simulation results shows that the robot tracks the 

path accurately with very small tracking error when compared to some of previous 

studies.   
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 ملخص

تستخدم الروبوتات في العدید من الوظائف، مثل المھمات الخطیرة، والمتكررة التي قد تكون مملة ومُجھدة، أو 

  .یصعب على الإنسان انجازھا، مثل تنظیف المضخات الرئیسیة في المحطات النوویة

  (TSK).، بھدف التحكم بروبوت باستخدام المتحكم (FLC)موضوع ھذا العمل ھو تقدیم تطبیق للتحكم الغامض

في ھذه الرسالة، فإن عملیة التحكم تعتمد على اشتقاق وتحلیل النموذج الریاضي، وھذا النموذج یعتمد على طریقة 

)Euler-Lagrange( كطریقة أساسیة لتحلیل واشتقاق نظام التحكم المناسب لھذا الروبوت.  

  .أیضاً یعتبر اشتقاق الحركة الأمامیة والحركة الخلفیة للروبوت من الخطوات الأساسیة للتحكم في الروبوت

لغامض إن الھدف من التحكم، ھو جعل روبوت من ذوات الثلاثة مفاصل یتتبع مساراً معلوماً باستخدام المتحكم ا

  ).TSK(من نوع 

بوت تتبع المسار بشكل دقیق بنسبة خطأ صغیرة جداعًند المقارنة مع بعض وواستناداً إلى نتائج المحاكاة، فإن الر 

  .الدراسات السابقة
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1.1 Background 
A robot is a reprogrammable, multifunctional manipulator designed to move 

materials, parts, tools or specialized devices through variable programmed motions 

for the performance of a variety of tasks. Robots are used for various jobs such as 

dangerous jobs, like cleaning the main circulating pump housing in the nuclear 

power plant, and repetitive jobs that are boring, stressful, or labor-intensive for 

humans. The controlled target is a 3-DOF robot manipulator.  

The Robot dynamic model is very substantial to generate the control input. It is very 

complicated operation to obtain its mathematical model, because of many reasons as 

the coupling between links, the strict nonlinearity and the time varying. 

The "nth" degree of freedom rigid Robot Manipulator is characterized by "n" 

nonlinear dynamic coupled deferential equation. 

In robot controlling problems, it is very difficult to traces the desired path, so the 

problem of controlling robot manipulators still offers many practical and theoretical 

challenges due to the complexities of the robot dynamics and requirements to 

achieve high – precision trajectory tracking in the cases of high – velocity movement 

and highly varying loads.  

The control method depends mainly on mathematical modeling, analysis and 

synthesis. To obtain the dynamic model in the mechatronic system Euler-Lagrange 

method is used because it is direct method for analysis. 

The Denavit–Hartenberg convention is commonly used to select the coordinate 

frames for formulating the kinematic problem of serial manipulator. 

The obtained presentation and the kinematic solution are used in formulating the 

dynamic equation.   
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1.2 Motivation 
In recent years robotics technology becomes one of the high importance scientific 

researches; it highlights the growing importance in a wide variety of application and 

emphasizes its ability to inspire technology education. It is used in many areas and is 

important to the future of mankind. 

Doctors are already using robotics in specialized surgeries. Some kind of robotic 

instrument that they can control from outside the body can cause the patient less pain 

and recovery time than having the surgeon completely open them up. 

Robots are mostly utilized in the manufacturing industry, where the job is either too 

heavy or time consuming for a human. 

Robotics is positioned to fuel a broad array of next-generation products and 

applications in fields as diverse as manufacturing, health-care, national defense and 

security, agriculture and transportation. 

The target in robotics is how to control the motion of the robot; the control operation 

needs to obtain the mathematical model of the robot, which includes the forward and 

inverse kinematic, and the design the control low.  

The main objective in this thesis is to make the robot traces desired trajectory, 

Infinite number of path to move from one point or position to the next; following a 

desired path is still a challenging task. Thus the problem of following a desired path 

will be investigated. Fuzzy logic controller (FLC) was found to be an efficient tool 

to control nonlinear systems; many applications of fuzzy logic control are reported 

in the various engineering fields including industrial processes and consumer 

products. Many model-based fuzzy control approaches are applied in robotics 

category such as Mamdani models, Takagi-Sugeno models, and Larsen models. The 

control of robots movements is very important step before implementing the 
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veritable systems; this requires the achievement of the computer simulation to fulfill 

the control algorithm.  

1.3 Literature review: 

Robotics is the branch of technology that deals with the design, construction, 

manufacture and application of robots. A large number of researchers have been 

proposed a large number of solutions for controlling robot manipulator, some of 

literatures are listed next.  

In 2011, Shahin, et. Al study, designed an adaptive neural network based interval 

type-2 fuzzy logic controller (ANNIT2FL), circular and handwriting type trajectory 

planning was proposed to show ability of a 3-DOF SCARA type robot manipulator. 

The researcher realized that the Cartesian trajectory tracking control of 3-DOF 

SCARA robot by using (ANNIT2FL) and PID controller. They said that the 

performances of ANNIT2FL controller has good, such that fast response and small 

errors for different rise function over circular tool trajectory control, and better than 

PID controllers performances over 3-DOF SCARA robot [1]. But the trajectory 

tracking figure shows that the error of tracking needs to be minimized.  

In 1999, Young-Wan Cho, et. al, presented in their paper a direct Model Reference 

Adaptive Fuzzy Control (MRAFC) scheme for the plant model whose structure 

represented by the Takagi-Sugeno model. The MRAFC scheme proposed to provide 

asymptotic tracking of a reference signal for the systems with uncertain or slowly 

time-varying parameters. The proposed adaptive fuzzy control scheme was applied 

to tracking control of a two-link robot manipulator to verify the validity and 

effectiveness of the control scheme. From the simulation results, they conclude that 

the suggested scheme can effectively achieve the trajectory tracking even for the 

system with relatively large amount of parametric uncertainties [2]. 
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In 2008, Rong-Jong Wai and Zhi-Wei Yang developed an adaptive fuzzy-neural-

network control (AFNNC) scheme for an n-link robot manipulator to achieve high-

precision position tracking. Takagi-Sugeno (T-S) dynamic fuzzy model with on-line 

learning ability constructed for representing the system dynamics of an n-link robot 

manipulator. Simulations of a two-link robot manipulator via (AFNNC) show the 

high performance and the high accuracy of the proposed controller [3]. 

The work presented by St.Joseph’s, in 2005 described a fuzzy position control 

scheme designed for precise tracking of robot manipulator. Simulation results have 

shown the effectiveness of the proposed scheme [4].  

In 2011, Jafar Tavoosi, et. al introduced a Neuro-Fuzzy Controller (NFC) for 

trajectory tracking control of robot arm. From the simulation results they said that 

Neuro– Fuzzy controllers provided good performance for control of robot 

manipulators [5].  

The work presented by A. Alassar in 2010 investigated modeling and control of 

robot manipulator and used PID controller to compare its results with FLC and FSC 

(which is combining between the PID controller and FLC in order to improve the 

tuning of the PID parameters). The researcher proved that the FLC is more efficient 

in the time response behavior than the PID controller and the FSC is more efficient 

to control the robot arm to reach the desired output compared to classical tuning 

methods [6]. 

In 2001, Lam, et. al presented the control of a two-wheeled mobile robot using a 

fuzzy model approach. A fuzzy controller designed based on a T-S fuzzy plant 

model of the WMR. The authors said that the proposed fuzzy controller has an 

ability to drive the system states of the WMR to follow those of a stable reference 

fuzzy model [7].  
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In 2011, Wen-Jer Chang, et. al proposed a stability analysis and controller synthesis 

methodology for an inverted robot arm system. The system modeled by a state space 

Takagi-Sugeno (T-S) fuzzy model. Simulation results shows that the perturbed 

inverted robot arm system with disturbance can be controlled by the T-S fuzzy 

controllers, and the fuzzy controller designed in this paper can stabilized the 

nonlinear inverted robot arm [8]. But the computational time needs to be minimized.   

In 2007, Nour, et. al addressed  some of the potential benefits of using fuzzy logic 

controllers to control an inverted pendulum robot system and presented the stages of 

the development of a fuzzy logic controller using a four input Takagi-Sugeno fuzzy 

model.  The main idea of their work is to implement and optimize fuzzy logic 

control algorithms in order to balance the inverted pendulum and at the same time 

reducing the computational time of the controller. The achieved results showed that 

proposed fuzzy logic controller is more robust to parameter variations when 

compared to the PID controller [9]. But the computational time of the controller is 

not acceptable.   

In 2010, M. AbuQassem developed a visual software package (Graphical User 

Interface), which simulates a 5DOF robot arm; for testing motional characteristics of 

the AL5B Robot arm. A physical interface between the AL5B robot arm and the 

GUI was designed and built. Simulation results showed that the developed system 

was identified as an educational experimental tool. The results were displayed in a 

graphical format and the motion of all joints and end-effector could be observed 

[10].  
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1.4 Problem Statement and Objective 

Robot manipulators represent complex dynamic systems with extremely variable 

inner parameters as well as the large intensive contact with the environment, an 

accurate control of such a complex system deals with the problem of uncertainty. 

The direct implementation of control in the control system of a real manipulator is 

impossible without obtained correct dynamic model. Complex dynamic systems can 

be modeled using an approach called the Lagrangian formulation. After obtaining 

the correct model, it is possible to apply the control law to make the robot traces 

desired trajectory. Infinite number of path to move from one point or position to the 

next, following a desired path is still a challenging task. Thus the problem of 

following a desired path will be investigated. 

 

1.5 Methodology 

Designing a control system that takes a desired function “sinusoidal for the two 

revolute joints, and linear function for the prismatic joint” as input and gives the 

appropriate output is the goal of this thesis. The outputs are the position and the 

velocity of the robot. Takagi-Sugeno controller will be used to perform control 

algorithm, the method used to solve this problem is: 

 

1.5.1 Obtain the Dynamic Model  

By using Lagrange Euler formulation, which is based on the concepts of generalized 

coordinates, energy and generalized force are obtained. 

 

1.5.2 Design the Fuzzy Controller  

The principal design elements in a general fuzzy logic control are Fuzzification, 

Control rule base establishment and Defuzzification. In this project, Takagi-Sugeno 

(also known as the TSK fuzzy model) fuzzy model will be adopted to construct the 
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fuzzy model of the system, due to its capability to approximate any nonlinear 

behavior. 

 

1.5.3 Design the Simulink Model 

MATLAB will be the platform to simulate the 3-DOF robot manipulator as a case 

study in this thesis. 

 

1.5.4 Simulate and Compare Results 

The thesis will compare the results accomplished by the simulation with some 

previous studies. 

 

1.6 Contribution   

This thesis aims to identify the parameters of the robot, derive the mathematical 

model of the robot, and use algorithm of Takagi-Sugeno fuzzy model to control the 

robot motion and make it to tracks a desired path accurately. The contribution of this 

thesis is to use TSK controller to control the manipulator. This study can be used as 

a document of reference for other researches that are interested in this area of 

robotics using fuzzy logic control. 

  

1.7 Thesis Structure  

A brief description for each chapter and the organization of this thesis is structured 

as follow. 

 

Chapter 2 presents, the fundamentals of the dynamic model for the manipulators and 

the common problem in robotics that known as kinematic analysis which separated 

into two parts, the forward kinematics and inverse kinematics. 
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Chapter 3 presents the approach of fuzzy logic control. Some basic concepts in fuzzy 

logic such as fuzzy sets, features of membership functions, linguistic variables, 

linguistic values, linguistic rules and the operations in fuzzy logic are presented.  

Also the four components of fuzzy logic controller, the fuzzifier, rule base, inference 

mechanism and defuzzifier are discussed. Finally the design of fuzzy logic controller 

is presented.  

 

Chapter 4 shows the simulation and results of fuzzy position control scheme for 

precise tracking of robot manipulator. 

 

Chapter 5 presents the conclusion and summarization of this work. Some 

recommendations and suggestions for future works also presented.      



  

 

 

 

   

Chapter II 

Dynamic Model Dynamic Model Dynamic Model Dynamic Model 

fffforororor    Robot Robot Robot Robot 

ManipulatorManipulatorManipulatorManipulator    
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2.1 Background:  

In Robotics, there are two main types of robots, the first is manipulator robots and 

the other is mobiles robots, in this work we aim in manipulator robots.  A 

manipulator robot is a very complex, uncertain, nonlinear system with an extremely 

variable in inner parameters. It is named according to the number of joints or the 

number of degree of freedom.  

Robot manipulator known as a device controlled by a human operator, designed to 

move materials, parts, tools, or specialized devices through variable programmed 

motions for the performance of a variety of tasks. It is created from several segments 

connected in series by joints which can be moved in a linear or rotate motion. Also it 

is created from a number of actuators allowing the motion to the link, and a number 

of sensors to measure the output. 

In general practice, the final goal of controlling a manipulator is to put the end-

effector, the link furthest from the base, at some specific coordinates. However, in 

order to put the end-effector at these coordinates, the joints have to be moved to 

some angles. A direct transformation exists between these angles and the xyz 

coordinates of the end-effector. This transformation is known as the direct 

kinematics [11]. 

The Kinematics is the science of motion that treats the subject, without regard to the 

forces that cause it. Within the science of kinematics, one studies the position, the 

velocity, the acceleration, and all higher order derivatives of the position variables. 

Hence, the study of the kinematics of manipulators refers to all the geometrical and 

time-based properties of the motion. The relationships between these motions and 

the forces and torques that cause them constitute the problem of dynamic motion 

geometry of the robot manipulator from the reference position to the desired position 

[12]. 

Tha gist of conrtoller designing is to obtain a formulation of kinematic analysis, 

which done by Denivit-Hartenberg convention. This Convention is used to select 
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coordinate frames for formulationg the kinematic problem of serial manipulator. The 

obtained formulation and frame from kinematic solution can be used for, 

formulating the dynamic model, defining the position and orientation of the current 

link with respect to previous one. In addition, it allows the desired frame to create a 

set of steps to bring the other links coordinate into corresponding with another one. 

The dynamic equations explicitly describe the relationship between force and 

motion. The equations of motion are important to consider in the design of robots, in 

simulation and animation of robot motion, and in the design of control algorithms. 

2.2 Kinematic Chains                                                                                         

Robot Kinematic refers the analytical study of the motion of a robot manipulator. 

Formulationg the suitable kinematics models for a robot mechanism is very crucial 

for analyzing the behaviour of industrial manipulators. There are mainly two types 

of problems in the kinematic of robot manipulator, the first is the forward and 

inverse kinematic.  

 

2.2.1 Froward Kinematic    

Any manipulator is created from serial of links connected in series by joints, 

revolute or prismatic, from the base frame through the end-effector. Calculating the 

position and orientation of the end-effector in terms of the joint variables is known 

as forward kinematics. To obtain the forward kinematic equations for the 

manipulator the following steps must be done;  

 

a) Obtain Denavit-Hertenberg convention equations:                              

Denavit-Hertenberg convention that uses four parameters is the most common 

method for describing the manipulator kinematic.  

These parameters are the link length−i 1a , the link twistα −1i  , the link offset
i
d , and 

the joint angleθ
i
.    
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A coordinate frame is attached to each joint to determine Denavit-Hertenberg 

parameters; the coordinate frame for the manipulator is shown in Figure (2.1).  

 

  

  

   

 

  

 

 

 

The length −i 1a  is the distance from 
i
Z and 

i 1
Z
−

measured along −i 1X  

The twistα −i 1  is the angle between−i 1Z and 
i
Zmeasured along

i
X.  

The offset 
i
d  is the distance between −i 1X and 

i
Xmeasured along

i
Z .  

The angleθ
i
 is the angle between−i 1X to 

i
X measured about 

i
Z  [3].  

 

 

 link   LinkParameters  

 i   
i
q   

i
α   

i
a   

i
d  

 1   
1
θ   0   l

1
  0  

 2   
2
θ   0   l

2
  0  

 3   d
3
  0   0   d  

Figure (2.1): Coordinate Frame for the Manipulator 

Table (2.1): Denavit-Hertenberg convention for 3-DOF Manipulator   
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b) Derivation of link transformations matrices i 1
i

T − :                                  

To construct the transform that defines frame i  relative to frame−i 1 . The general 

transformation matrix i 1
i

T − for a single link from joint 1 to joint i  is represented as a 

product of four basic homogenous transformations, 

 

i

i x i x i z i i i
                               T  = R  D a  R  Q d                 (2.1)1

1 1
( ) ( ) ( ) ( )α θ−

− −  

 

θ θ
α α θ θ
α α

−

− −

− −

       −
       −       =
       
       
              

i 1 i i

i 1 i 1 i i

i 1 i 1 i

1 0 0 0 1 0 0 a C S 0 0 1 0 0 0

0 C S 0 0 1 0 0 S C 0 0 0 1 0 0
 
0 S C 0 0 0 1 0 0 0 1 0 0 0 1 d

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
 

 

i i i 1

i i 1 i i 1 i 1 i 1 ii 1

i
i i 1 i i 1 i 1 i 1 i

C S 0 a

S C C C S S d
          T  =                      (2.2)

S S C S C C d

0 0 0 1

−

− − − −−

− − − −

 −
 − − 
 
 
  

θ θ

θ θα α α α

θ θα α α α
 

 

Where Rx and Rz present rotation, Dx and Qi denote translation, and iCθ  and iSθ are 

the short hands of iCosθ and iSinθ respectively.  

The forward kinematics of the end-effector with respect to the base frame is 

determined by multiplying all of the 1−i
iT  matrices.  

Since the matrix 
1

   
−i
iT is a function of single variable, it turns out that three of the 

above four quantities are constant for a given link “fixed by mechanical design”, 

while the fourth paramete θi for a revoulute joint and di for a prismatic joint, is the 

joint variable [13,14].  
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c) Concatenating link transformations matrix 0
i
T : 

It is very important step, to calculate the position and orientation of the end-effector 

of the manipulator. Once the link frameworks have been calculated and 

corresponding link parameters defined, developing the kinematic equation is modest 

and straightforward. From the values of the link parameters, the individual link-

transformation matrices can be computed. Then the link transformations can be 

multiplied together to find the single transformation that relates frame i to frame 0, 

the general homogenous matrix for the desired position and orientation of the end-

effector can be written as follows: 

base 0 1 2 i 1

end effector 1 2 3 i
                                  T  = T  T  T  ... T                      (2.3)−

−
 

It can be written as: 

x

ybase

end effector
z

r r r P

r r r P
                              T  =                          (2.4)

r r r P−

 
 
 
 
 
  

11 12 13

21 22 23

31 32 33

0 0 0 1

 Where rij represent the rotational elements of transformation matrix, Px, Py and Pz 

denote the elements of the position vectors. Equation (2.4) can be divided into two 

main components, where more information can be found in Appendix A 

11 12 13

21 22 23

31 32 33

r r r

                               R = r r r                                                         

r r r

                                                                        

 
 
 
 
 

x

y

z

                          (2.5)

P

                               P = P

P

 
 
 
 
 

The vector T

1 11 12 13
r  = (r ,r ,r )  represents the direction of

i
x , the vector 

T

2 12 22 32
r  = (r ,r ,r ) represents the direction of

i
y , and the T

3 13 23 33
r  = (r ,r ,r )  vector 
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represents the direction of
i
z , in the Cartesian Coordinates. The position vector 

T

x y z
P  = (P ,P ,P ) represents the vector of translation from the origin 

i
0  to the origin 

−i 10 [2,3,4,5]. 

 

Inverse Kinematic   

Inverse kinematic is concerned with the inverse problem of finding the joint variable 

in term of the end-effector position and orientation. Solving the inverse kinematics is 

computationally expensive and generally takes a very long time in real time control 

of manipulators. Mathemathically it can be expressed as:  

θ α γ φ
k

                                = f(x,y,z, , , )                                        (2.6)  

Where k = 1,2,…..,i , kθ the joint angle and α γ φ(x,y,z, , , ) represents the position and 

orientation.  

For solving the inverse kinematic for robot manipulator, the following steps must be 

followed:  

1. Obtain the general transformation matrix for the desired position and 

orientation of the robot manipulator:  

11 12 13 x

21 22 23 ybase 0 1 2 i 1

end effector 1 2 3 i
31 32 33 z

r r r P

r r r P
 T  = T  T  T  ... T  =                   (2.7)

r r r P

0 0 0 1

−
−

 
 
 
 
 
    

2. For both matrices, define: 

 

a) All elements that contain one joint variable. 

b) Pairs of elements, which contain only one joint variable.  

c) Combinations of elements contain more than one joint. 
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3. Equate it to the corresponding elements in the other matrix to form equation, 

and then solve these equations to find the values of joint variables.  

4. Repeat step (3) to identify all elements in the two matrices. 

5. In case of inaccuracy, solutions look for another one.  

6. If there is more joint variable to be found, multiply equation (2.7) by the 

inverse of T matrix for the specified links.  

7. Repeat steps (2) through (6) until solution to all joint variables have been 

found.  

8. If there is no solution to the joint variable in term of an element 

transformation matrix, it means that the arm cannot achieve the specified 

position and orientation; the position is outside the robot manipulator 

workspace. 

The general problem of inverse kinematics can be stated as follows: 

1. Given a 4X4 homogeneous transformation:  

 
 
  

R o
                              H =                                                 (2.8)

0 1
 

2. Find (one or all) solutions of equation 

0

i 1 n
                              T q q  = H                                           (2.9)( ,...., )  

Where   

0 0 i 1

i 1 n 1 1 i 2
                              T q q  = T (q  ..... T (q                     (2.10)( ,...., ) ) )−

 

As shown in Appendix A, H represents the desired position and orientation of the 

end-effector, and the task is to find the values for the joint variables 1( ,...., )iq q  so that

0
1T ( ,...., ) = Hi nq q , equation (2.9) results in twelve nonlinear equations in n unknown 

variables, which can be written as: 



 

18 

 

( ,...., )
ij 1 n ij

          T q q  = h          i = 1,2,3,   j = 1,2,....,4                  (2.11)
  

Where Tij, hij refer to the twelve nontrivial entries of 0
iT  and H respectively. (Since 

the bottom row of both 0
iT and H are (0,0,0,1), four of the sixteen equations 

represented by (2.9) are trivial [6,14].  

2.3 Dynamics   

The kinematic equations describe the motion of the robot without the consideration 

of the forces and torques producing the motion, while the dynamic equations 

describe the relationship between forces and motion. The dynamic equations of 

motion are important for, designing the robot, simulation, animation of robot motion 

and designing control algorithm. Euler-Lagrange equation is a known method to 

describe the evaluation of a mechanical system.  The Lagrangian of the system must 

be calculated in order to determine the Euler-Lagrange equations.  

 

2.3.1 Lagrange-Euler Equation 

The Lagrangian formulation is an “Energy-based” approach to dynamics [12], L  is 

the difference between the kinetic energy and the potential energy, it is provides a 

formulation of the dynamic equations of motion equivalent to those derived using 

Newton’s second law.  

                               my  = f   mg                                              (2.12)-ɺɺɺɺɺɺɺɺ

 

The Lagrangian can be written as: 
 

                                     L = K - P                                               (2.13)

Note that: 

L K L P
                                        and                              2 14             

y y y y
- ( . )

∂ ∂ ∂ ∂= =
∂ ∂ ∂ ∂ɺ ɺ

 



 

Equation (2.12) can be written as: 

d L L
                              = f       

dt y y

For any system, an application of the Euler

coupled, second order nonlinear ordinary differential equations of the form: 

                                        

The generalized force Γ

derivable from a potential function, i

system is determined by the number of so

required to describe the evolution of the system [

2.3.2 General Expression 

First, starting by driving 

noting that the kinetic energy of any rigid object consists of two terms, the first

is the translational kinetic energy due line

second term is the rotational kinetic energy due to angular velocity of the link. 

 

  

 

 

 

When a rigid body moves in a pure rotation about a fixed axis, every point of 

body moves in a circle. The centers of these circles lie on the axis of rotation. As the 

body rotates, a perpendicular from any point of the body to the axis sweeps out an 

angleθ, and this angle is the same for every point of t
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Equation (2.12) can be written as:  

d L L
                              = f                                             (

dt y y

∂ ∂−
∂ ∂ɺ

system, an application of the Euler-Lagrange equation leads to a system of 

, second order nonlinear ordinary differential equations of the form: 

i i

d L L
                                                                          

dt q q

∂ ∂− = Γ
∂ ∂ɺ

Γ  represents those external forces and torques that are n

vable from a potential function, it may be motor torque. The order 

system is determined by the number of so-called generalized coordinates that are 

be the evolution of the system [12,14].
 

General Expression for Kinetic Energy 

 an expression for the kinetic energy of manipulator, and 

noting that the kinetic energy of any rigid object consists of two terms, the first

kinetic energy due linear velocity of the center of mass, and the 

the rotational kinetic energy due to angular velocity of the link. 

When a rigid body moves in a pure rotation about a fixed axis, every point of 

The centers of these circles lie on the axis of rotation. As the 

body rotates, a perpendicular from any point of the body to the axis sweeps out an 

this angle is the same for every point of the body. 

Figure (2.2): A General Rigid Body 

ri
i 

 

                                      (2.15)
 

Lagrange equation leads to a system of n  

, second order nonlinear ordinary differential equations of the form: 

                                  2 16( . )

forces and torques that are not 

may be motor torque. The order n of the 

called generalized coordinates that are 

an expression for the kinetic energy of manipulator, and 

noting that the kinetic energy of any rigid object consists of two terms, the first term 

of the center of mass, and the 

the rotational kinetic energy due to angular velocity of the link.  

When a rigid body moves in a pure rotation about a fixed axis, every point of the 

The centers of these circles lie on the axis of rotation. As the 

body rotates, a perpendicular from any point of the body to the axis sweeps out an 
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The segment position vector i
i
r shown in Figure (2.2) can be expressed as: 

i

i c c c
                                r  = x y z                                     (2.17)1 

  
 

 i

i i i
r  = T r0 0  

In the case of revolute joint the general form of i

i
T 1−  is, 

i i i 1 i i 1 i 1

i i 1 i i 1 i 1 i 1 ii 1

i
i i 1 i i 1 i 1 i 1 i

C S C S S a

S C C C S S d
              T  =              (2.18)

S S C S C C d

0 0 0 1

− − −

− − − −−

− − − −

 −
 − − 
 
 
  

θ θ θα α

θ θα α α α

θ θα α α α

  

In the case of prismatic joint the general form of i

i
T 1−  is, 

i i i 1 i i 1

i i 1 i i 1 i 1i 1

i
i i 1 i 1 i

C S C S S 0

S C C C S 0
              T  =                     (2.19)

0 C S C d

0 0 0 1

− −

− − −−

− −

 −
 − 
 
 
  

θ θ θα α

θ θα α α

θ α α
 

The angular velocity of any point on the joint can be expressed as: 

i i

i i i i

d d
                                V r T r                               (2.20)

dt dt
0 0 1( ) ( )−= =  

i i i i i i i

i i i i i i i i
       T T T r T T T r T T T r T r              (2.21)0 1 1 0 1 1 0 1 1 0

1 2 1 2 1 2
... ... ... ...− − −= + + + +ɺ ɺ ɺ ɺ

0
ji 0 0 i

i 1 i

j

dqTd
       r 0 , T T

dt q dt
( )

∂
= = =

∂
ɺɺɺɺɺɺɺɺ

 

Then, the final expression of the angular velocity is:  

 
0 0i i

j ii i
i i j

j 1 j 1j j

dqT T
                              V r  q                   (2.22)

q dt q= =

   ∂ ∂
= =   

∂ ∂      
∑ ∑ ɺɺɺɺ  
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The notationq( ) refers to two variables; it indicates the variable 
i

θ  in the case of 

revolute joint, and it indicates the variable 
i
d  in the case of prismatic joint.  In the 

case of revolute joint 
i i
q( )θ=  

i i i 1 i i 1 i 1

i 1
i i 1 i i 1 i 1 i 1 ii

i i 1 i i 1 i 1 i 1 ii i

C S C S S a

S C C C S S dT
        =             (2.23)

S S C S C C d

0 0 0 1

− − −
−

− − − −

− − − −

 −
 − −∂ ∂  
 ∂ ∂
 
  

θ θ θα α

θ θα α α α

θ θα α α αθ θ

i i i 1 i i 1 i i

i i i 1 i i 1 i i

S C C C S a S

C S C S S aC
                       =                     (2.24)

0 0 0 0

0 0 0 1

θ θ α θ α θ
θ θ α θ α θ

− −

− −

 − − −
 − 
 
 
  

Equation (2.24) can be written as, multiplication between equation (2.23) and pre-

multiplication matrix known as 
i
Q

  

i i i 1 i i 1 i 1

i 1
i i 1 i i 1 i 1 i 1 ii

i i 1 i i 1 i 1 i 1 ii

0 1 0 0 C S C S S a

1 0 0 0 S C C C S S dT
 =       (2.25)

0 0 0 0 S S C S C C d

0 0 0 0 0 0 0 1

− − −
−

− − − −

− − − −

   − −
   − −∂    
   ∂
   
      

θ θ θα α

θ θα α α α

θ θα α α αθ

 

The derivation of the end-effector transformation matrix with respect to any joint 

variable 
j
q( )can be written as 

j j ii
j j i

j j j

T
                      T T T )=T T ... (T )...T        (2.26)

q q q

0
0 1 1 0 1 1 1

1 2 1 2
( ... − − −∂ ∂ ∂

=
∂ ∂ ∂

Then the general form is  

0 1 j 2 j 1 i 1

0 1 2 j 1 j j i

1

j

T T T QT T  ,j i
               T                             (2.27)

             0               ,j 0 q

...
( )

− − −
−

 ≤∂ =  ≥∂ 
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Define the quantity 
0

i
ij

i

T
U

q

∂
≡

∂
 which expresses the movement effect of joint j on 

the segment 

0 j 1

j j i

ij

T QT  j i
                       U                                              (2.28)       

   0        j i

− ≤=  ≥
replacing the notation 

ij
U in equation (2.22) 

i
i

i ij j i
j 1

                                      V U q r                                     (2.29)
=

 
=  
 
∑ ɺɺɺɺ

 

In the case of prismatic joint 
i i
q d( )=  

i i i 1 i i 1

i 1
i i 1 i i 1 i 1i

i i 1 i 1 ii i

C S C S S 0

S C C C S 0T
        =                      (2.30)

0 C S C dd d

0 0 0 1

− −
−

− − −

− −

 −
 −∂ ∂  
 ∂ ∂
 
  

θ θ θα α

θ θα α α

θ α α

0 0 0 0

0 0 0 0
                      =                                                      (2.31)

0 0 0 1

0 0 0 0

 
 
 
 
 
  

Equation (2.31) can be written as, multiplication between equation (2.30) and pre-

multiplication matrix known as 
i
Q

 

i i i 1 i i 1

i 1
i i 1 i i 1 i 1i

i i 1 i 1 ii

0 0 0 0 C S C S S 0

0 0 0 0 S C C C S 0T
   =                      (2.32)

0 0 0 1 0 C S C dd

0 0 0 0 0 0 0 1

− −
−

− − −

− −

   −
   −∂    
   ∂
   
      

θ θ θα α

θ θα α α

θ α α
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The main advantage of using the pre-multiplication matrix is to avoid the repeated 

derivation of the transformation matrixi 1
i
T − .  

 Define the quantity ij

ijk

k

U
U

q

∂
≡

∂
 which expresses the velocity intersection effect 

which created by the different velocities of the joints. This quantity can be calculated 

according to the form 

0 j 1 k 1

j 1 j k 1 i

ij 0 k 1 j 1

ijk k 1 k j 1 j i

k

T QT T     ,i k j
U

               U T QT QT   ,i j k                  (2.33)
q

             0             ,i k or i k

− −
− −

− −
− −

 ≥ ≥
∂ 

≡ ≥ ≥∂  ≤ ≤


 

The kinetic energy can be expressed as:        

T T1 1
                                      mv v   w Iw                          (2.34)

2 2
= +

 Where m is n x n matrix called manipulator mass matrix, v  and w  are the linear and 

angular velocity vectors, and I is a symmetric 3 X 3 matrix called the Inertia Tensor 

[12,14,15]. 

a) Inertia Tensor  

It is necessary to express the inertia tensor, I and it is relative to the inertial reference 

frame and depends on the configuration of the object. The form of inertia tensor is 

xx xy xz

yx yy yz

zx zy zz

I I I

                              I   I I I                                     (2.35)

I I I

 
 

=  
 
 

 Where 

2 2

xx

2 2

yy

2 2

zz

                              I  = y z x y z  dx dy dz

                              I  = x z x y z  dx dy dz                         (2.36)

                              I  = x y

( ) ( , , )

( ) ( , , )

( )

ρ

ρ

+

+

+

∫∫∫

∫∫∫

x y z  dx dy dz( , , )ρ∫∫∫

  

K 
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xy yx

xz zx

yz zy

                           I  = I  = - xy x y z  dx dy dz

                           I  = I  = - xz x y z  dx dy dz                    (2.37)

                           I  = I  = - yz x y z

( , , )

( , , )

( , , )

ρ

ρ

ρ

∫∫∫

∫∫∫

 dx dy dz∫∫∫

 

Where ρ x y z( , , )  is the mass density, the diagonal elements 
xx yy zz
I I I, , are called the 

principal moment of Inertia, and the elements 
xy yx
I I  etc., ...  are called the cross 

product of Inertia. The form general for computing the matrix of inertia tensor is: 

xx yy zz

xx xz i i

xx yy zz

xy yz i i
i

xx yy zz

xz yz i i

i i i i i i

I I I
I I m x

2
I I I

I I m y
       J            (2.38)2

I I I
I I m z

2
m x m y m z m

 − + +
− − − 

 
− + − − − =

 + −
 − − −
 
 − − − 

The vector 
i i i
x y z( , , ) is the vector of center of mass.

 

b) Kinetic energy for an n-link Robot  

The kinetic energy of link i  of mass 
i
m is expressed as: 

n
T T T T

i vi vi wi i i i wi
i 1

1
        K = q mJ q J q J q R q I R q J q  q             (2.39)

2
( ) ( ) ( ) ( ) ( ) ( )

−

 + ∑ɺ ɺ

 

Then the kinetic energy of manipulator is:  

T1
                               K  = q D q q                                            (2.40)

2
( )ɺ ɺ

 

Where J q( )  is the Jacobian matrix and D q( ) is a symmetric positive definite matrix 

is called inertia matrix [12,14,16]. 
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2.3.3 General Expression for Potential Energy 

In the case of rigid dynamics, the source of potential energy is gravity. The potential 

energy of thi  link can be computed by assuming that the mass of the object is 

concentrated at its center of mass, it is expressed by:  

T

i ci i
                              P  = g r m                                                  (2.41)

Where, g is the vector of gravity, and 
ci
r the coordinate of the center of mass of linki

then the potential energy of manipulator is:  

n n
T

i ci i
i 1 i 1

                              P = P  = g r m                                    (2.42)
= =
∑ ∑

 

The potential energy is a function of generalized coordinates not their derivative, the 

potential energy depends on the configuration of robot not on its velocity [14]. 

 

2.3.4 Motion Equations  

After obtaining the total kinetic and potential energy, then the Euler-Lagrange 

equation can be written as:  

ij i j
ij

1
                               L = K - P = d q q q  - P(q)                    (2.43)

2
( )∑ ɺ ɺɺ ɺɺ ɺɺ ɺ

 By taking the derivative of equation (2.25)  

kj j
jk

kj j k

k

L
                               = d q

q

and                                                                                            (2.44)              

d d
              = d q  + d

dt q dt

∂
∂

∂
∂

∑ ɺɺɺɺ
ɺɺɺɺ

ɺɺɺɺɺɺɺɺ
ɺɺɺɺ

kj

j j kj j i j
i j j ij i

d
q  = d q  q q  

q

∂
+

∂∑ ∑ ∑ ∑ɺ ɺɺ ɺ ɺɺ ɺɺ ɺ ɺɺ ɺɺ ɺ ɺɺ ɺɺ ɺ ɺ

  

Also  

ij

i j
ijk k k

dL 1 P
                                =  q q                             (2.45)

q 2 q q

∂∂ ∂−
∂ ∂ ∂∑ ɺ ɺɺ ɺɺ ɺɺ ɺ
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Thus the Euler-Lagrange equation can be written: 
 

kj ij

kj j i j k
j ij i k k

d d1 P
               d q  + q q  -  =                       (2.46)

q 2 q q

 ∂ ∂ ∂ − Γ ∂ ∂ ∂  
∑ ∑ɺɺ ɺ ɺɺɺ ɺ ɺɺɺ ɺ ɺɺɺ ɺ ɺ

The term  

 
kj kj ki

i j i j
i j i ji i j

d d d1
                     q q q q

q 2 q q

and                                                                                          (2.47)

               

, ,

  ∂ ∂ ∂   = +   ∂ ∂ ∂      
∑ ∑ɺ ɺ ɺ ɺɺ ɺ ɺ ɺɺ ɺ ɺ ɺɺ ɺ ɺ ɺ

kj ij kj ijki
i j i j

i j i ji k i j k

d d d dd1 1
      q q  = q q

q 2 q 2 q q q, ,

  ∂ ∂ ∂ ∂∂   − + −   ∂ ∂ ∂ ∂ ∂      
∑ ∑ɺ ɺ ɺ ɺɺ ɺ ɺ ɺɺ ɺ ɺ ɺɺ ɺ ɺ ɺ

Put 

  

kj ijki
ijk

i j k

d dd1
                               c  =                             (2.48)

2 q q q

 ∂ ∂∂ + − ∂ ∂ ∂  
Then: 

n
kj ijki

kj ijk i
i i j k

d dd1
                       c  = c q q =                     (2.49)

2 q q q
( )

 ∂ ∂∂ + − ∂ ∂ ∂  
∑ ɺɺɺɺ

The term in equation (2.48) is called Christofell symbols, and then the Lagrange-

Euler equations can be written as: 

 

kj j ijk i j k
j ij k

P
          d q q  + c q q q  +  =          k=1,2,...,n             (2.50)

q
( ) ( )

∂ Γ
∂∑ ∑ɺɺ ɺ ɺɺɺ ɺ ɺɺɺ ɺ ɺɺɺ ɺ ɺ

 

There are three types of terms. The first one involves the second derivative of 

generalized coordinates. The second type involves the first derivative of generalized 

coordinates; this type is classified into two terms, terms involving a product of the 

type 2
i
qɺɺɺɺ are called centrifugal while those involving a product of the type 

i j
q qɺ ɺɺ ɺɺ ɺɺ ɺ where 

i j≠  are called coriolis terms. The third type is those involving only the generalized 

coordinates.  
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Finally, the form of Euler-Lagrange Equations is expressed as:  
 

                              D q J q C(q,q)q +f(q)+ g(q) =               (2.51)( ) + + Γ ɺɺ ɺ ɺ ɺɺɺ ɺ ɺ ɺɺɺ ɺ ɺ ɺɺɺ ɺ ɺ ɺ

Where 

Γ : Vector of dimension (n X 1), called the vector of generalized forces applied on 

the joints. 

q : Vector of dimension (n X 1), called the vector of joints variables of the 

manipulator. 

qɺɺɺɺ : Vector of dimension (n X 1), called the vector of angular velocity.  

qɺɺɺɺɺɺɺɺ : Vector of dimension (n X 1), called the vector of angular acceleration.  

D J q( ) +  : Matrix of dimension (n X n), called the matrix of inertia, J q( ) is the 

motor proper inertia.     

h q q( , )ɺɺɺɺ : Vector of dimension (n X 1), called the vector of centrifugal and coriolis. 

f q( )ɺɺɺɺ : Vector of dimension (n X 1), called the vector of friction coefficients.  

g q( ): Vector of dimension (n X 1), called the vector of gravity.
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3.1 Background: 

The fuzzy set theory was put earliest in 1965 by Professor Zadeh when he presented 

his paper on fuzzy sets and introduced the concept of linguistic variable. 

Fuzzy Logic is a logic system that uses imprecision, was first invented as a 

representation scheme and calculus for uncertain or vague notions. It is basically a 

multi-valued logic that allows more human-like interpretation and reasoning in 

machines by resolving intermediate categories between notations, such as true/false, 

hot/cold etc, used in Boolean logic. This was seen as an extension of the 

conventional Boolean Logic that was extended to handle the concept of partial truth 

or partial false rather than the absolute values and categories in Boolean logic.  

Fuzzy logic categories objects into sets which are described by linguistic variables 

such as long, fast, cool, heavy, middle-aged and so on. Objects can have varying 

degrees of membership of such fuzzy sets, ranging from a crisp “definitely not a 

member, denoted by 0” to a crisp definitely a member, denoted by “1”. The crucial 

distinction is that between these crisp extremes, objects can have less certain degree 

of membership such as “not really a member, perhaps denoted by a “0.1” and “pretty 

much a member, 0.9 possibly” [17]. 

Fuzzy Logic can be applied to control, thus assumes the name Fuzzy Control. Fuzzy 

Control is made up of control rules which simulate those used by humans when they 

control or operate the machines. It can be especially effective way of controlling 

non-linear systems when expert human knowledge of the system is available. Many 

researches and applications have been performed since Mamdani and his colleague 

presented the first FLC work [18].  

Fuzzy logic uses rules with antecedents and consequents to produce outputs from 

inputs. The antecedents are the inputs that are used in the decision-making process 

or the “IF” parts of the rules, while the consequents are the implications of the rules 

or the “THEN” parts [17]. 
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As mentioned before, Fuzzy Control applies fuzzy logic to the control of process by 

utilizing different categories, usually the “Error” and the “Change of error”, for the 

process state and applying rules to decide a level of output [17,19]. 

 

In modern, the classical control systems have been replaced by the FLC, which 

means that the IF-THEN rules and fuzzy membership functions replaces the 

mathematical models to control the system, the main advantage of fuzzy controllers, 

especially when the obtainment of the mathematical models of the system may be 

too complex.  

 

When designing a Fuzzy Logic Controller (FLC) expert knowledge of the process to 

be controlled can be used to design the membership functions and rule base, but 

unfortunately there is no general procedure for designing a FLC.  

 

3.2 Fundamentals on Fuzzy Logic: 

Classical logic deals with prepositions (conclusion or decision) that are either true or 

false. The main content of classical logic is the study of rules that allow new logical 

variables to be produced as function of certain existing variables. While the main 

idea in fuzzy set theory is that the element has a degree of membership to a fuzzy set 

[11,20]. An introduction to fuzzy set theory and some definitions will be discussed. 

 

3.2.1 Fuzzy Sets:  

Fuzzy set theory provides means for representing uncertainties; it uses linguistic 

variables, rather than quantitative variables to represent imprecise concepts. A fuzzy 

set is a set containing elements that have varying degrees of membership in the set. 

The elements in fuzzy set, because their membership need not be complete, can also 

be members of other fuzzy sets on the same universe [21]. 
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If U is a collection of objects denoted generically by x, then a fuzzy set A in U 

(universe of discourse) is defined as a set of ordered pairs: 

( ){ }A
                              A = x x x U                                     

                                                                                                 (3.1) 

                

, ( ) /µ ∈

A
                       x 0 1( ) [ , ]µ ∈

   

Where 
A
x( )µ is the membership for the fuzzy set A. The output of the membership 

for a given input is called degree of the membership. 

The classical set theory is built on the fundamental concept “set” of which an 

individual is either a member or not a member.  

As an example, anyone between 175 and 190 cm is considered as tall, in crisp set the 

membership function is defined as:  

A

1 if tall 175 190
                              x  =                          (3.2)

0  if tall 175 190

,
( )

,
µ

  ∈  
 

 ∉   

 

 But in fuzzy set, the membership function is defined as a function of the variable 

(tall) and according to the definition in equation (3.1); the membership function is 

defined as: 

 
A

                               x  = func(tall)                                           (3.3)( )µ

 

In classical, to indicate that c is a subset of S; we writec S⊂ , that means all the 

elements of the set s are contained in the set S, in fuzzy set theory c is a subset of S 

if:

 
c S

                               x x                                                  (3.4)( ) ( )µ µ≤
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In classical theory an empty set is denoted byφ , that means the set contains no 

element, but in fuzzy theory the empty set S is defined as 

c
                               x  = 0   x S                                         (3.5)( )µ ∀ ∈
 

that means if c is a fuzzy set then no element in S has a member in c [6,21]. 

 

3.2.2 Features of Membership Function:  

A membership function for a fuzzy set A on the universe of discourse X is defined as 

A
X 0 1: ,µ  →    , each element of X is mapped to a value between 0 and 1. This 

value, called membership value or degree of membership, quantifies the grade of 

membership of the element in X to the fuzzy set A. Membership functions allow us 

to graphically represent a fuzzy set. 

 

 

 

   

 

 

 

 

The membership function is said to be normal if one element at least or more in the 

universe has a value 1; the center of a fuzzy set is the mean value of all points that 

achieves the maximum value of
A
x( )µ . The height of fuzzy set is the largest value of

A
x( )µ . Membership Functions characterize the fuzziness of fuzzy sets.  

Figure (3.1): Some typical membership functions 
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It is essentially embodies all fuzziness for a particular fuzzy set. Its description is 

essential to fuzzy property or operation [6,20,21]. 

 

3.2.3 Linguistic Variables: 

Linguistic variables are the variables expressed as human language, which 

represents imprecise information. Linguistic expressions are needed for the inputs 

and outputs and the characteristics of the inputs and outputs [6,19].  

For example, if we study the case of the error of the angle of the pendulum using the 

fuzzy logic, then the error is linguistic variable that takes different fuzzy sets, as 

shown in figure (3.2)     

   

 

 

 

 

 

It is clear that the linguistic variables can be naturally represented by fuzzy sets and 

logical connectives “and, or” of these sets. Each element of figure (3.2) is defined as 

a mathematical function.  

For example, the statement “error is positive small” can represents the situation 

where the pendulum is at a significant angle to the left of the vertical.  

Many books and papers used the notation of linguistic variables in the form:  

{ }x                               X N X U S                                            (3.6), ( ), ,
 

Where, X designates linguistic variable name such as error and change of error N(X) 

Figure (3.2): Example of Linguistic Variables 
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is the set of all linguistic names of the linguistic variable, like “Negative Large, 

Negative Small, Zero, Positive Small and Positive Large” Sx is the meaning of the 

variable that returns to the linguistic variable, such as the part “Positive Large” 

means the linguistic variable “error” is “Positive Large”. Finally, U is the universe 

of discourse of the variables where X takes a crisp value [6,18,20]. 
 
 

3.2.4 Linguistic Values 

Just as  

i
u  and  

i
y  take on values over each universe of discourse 

i
U  and 

i
Y  

respectively, linguistic variables take “Linguistic values” that are used to describe 

characteristics of the variables [19]. 

Let n

i
U  denote the thn  linguistic value of the linguistic variable  

i
u  defined over the 

universe of discourse  
i
U . If we assume that there exist many linguistic values defined 

over  

i
U , then the linguistic variable 

i
u  takes on the elements from the set of 

linguistic values denoted by:  

{ } n

i i i
                              U  = U n 1 2 N                             (3.7): , ,...,=  

Linguistic values are generally descriptive term such as “Positive Large”, “ Zero”, 

and “Negative Big”. For example, if we assume that the linguistic variable denotes 

“Speed” then we may assign the linguistic values as, “
1
U= Slow”, “

2
U= Medium” and 

“
3
U= Fast” [6,18,20,21]. 

 

3.2.5 Linguistic Rules:  

As well as specifying the membership functions, the rule base also needs to be 

designed. The mapping of the inputs and outputs for a fuzzy system is in part 

characterized by a set of condition (action rules), usually the inputs of the fuzzy 
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system are associated with the premise, and the outputs are associated with the 

consequent.  

The If-Then rule takes the form, IF  premise THEN  consequent [17,19,22].  

As example, for two inputs error e and the change of error e∆  and one output uwith 

a universe of discourses E E, ∆ and U respectively, and the “IF -THEN ” rule has the 

form: 

                  

1 1 1 1

2 2 2 2

n n n n

      R   IF e is A  AND e is B  THEN u is C

      R  IF e is A  AND e is B  THEN u is C

                   ...   ...   ...   ...

     R  IF e is A  AND e is B  THEN u is C

:

:

:

∆
∆

∆

 

More accurate, if we choose the membership of the error and the change of error 

“Negative Large, Zero, Positive Large”, then we can write the rules as follow:  

∆
∆

∆

1

2

n

R  IF e is NL AND e is NL THEN u is NL

R  IF e is NL AND e is ZE THEN u is NL

                ...   ...   ...   ...

R  IF e is PL AND e is PL THEN u is PL

:

:

:  

The experience of the human controller is usually expressed as linguistic “IF-

THEN” rules that state in what situations which actions should be taken [23]. 

 

3.2.6 Operation on Fuzzy Sets: 

Professor Zadah suggests some operations on fuzzy set theory like, intersection, 

union and complement. 

 

3.2.6.1 Intersection “AND”  

The intersection of fuzzy sets A and B which are defined on the universe of 

discourse
i
U is a fuzzy set denoted by A B∩  with a membership function defined by 

the minimum of the membership values as in:  
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{ }C A B A B
                              u u u u                

                                                                                            (3.8)

                              

( ) ( ) min ( ), ( )µ µ µ µ∩= =

C A B
    or u u u( ) ( ) ( )µ µ µ= ∩

 

In fuzzy logic, intersection is used to represent the “and” operation. For example, if 

we use minimum to represent the “and” operation, then the shaded membership 

function in Figure (3.3) is 
A B

µ ∩ which is formed from the intersection of the two 

fuzzy sets A and B [19,20,21]. 

 

  

 

 

 

 

3.2.6.2  Union “OR”  

The union of fuzzy sets A  andB , which are defined on the universe of discourseU , 

is a fuzzy set denoted byA B∪ , with a membership function defined by the 

maximum of the membership values as in:   

{ }C A B A B
                              u u u u                

                                                                                            (3.9)

                              

( ) ( ) max ( ), ( )µ µ µ µ∪= =

C A B
    or u u u( ) ( ) ( )µ µ µ= ∪

 

In fuzzy logic, union is used to represent the “Or” operation. For example, if we 

use maximum to represent the “Or” operation, then the lined membership function 

in figure (3.4) is 
A B

µ ∪ which is formed from the intersection of the two fuzzy sets 

A and B [19,20,21]. 

Figure (3.3): A membership function for the Intersection of two Fuzzy sets  
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3.2.6.3 Complement  

The complement “not” of a fuzzy set A with a membership function 
A
u( )µ  has a 

membership function given by:  

A A
                               u 1 u                                         (3.10)( ) ( )µ µ= −  

 

  

 

 

 

The dashed membership function is the complement of the lined membership 

function [19,20,21]. 

3.2.6.4 Cartesian product 

The fuzzy Cartesian product is used to quantify operations on many universes of 

discourse. If 
1 2 n
A A A, ,..., are fuzzy sets defined on the universes of discourse

1 2 n
U U U, ,..., respectively, their Cartesian product is a fuzzy set denoted by 

1 2 n
A A A...× × × with a membership function defined by  

Figure (3.4): A membership function for the Union of two Fuzzy sets  

Figure (3.5): A membership function for the complement of Fuzzy sets  
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1 2 n 1 2 nA A ... A 1 2 n A 1 A 2 A n
        u u u u u u                (3.11)( , , ..., ) ( ) ( ) ... ( )µ µ µ µ× × × = × × ×

 

   [10,11,12]. 

 

3.2.6.5 Algebraic product 
 

The algebraic product of two fuzzy sets A and B is defined as [10]  

( ) ( ){ }A B
                               AB u u u u                          (3.12). , ( ) . , ( )µ µ=

 

 

3.2.6.6 Compositional Rule of Interface  

If R is a fuzzy set relation U V× and A is a fuzzy set in U, then the fuzzy set B in V 

includes A is given by: [6,19] 

                                       B=A*R                                           (3.13)  

Which read, A composition R. There are two cases in compositional rule; the first is 

maximum-minimum (max-min) operation: 

{ }A A U A B
                               u u v                 (3.14)( ) max min( ( ), ( ))µ µ µ∈=  

The other case is maximum-product (max-product) operation:  

{ }A A U A B
                               u u v                       (3.15)( ) max ( ) ( )µ µ µ∈= •  

 

3.3 Structure of Fuzzy Logic Controller  

The input and the output of the Fuzzy logic controller are non-fuzzy (crisp) values. 

FLC consists of four main components, the fuzzifier, rule base, inference mechanism 

and defuzzifier. The fuzzifier converts the crisp input to a linguistic variable using 

the membership functions stored in the fuzzy knowledge base. The rule base holds 

the knowledge, in the form of a set of rules, of how best to control the system. The 

inference mechanism determines the extent to which each rule is relevant to the 

current situation as characterized by the input and draws decisions using the current 
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inputs and the information in the rule-base. And the defuzzifier converts the fuzzy 

output of the inference mechanism to crisp using membership functions into crisp 

values [19,20,21,24,25]. 

 

3.3.1 Fuzzification 

Fuzzification is the process of making a crisp quantity fuzzy. It is scale the input 

crisp value into a normalized universe of discourse U, then converts each crisp input 

to a degree of membership function. For example, the fuzzifier converts the input 

value 10 into a linguistic variable. For each input and output variables selected, 

determined number of membership functions and a qualitative category for each one 

of them, must be defined. As shown in figure (3.1) the shape of these membership 

functions can be diverse.  

 

3.3.2 Rule Base  

Once the input and output variables and memberships are defined, we have to design 

the rule-base or “decision matrix of the fuzzy knowledge-base”. Rule base is the core 

of FLC; it is combined human expertise with a series of logical rules for using the 

knowledge. The rules connecting the input and the output are based on the 

understanding of the system. It composed of “expert” If (antecedents) Then 

(conclusion) rules. These rules transform the input variables to an output that, the 

input combined by “And” or “Or” operator. Depending on the number of 

memberships for the input and the output variables, it will be able to define more or 

less potential rules. The easier case is a rule-base concerning only one input and one 

output variable, the more variables the more rules have to define in order to make 

the inference reliable [26,27,28,29].  

Once a variable is fuzzified, it takes a value between 0 and 1 indicating the degree of 

membership to a given membership of that specified variable. The degree of 
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membership of the input variables has to be combined to get the degree of 

membership of the output variable.  

Rule base takes conditional statement that have the following form:  

                               If  e is PS, And e is NL Then u is NS             (3.16)∆  

The most popular methods to form the If-Then rules are, Mamdani and Takagi, 

Sugeno & Kang (TSK). The two methods have the same antيecedent evaluation of 

the If-Then statement. But the main different between the two is the consequent, 

where the consequent in Mamdani depends on the designer or the human operator, 

but in TSK, the consequent is a function of real value.  

 

3.3.3 Inference Mechanism 

Fuzzy inference mechanism process is obtaining the relevant control rule at the 

current time then decides the behavior of the output. Fuzzy inference system uses a 

collection of fuzzy membership functions (MFs) and rules; it uses If-Then fuzzy 

rules to convert the fuzzy input to the fuzzy output. It consist of three parts, a rule 

base containing a selection of fuzzy rules, a data base defining the fuzzy values used 

in fuzzy rules, and a reasoning mechanism [16], figure (3.6) describes the model of 

the inference mechanism [19,21,24]. 

 

 

 

  

      

 

 

The value of membership function for the rules is calculated using fuzzy inference 

mechanism “Implication”. There are several ways used to implement fuzzy 

Figure (3.6): Model of Fuzzy Inference Processing    

Rule Base 

Fuzzy Reasoning  

Input  Output  

Data Base 
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inference methods, the most used are Mamdani, Larsen, and Takagi, Sugeno & Kang 

(TSK). Those are briefly described as follow: 

3.3.3.1 Mamdani FIS “max-min” 

A linguistic model that describes the system by means of linguistic If-Then rules 

with fuzzy preposition in the antecedent as well as in the consequent, implication is 

modeled by means of minimum operator and the resulting output membership 

functions are combined using maximum operator. 

   

  

   

 

 

 

 

3.3.3.2 Larsen FIS “max-product” 

Implication is modeled using the product operator, while preposition are defined by 

the maximum operator.   

 

 

 

 

 

 

Figure (3.7): Fuzzy Inference Processing using Mamdani Model    

Figure (3.8): Fuzzy Inference Processing using Larsen Model    



 

3.3.3.3 Takagi, Sugeno & Kang (TSK) FIS

Developed to reduce the number of rules required by the Mamdani model. It 

replaces the fuzzy sets, then part, of Mamdani rule with function or equation of input 

variables. Sometimes the function 

is avoids the time-consuming method of defuzzification necessary in the Mamdani 

model.  

     

 

 

 

 

 

 

 

3.3.4 Defuzzification 

It is the final step in FLC

be sent to the plant as a control signal

from the combination of input, output membership functions and fuzzy rules is still a 

vague or fuzzy element, and this process is called fuzzy inference. To make that 

conclusion or fuzzy output available to real application, a difuzzification process is 

needed. A number of defuzzif

of gravity “COG”, mean of maximum “

 

 

 

Figure (
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Takagi, Sugeno & Kang (TSK) FIS 

reduce the number of rules required by the Mamdani model. It 

replaces the fuzzy sets, then part, of Mamdani rule with function or equation of input 

. Sometimes the function is a constant; overall output via

consuming method of defuzzification necessary in the Mamdani 

It is the final step in FLC, it means convert the fuzzy set into a crisp values that can 

o the plant as a control signal. The conclusion or control output derived 

from the combination of input, output membership functions and fuzzy rules is still a 

vague or fuzzy element, and this process is called fuzzy inference. To make that 

sion or fuzzy output available to real application, a difuzzification process is 

A number of defuzzification strategies exist but the most popular are

”, mean of maximum “MOM” and weighted average “

(3.9): Fuzzy Inference Processing using TSK Model

 

reduce the number of rules required by the Mamdani model. It 

replaces the fuzzy sets, then part, of Mamdani rule with function or equation of input 

output via is always crisp. It 

consuming method of defuzzification necessary in the Mamdani 

, it means convert the fuzzy set into a crisp values that can 

. The conclusion or control output derived 

from the combination of input, output membership functions and fuzzy rules is still a 

vague or fuzzy element, and this process is called fuzzy inference. To make that 

sion or fuzzy output available to real application, a difuzzification process is 

ication strategies exist but the most popular are, center 

average “WT” [30]. 

using TSK Model    
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3.3.5 Fuzzy Controller Design  

Fuzzy control system design essentially amount to: 

1. Identifying the fuzzy controller input and output. 

2. Partitioning the universe of discourse or the interval spanned by each variable 

into a number of subsets, assigning each a linguistic label.  

3. Choosing the preprocessing that is needed for the controller inputs and 

outputs.  

4. Designing each of the four components “Fuzzification, Knowledge base, 

Inference engine, and Defuzzification” of the fuzzy controller, as shown in 

figure 3.13.  

5. Validate the model, if it does not meet the expected performance; iterate on 

the above design steps. 

   

 

 

 

 

 

It should be noted that the success of designing, depends on the problem at hand, 

and the extent and quietly of the available knowledge. For some problems, the 

knowledge-base design may lead fast, while for others it may be a very time-

consuming. There for it is useful to combine the knowledge based design with a 

data-driven tuning for the model parameters.      

Figure (3.10): Four Components of the Fuzzy Logic Controller    
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3.3.6 Fuzzy Controller for 3-DOF Robot  

3.3.6.1 3-DOF Robot  
The 3-DOF configuration, shown in figure (3.11), is a popular manipulator which, as 

its name suggests, is tailored for assembly operations. The class was proposed as a 

means to provide motion capabilities to the end-effector that are required by the 

assembly of printed-board circuits and other electronic devices with a flat geometry 

[15].  

It has two parallel revolute joints (allowing it to move and orient in a plane), with a 

third prismatic joint for moving the end-effector normal to the plane. The main 

advantage is that the first two joints don't have to support any of the weight of the 

manipulator or the load. In addition, the base of the manipulator can easily house the 

actuators for the first two joints. The actuators can be made very large, so the robot 

can move very fast.  

 

 

 

 

 

 

 

 

 

A 3-link robot manipulator will be represented by a mathematical model “as shown 

in Appendix A” with three input driving torques “tau” and six output variables, three 

angle displacements for the three joints, and three angular velocities, in practice the 

final goal of controlling a manipulator is to put the end-effector at some specific 

Figure (3.11): Side view and Top view for 3-link Manipulator    
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positions. These positions are previously determined by the operator to achieve 

specified functions.  

           

 

 

 

3.3.6.2  Designing the Fuzzy Controller  

a) Identifying the fuzzy controller input and output. 

In the proposed FLC, the measured “Error” and “Derivative of error” of the 

position are the inputs of FLC. They are scaled to some numbers in the interval  

[-90 90], these values indicate to the angle of rotation, and are mapped to 

linguistic variables by fuzzification operator. The values of linguistic variables 

are composed of linguistic terms, Negative Large “NL”, Negative Small “NS”, 

Zero “ZE”, Positive Small “PL”, and Positive Large “PL”.  

While the FLC output is the position which scaled in the interval [-90 90], and 

mapped to linguistic variables, the values of linguistic variables are composed of 

linguistic terms, Negative Large “NL”, Negative Small “NS”, Zero “ZE”, Positive 

Small “PL”, and Positive Large “PL”, which are all fuzzy sets as shown in figure 

 (3.15). The Fuzzy Control Model used here is Takagi and Sugeno (TSK) model. 

Figure (3.12): Three-link SCARA Manipulator    
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Figure (3.13) shows the memberships of the position error, which indicate to the 

error of angle of rotation.    

 

 

 

 

 

 

 

Figure (3.14) shows the memberships of the position derivative of error, which 

indicate to derivative of error of the angle of rotation.    

 

 

 

 

 

 

 

 

 

 

 

 

Figure (3.13): Membership Functions for the input Variable Position Error   

Figure (3.14): Membership Functions for the input Variable Position Derivative of Error     

Figure (3.15): Membership Functions for the Output Variable Position     
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Figure (3.15) shows the memberships functions for the output, which indicate to the 

exact position of the each link. For example if the error of the position is positive 

small and the change of error is zero then the link will be at the position 0.0431 at 

the Cartesian coordinates.     

 

b) Recommended Control Rule Base.  

The fuzzy rule is represented by a sequence of the form If-Then, leading to 

algorithms describing what action or output should be taken. In the proposed 

FLC, twenty-five rules recommended to achieve the tracking. Fuzzy control rules 

for the designed controller are listed in table (3.1). For example, a rule base has 

the following form:  

   If (Error is PS) and (D-Error is ZE) then (Position = 0.0431)        (3.19)  

 

Error /  
D-Error  

NL NS ZE PS PL 

NL NL NL NL NS ZE 

NS NL NL NS ZE PS 

ZE NL NS ZE PS PL 

PS NS ZE PS PL PL 

PL ZE PS PL PL PL 

 

The fuzzy control rules of the proposed controller have been derived experimentally 

from studying and observe the response of the process to be controlled. The twenty-

five rules have been derived by the multiplication of the numbers of membership 

functions of the two inputs.   

Table (3.1): Fuzzy Control Rules     
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Figure (3.16) shows the block diagram of the fuzzy inference process, that is the 

process of formulating the mapping from a given input to an output using fuzzy 

logic.    

 

 

 

 

 

 

 

 

3.3.6.3  Summary   

A review of the fundamental of fuzzy sets, fuzzification, fuzzy rules, fuzzy inference 

and defuzzification is discussed in this chapter. These operations are described using 

a three-link robot manipulator.  The effectiveness of the control system depends on 

the system response which is achieved via Matlab Simulation.   

Figure (3.16): Fuzzy Inference Block     



  

 

 

 

Chapter IV 

    

SimulationSimulationSimulationSimulation    

    AndAndAndAnd    Results Results Results Results   
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4.1 Introduction 
This chapter presents simulations and results for the manipulator, SIMULINK 

MATLAB is used to simulate and evaluate the performance of the proposed 

controller that applied on the robot. Dynamic model of the three-DOF robot 

manipulator has been utilized in the synthesis process of control. 

 

4.2 MATLAB SIMULINK  

MATLAB " Matrix Laboratory" is a commercial package which operates as an 

interactive programming environment. It is a high-level language and interactive 

environment for numerical computation, visualization, and programming which 

created by Math-work Inc. 

SIMULINK is a block diagram environment for multi-domain simulation and 

Model-Based design. It supports system-level design, simulation, automatic code 

generation, and continuous test and verification of embedded systems. 

This part presents the SIMULINK diagrams for the manipulator and the designed 

controller; figure (4.1) shows MATLAB embedded function, which let to compose a 

MATLAB function within a SIMULINK model, of the nonlinear robot manipulator, 

as seen the inputs of the embedded function are the angles, the positions and the 

velocities of the three joints, while the outputs are the accelerations of the three 

joints.  
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Figure (4.2) shows MATLAB embedded function of the nonlinear feedback system, 

which allows applying the control low.   

    

Figure (4.1): Embedded MATLAB Function of the Nonlinear System     

Figure (4.2): Embedded MATLAB Function of the Nonlinear Feedback System     
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Figure (4.3) depicts the block diagram of the subsystem of the three-link robot with 

fuzzy position controller.  

The gains (G1,G3,G5) are the gains of the errors of the three-links, while the gains 

(G2,G4,G6) are the gains of the changes of errors. The gains (G7,G8,G9) are the 

gains of the designed fuzzy controller. 

The tracking curves for positions “Tracking 1, Tracking 2, and Tracking 3” and 

velocities “Velocity tracking 1, Velocity tracking 2, Velocity tracking 3” can be 

shown in the scoops which are named to signify the display of each one.    

Also the errors in positions and velocities are shown in figure (4.3) to define the 

difference between the desired and the actual trajectories. The scoops which display 

the errors are named as, “Error Position 1, Error Position 2, and Error Position 3”, 

 “Error Velocity 1, Error Velocity 2, and Error Velocity 3” 

  

The desired trajectories are named as “Desired Function 1, Desired Function 2, 

Desired Function 3”, finally the controllers appear as “Fuzzy Logic Controller with 

Rule viewer”.  

Figure (4.3): Block Diagram of the Three-link SCARA Robot with Fuzzy Controller    
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4.3 3-DOF Robot as Case Study 

The proposed fuzzy controller will be used to control the 3-links robot as case study. 

Designed to mimic the action of a human arm and can be used in jobs from 

automobile factories to underwater construction. This tool is frequently utilized 

because of its speed, efficiency and low cost. It can be programmed to perform 

precise jobs repetitively, such as installing a pin or carrying items from one location 

to another within its range of motion. 

It is consists of two revolute and one prismatic joints as shown in figure (3.15). The 

vertical motion is usually an independent linear axis at the wrist or in the base.  

Table (4.1) shows the values of the parameters of the manipulator.  

 

link  LinkParameters  

i  *

i
q  i

α  
i
a  

i
d  

1  *

1
θ  0  l  m

1
0.5=  0  

2  *

2
θ  0  l 0.5 m

2
=  0  

3  *

3
d  0  0  d d  m

3 3
0.3= +∆  

 

Simulation and numerical results prove that the performance of the fuzzy logic 

controller is good and the obtained figures illustrate that the tracking of the joints 

demonstrate that, as shown in the next.  

 

 

 

 

Table (4.1): Values of the Parameters of 3-DOF Robot     
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Figure (4.4) shows the position tracking curve of the first joint, the blue curve is the 

desired path while the red is the actual. Sinusoidal function was chosen as a desired 

trajectory. 

 

 

 

 

 

 

 

 

 

 

The figure shows that the first joint tracks the desired path accurately, with very 

small tracking error as shown in figure (4.5).  
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Figure (4.4): Position Tracking Curve of the First Joint       
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Figure (4.5): Position Tracking Error Curve of the First Joint       
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Figure (4.6) shows the position tracking curve of the second joint, the same desired 

trajectory for the first joint chosen for second joint. 

   

 

 

 

 

 

 

 

 

Also the figure shows that the second joint tracks the desired path accurately, with 

very small tracking error as shown in figure (4.7).  
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Figure (4.6): Position Tracking Curve of the Second Joint       
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Figure (4.7): Position Tracking Error Curve of the Second Joint       
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Figure (4.8) shows the position tracking curve of the third joint, a linear function 

was chosen as a desired trajectory.  

 

 

 

 

 

 

 

 

As the figure show, the third joint tracks the desired path accurately, with very small 

tracking error as shown in figure (4.9).  
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Figure (4.8): Position Tracking Curve of the Third Joint       
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Figure (4.9): Position Tracking Error Curve of the Third Joint       
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Figure (4.10) shows the velocity tracking curve of the first joint, the derivative of the 

position desired function was taken as a desired velocity trajectory.  

 

 

The velocity tracking error is very small as shown in figure (4.11) 
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Figure (4.10): Velocity Tracking Curve of the First Joint       
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Figure (4.11): Velocity Tracking Error Curve of the First Joint       
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Figure (4.12) shows the velocity tracking curve of the second joint, the derivative of 

the position desired function was taken as a desired velocity trajectory.  

 

 

 

The velocity tracking error of the second joint is very small as shown in figure (4.13) 
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Figure (4.12): Velocity Tracking Curve of the Second Joint       
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Figure (4.13): Velocity Tracking Error Curve of the Second Joint      
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Figure (4.14) shows the velocity tracking curve of the third joint, also the derivative 

of the position desired function was taken as a desired velocity trajectory.  

 

  

 

 

 

 

 

The velocity tracking error of the second joint is very small as shown in figure (4.15) 

 

 

The control surface of (ANNIT2FL) controller proposed in [1] shows that the error 

of tracking is big when compare with the tracking error in this thesis, the error in [1] 

is “0.1”.  The results in [4] shows that the position tracking error is about “0.2” 

while the velocity tracking error is about “0.1”, and the work presented in [5] shows 

Time (Sec.) 

Velocity Tracking of the Third Joint 

V
el

o
ci

ty
 (

m
./

S
e

c)
 

Figure (4.14): Velocity Tracking Curve of the Third Joint       
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Figure (4.15): Velocity Tracking Error Curve of the Third Joint       
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that the error of (NFC) is unacceptable.  But in this work the error is very small; it is 

“0.012” at most.  

 

The objective of this thesis was to control 3-DOF robot arm to track a desired path 

with minimum error that means the tracking path from the initial position to the final 

position was considered. It is clear that the error generates from the use of TSK 

fuzzy model is very small when comparing with the errors in the other methods. 

 

The work presented in [6] was interested in control Lynx6 robot arm to reach the 

specified location with minimum error without regarding the tracking path from the 

initial position to the final position. But infinite number of trajectories to move from 

initial point to final one, then the main difference between this thesis and the work 

presented in [6] is the consideration of the tracking path. 

 

The work presented in [4] was described a fuzzy position control scheme for precise 

tracking of robot manipulator. This work similar to the work presented in this thesis, 

but the results proved that the algorithm used here is more effective than the one 

used in [4].  

   

The precisely tracking and small errors is very important task which allow 

implementing and achieving all the functions and tasks that intended and required, 

like pick and place, assembly, and packaging applications or any application 

requires good tracking and precise automation.  

 

 

  



  

 

 

Chapter V 

ConclusionConclusionConclusionConclusion    anananandddd    

    

    Future WorkFuture WorkFuture WorkFuture Work      
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This report presented a complete study for controlling robot manipulator. This 

process depends on two main sides; the first one is modeling the manipulator while 

the second one is controlling the manipulator.  

The modeling process includes complete kinematics “forward and inverse 

kinematics” analyses of the robot. A complete mathematical model of three-link 

robot was developed. 

Controlling process requires the designing of all constituents of controllers; this 

means identifying the fuzzy controller input and output, choosing the recommended 

control rule base.  

The objective of this thesis was to control three-link robot manipulator to trace 

desired trajectory using Takagi-Sugeno fuzzy model. This model was applied using 

twenty-five rules. The controller use min-max inference mechanism.  

The simulation results proved that the proposed fuzzy controller has good 

performances such as fast response and small errors for different desired trajectory 

functions and it can be extended to more degree-of-freedom robotic arm systems. 

 

The proposed fuzzy controller was applied to tracking control of a three-link robot 

manipulator to verify the validity and effectiveness of the control scheme. From the 

simulation results, we conclude that the suggested controller can effectively achieve 

the trajectory tracking even for the system with very small tracking error. 

 

TSK fuzzy model has many advantages; such as it is reduce the number of rules 

required by the Mamdani model, it has guaranteed continuity of the output surface 

and it is well-suited to mathematical analysis.  

A future work can focuses on different types of controllers like adaptive fuzzy 

controller, and extended the system to more degree-of-freedom. It is recommended 
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to use the tuning of fuzzy controller using adaptive techniques to improve the 

performance.  

 

It is also recommended to use different types of models such as Larsen and 

Tsukamoto fuzzy models.  
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APPENDICES 

APPENDIX A: FORWARD AND INVERSE 

KINEMATICS ANALYSIS 

A.1 Denavit-Hertenberg Convention Parameters  

According to Denavit-Hertenberg convention, the table of the parameters display as 

follow: 

 

 

i i i i

1

                 Joint           Type           q                               a                d

                    1          Revolute                        0               0.5               

α

θ

2

3

0

                    2          Revolute                        0               0.5               0

                    3         Prismatic        d                0                0               0.

θ

3

 

 

A.2 Link Transformation of Three-link Robot Manipul ator  

The derivation of link transformation matricies i 1
i

T −
 

 

C S lC

S C lC
                                T  =                                (A.1)

1 1 1 1

1 1 1 10

1

0

0

0 0 1 0

0 0 0 1

 − 
 
 
 
 
 
  

 3

C S lC

S C lC
                                T  =                                (A.2)

1 1 1 1

1 1 1 12

0

0

0 0 1 0

0 0 0 1

 − 
 
 
 
 
 
  

 2

C S l C

S C l C
                                T  =                               (A.3)

2 2 2 2

2 1 2 21

0

0

0 0 1 0

0 0 0 1

 − 
 
 
 
 
 
  

 



 

70 
 

 2

C S lC l C

S C lC l C
                       H =T .T  =                    (A.4)

12 12 1 1 2 12

12 12 1 1 2 122 0 1

0 1

0

0

0 0 1 0

0 0 0 1

 − + 
 + 
 
 
 
  

 

The final transformation matrix 0
3
T  for three-link robot:  

 3

C S lC l C

S C lC l C
       H =H .T  = T .T .T =                    (A.5)

d

12 12 1 1 2 12

12 12 1 1 2 120 0 2 0 1 2

3 2 1 2 3
3

0

0

0 0 1

0 0 0 0

 − + 
 + 
 
 
 
  

According to the equation (2.4),

 
x

ybase

end effector
z

r r r P

r r r P
                              T  =                        

r r r P−

 
 
 
 
 
  

11 12 13

21 22 23

31 32 33

0 0 0 1
 

Then

 

11 12 12 12 13

21 12 22 12 23

31 12 32 12

               r C  ,           r =-S ,            r =0  

               r S  ,           r =C ,             r =0                          (A.6) 

               r S  ,           r =C , 

=

=

=
33

            r =1 

With

 
          i i ij i j

i i ij i j

       C Cos     ,    C  = Cos(             

       S Sin      ,    S  = Sin

)

( )

θ θ θ
θ θ θ

= +
= +

 

 

x 2 12 1 1 y 2 12 1 1 z 3
              P l C +l C  ,           P l C +l S  ,           P=d  = =   
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A.3 Inverse of link Transformation Matrices 

 

1 1 1 1 1 1

1 1 1 1 1 10 -1

1

C S 0 C l C S

S C 0 C l C S
                              (A ) =                   (A.7)

0 0 1 0

0 0 0 1

( )

( )

 − +
 − − − 
 
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C S 0 C l

S C 0 C l
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2 -1

3
3
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0 0 1 d
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Low of inverse matrices: For 3x3 matrix

 r r r

                                A = r r r                                        (A.10)
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The inverse of A

 

                                                                                           

-1
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r r r r r r

r r r r r r
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r r r r r rA
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One of the simple ways to solve the inverse kinematics problems is by using 

geometric solution. With this method, cosine law can be used. A tow planer 

manipulator will be used to review this kinematic problem as in the Figure (A.1).     

 

 

 

 

 

 

 

 

 

By applying the cosines law, the following form obtained 

 

2                                (x y l l l l                (A.12)2 2 2

1 2 1 2 2
) 2 cos(180 )θ+ = + − −

 

Since 
2 2

cos(180 ) cos( )θ θ− =−  then the equation (A.12) become,  

2                                (x y l l l l                        (A.13)2 2 2

1 2 1 2 2
) 2 cos( )θ+ = + −

 

Then 
2
θ  determined by taking the inverse cosine,  

 

x y l l
                                =acos                               (A.14)

l l

2 2 2 2

1 2
2

1 2
2

θ
 + − −     

 

Figure (A.1): Geometric of two revolute links of the manipulator    
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By applying the sinus law, the following form obtained 

  

                                
l x y

and                                                                                           (A.15)

y
                                 =atan

x

2 2
2

sin( ) sin( )β γ

α

=
+

 
 



 

Where sin( )γ = 
2

sin(180 )θ− =
2

sin( )θ . Then the equation (A.15) become  

 

l
                                =asin                                       (A.16)

x y

2 2

2 2

sin( )θ
β

      + 

Since
1
θ α β= + , then  

 

l y
                                asin atan                       (A.17)

xx y

2 2
1 2 2

sin( )θ
θ

     = +        + 

A.4 Movement effect matrices 

 
According to the equation (2.28) the movement effect matrices are 

1 1 1 1

1 1 1 1

11

S C 0 l S

C S 0 l C
                              U                              (A.18)

0 0 0 0

0 0 0 0

 − − −
 − =
 
 
  

12 12 2 12

12 12 2 12

22

S C 0 l S

C S 0 l C
                              U                          (A.19)

0 0 0 0

0 0 0 0

 − − −
 − =
 
 
  
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33

0 0 0 0

0 0 0 0
                              U                                        (A.20)

0 0 0 1

0 0 0 0

 
 
 =
 
 
  

12 12 12 12 1 1

12 12 12 12 1 1

12 21

S C 0 l C l S

C S 0 l C l C
                       U =U                 (A.21)

0 0 0 0

0 0 0 0

 − − − −
 + =
 
 
  

12 12 2 12 1 1

12 12 2 12 1 1

13 31

S C 0 l S l S

C S 0 l C l C
                       U =U                   (A.22)

0 0 0 0

0 0 0 0

 − − − −
 − + =
 
 
  

12 12 2 12

12 12 2 12

23 32

S C 0 l S

C S 0 l C
                       U =U                          (A.23)

0 0 0 0

0 0 0 0

 − − −
 − =
 
 
  

A.5 velocities effects matrices

 

According to the equation (2.33), the velocities intersection effects matrices between 

the joints can be calculated as follow 

C S lC

S C l S
                         U Q Q T                    (A.24)

1 1 1 1

1 1 1 10

111 1 1 1

0

0
. .

0 0 0 0

0 0 0 0

 − − 
 − − = =  
 
 
  

C S lC l C

S C l S l S
                         U Q Q T       (A.25)

12 12 1 1 2 12

12 12 1 1 2 120

211 1 1 2

0

0
. .

0 0 0 0

0 0 0 0

 − − − 
 − − − − = =  
 
 
  
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C S lC l C

S C l S l S
         U Q Q T                       (A.26)

12 12 1 1 2 12

12 12 1 1 2 120

311 1 1 3

0

0
. .

0 0 0 0

0 0 0 0

 − − − 
 − − − − = =  
 
 
  

C S l C

S C l S
       U Q T Q T                             (A.27)

12 12 2 12

12 12 2 120 1

212 1 1 2 2

0

0
. . .

0 0 0 0

0 0 0 0

 − − 
 − − − = =  
 
 
  

C S l C

S C l S
       U T Q Q T                             (A.28)

12 12 2 12

12 12 2 120 1

222 1 1 2 2

0

0
. . .

0 0 0 0

0 0 0 0

 − − 
 − − − = =  
 
 
  

 

C S l C

S C l S
       U Q T Q T                             (A.29)

12 12 2 12

12 12 2 120 1

312 1 2 2 3

0

0
. . .

0 0 0 0

0 0 0 0

 − − 
 − − − = =  
 
 
  

        U Q T Q T                                           (A.30)0 2

313 1 2 3 3

0 0 0 0

0 0 0 0
. . .

0 0 0 0

0 0 0 0

 
 
 
 = =  
 
 
  

C S l C

S C l S
       U T Q Q T                            (A.31)

12 12 2 12

12 12 2 120 2

322 1 2 2 3

0

0
. . .

0 0 0 0

0 0 0 0

 − − 
 − − − = =  
 
 
  

        U T Q T Q T                                       (2.32)0 1 2

323 1 2 2 3 3

0 0 0 0

0 0 0 0
. . . .

0 0 0 0

0 0 0 0

 
 
 
 = =  
 
 
  
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        U T Q Q T                                            (2.33)0 2

333 2 3 3 3

0 0 0 0

0 0 0 0
. . .

0 0 0 0

0 0 0 0

 
 
 
 = =  
 
 
  

 

A.6 Christofell symbols vector 

According to the equation (2.48), Christofell symbols can be computed as follow  

1. For i 1=    

112 2 1 2 2 3 1 2 2 113

2 1 2 2 3 1 2 2 122 2 1 2 2 3 1 2 2 123

c                                  c =- m l l S -m l l S           c =0

c - m l l S -m l l S            c =- m l l S -m l l S          c =0               (2.34)

c                  

111

121

131

1
0

2
1 1

2 2
0

=

=

=
132 133

                c =                                 c =0

     

0

 

2. For i 2=  

2 1 2 2 3 1 2 2 212 213

222 223

c m l l S +m l l S            c =0       c =0

c                                  c =         c =0                                         (2.35)

c                                  c

211

221

231

1

2
0 0

0

=

=

=
232 233
=         c =0

     

0

  

3. For i 3=  

312 313

322 323

c                                  c =0        c =0

c                                  c =         c =0                                         (2.36)

c                              

311

321

331

0

0 0

0

=

=

=
332 333

    c =         c =0

     

0

 

According to the equation (2.49),  

h m l l S m l l S m l l S m l l S

h m l l S m l l S                                                                             (A.37)

h

2

11 3 1 2 2 2 1 2 2 1 2 2 1 2 2 3 1 2 2 2

2

21 2 1 2 2 3 1 2 2 1

31

1
( 2 ) ( )

2
1
( )
2
0

θ θ θ

θ

= − − − −

= −

=

ɺ ɺ ɺ

ɺ
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Then the centrifugal and coriolis vector can be written as 

m l l S m l l S m l l S m l l S

                 h m l l S m l l S                        (A.38)

2

3 1 2 2 2 1 2 2 1 2 2 1 2 2 3 1 2 2 2

2

2 1 2 2 3 1 2 2 1

1
( 2 ) ( )

2
1
( )
2

0

θ θ θ

θ

 
 − − − −
 
 
 = − 
 
 
 
  

ɺ ɺ ɺ

ɺ

 

A.6 Inertia Tensor 

According to the equation (2.38), the inertia moment matrices can be written as 

follow. For the two rotate joints, the inertia moments over the x  and y axis are nil, 

but over the z  axis، 2

zz 2 2

1
I m l

3
=  then the inertia tensor expressed as 

2

1 1 1 1

1

1 1 1

1 1
m l 0 0 m l
3 2
0 0 0 0

                              J                          (A.39)
0 0 0 0

1
m l 0 0 m
2

 
− 

 
 =
 
 
 −
  

2

2 2 2 2

2

2 2 2

1 1
m l 0 0 m l
3 2
0 0 0 0

                              J                         (A.40)
0 0 0 0

1
m l 0 0 m
2

 
− 

 
 =
 
 
 −
  

 

3

3

0 0 0 0

0 0 0 0
                              J                                         (A.41)

0 0 0 0

0 0 0 m

 
 
 =
 
 
  
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For the prismatic joint, there is no rotation, then the inertia moment over x y, an z

axis are nil, but over the mass center equals
3
m , then the inertia matrix  

2 2 2 2 2 2 2

1 1 2 2 2 1 2 1 2 2 2 2 3 1 2 2 3 1 2 2 2 1 2 2 3 2 3 1 2 2

2 2 2 2

2 2 2 1 2 2 3 2 3 1 2 2 2 2 3 2

3

1 1 1 1
m l m l m l m l l C m l 2m l l C m l m l m l l C m l m l l C 0

3 3 3 2
1 1 1

            D q m l m l l C m l m l l C m l m l 0     (A.42)
3 2 3

0 0 m

( )

 
+ + + + + + + + + 

 
 = + + + +
 
 
 
   

The motor proper inertia

N JJ

                               J= J N J               (A.43)

J N J

2

1 11
2

2 2 2

2

3 3 3

0 00 0

0 0 0 0

0 0 0 0

  
  
   =   
  
     

Then the final inertia matrix can be written as  

2 2 2 2 2 2 2 2

1 1 2 2 2 1 2 1 2 2 2 2 3 1 2 2 3 1 1 1 2 2 2 1 2 2 3 2 3 1 2 2

2 2 2 2 2

2 2 2 1 2 2 3 2 3 1 2 2 2 2 3 2 2 2

2

3 3 3

1 1 1 1
m l m l m l m l l C m l 2m l l C m l N J m l m l l C m l m l l C 0

3 3 3 2
1 1 1

D q m l m l l C m l m l l C m l m l N J 0 (A.44)  
3 2 3

0 0 m N J

( )

 
+ + + + + + + + + + 

 
 = + + + + +
 
 +
 
 

 

                 

A.7 Friction vector 

 

The friction vector can be written as follow 

N f q f sign q

                                     f(q)= N f q f sign q                                   (A.45)

N f q f sign q

2

1 1 1 4 1

2

2 2 2 5 2

2

3 3 3 6 3

( ( ))

( ( ))

( ( ))

 + 
 + 
 

+ 
 

ɺ ɺ

ɺ ɺ ɺ

ɺ ɺ
 

A.8 Gravity vector 

For the two revolute joints, the gravity term equal zero, but for the prismatic joint 

the gravity term equal 9.8062 m/s2 then the gravity vector can be written as:  

                                      g                                                        (A.46)

0

0

9.8062

 
 
 =  
 
−  
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APPENDIX B: FUZZY MEMBERSHIP FUNCTIONS  

AND RULE BASE 

B.1 Membership Functions Types 

Function 

Name 

Example Mathematical Description 

 

 

Triangle 

 

 

 

 

Trapezoidal 

 

 

 

 

Gaussian  

 

 

 

 

 

Generalized 

Bell 

 

 

 

 

 

 

 

 

 

1

1

3

if  u a

u a
if  a u a

a a
u

a u
if  a u a

a a

if  u a

1
2

2 1

3
2 3

3 2

0 ,

,

( )

,

0 ,

µ

 ≤ − ≤ ≤ −= 
 − ≤ ≤ − ≥

 

 

1

1

    if  u a

u a
if  a u a

a a

        if  a u au

a u
if  a u a

a a

 if  u a

1
2

2 1

2 3

3
3 4

3 2

4

0 ,

,

1 ,( )

,

0 ,

µ

 ≤ − ≤ ≤ − ≤ ≤= 
 − ≤ ≤ − ≥

 

 

 

u a

u e
2

( )

2( ) σµ

− −

=  

 

 

 

 

 

           
a

u
u a

a

2
2

3

1

1
( )

1

µ =
−

+

 

       a1                  a2        a3          u 

  a1                   a2          a3     a4      u 

�                a1                      u 

        a1                   a2          a3        u 
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B.2 Rule Base 

 

 

                If  e is NL  and  e is NL  Then  Position is NL 

                If  e is NL  and  e is NS  Then  Position is NL 

                If  e is NL  and  e is ZE  Then  Position is NL 

     

∆

∆

∆

           If  e is NL  and  e is PS  Then  Position is NS

                If  e is NL  and  e is PL  Then  Position is ZE          

∆

∆

 

 

                If  e is NS  and  e is NL  Then  Position is NL 

                If  e is NS  and  e is NS  Then  Position is NL 

                If  e is NS  and  e is ZE  Then  Position is NS 

     

∆

∆

∆

           If  e is NS  and  e is PS  Then  Position is ZE

                If  e is NS  and  e is PL  Then  Position is PS          

∆

∆

 

 

                If  e is ZE  and  e is NL  Then  Position is NL 

                If  e is ZE  and  e is NS  Then  Position is NS 

                If  e is ZE  and  e is ZE  Then  Position is ZE 

     

∆

∆

∆

           If  e is ZE  and  e is PS  Then  Position is PS

                If  e is ZE  and  e is PL  Then  Position is PL          

∆

∆

 

 

                If  e is PS  and  e is NL  Then  Position is NS 

                If  e is PS  and  e is NS  Then  Position is ZE 

                If  e is PS  and  e is ZE  Then  Position is PS 

     

∆

∆

∆

           If  e is PS  and  e is PS  Then  Position is PL

                If  e is PS  and  e is PL  Then  Position is PL          

∆

∆

 

 

                If  e is PL  and  e is NL  Then  Position is ZE 

                If  e is PL  and  e is NS  Then  Position is PS 

                If  e is PL  and  e is ZE  Then  Position is PL 

     

∆

∆

∆

           If  e is PL  and  e is PS  Then  Position is PL

                If  e is PL  and  e is PL  Then  Position is PL          

∆

∆

 

 

e is the error, and e∆  the change of error.  

 


