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Abstract 

Demand-side resources are taking an increasingly prominent role in providing essential grid 

services once provided by thermal power plants. This thesis considers the economic feasibility 

and environmental effects of integrating demand-side resources into the electric grid with 

consideration given to the diversity of market and environmental conditions that can affect their 

behavior. 

Chapter 2 explores the private economics and system-level carbon dioxide reduction when 

using demand response for spinning reserve. Steady end uses like lighting are more than twice as 

profitable as seasonal end uses because spinning reserve is needed year-round. Avoided carbon 

emission damages from using demand response instead of fossil fuel generation for spinning 

reserve are sufficient to justify incentives for demand response resources. 

Chapter 3 quantifies the system-level net emissions rate and private economics of behind-

the-meter energy storage. Net emission rates are lower than marginal emission rates for power 

plants and in-line with estimates of net emission rates from grid-level storage. The economics are 

favorable for many buildings in regions with high demand charges like California and New 

York, even without subsidies. Future penetration into regions with average charges like 

Pennsylvania will depend greatly on installation cost reductions and wholesale prices for 

ancillary services. 

Chapter 4 outlines a novel econometric model to quantify potential revenues from energy 

storage that reduces demand charges. The model is based on a novel predictive metric that is 

derived from the buildingôs load profile. Normalized revenue estimates are independent of the 
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power capacity of the battery holding other performance characteristics equal, which can be used 

to calculate the profit-maximizing storage size. 

Chapter 5 analyzes the economic feasibility of flow batteries in the commercial and 

industrial market. Flow batteries at a 4-hour duration must be less expensive on a dollar per 

installed kWh basis, often by 20-30%, to break even with shorter duration li-ion or lead-acid 

despite allowing for deeper depth of discharge and superior cycle life. These results are robust to 

assumptions of tariff rates, battery round-trip efficiencies, amount of solar generation and 

whether the battery can participate in the wholesale energy and ancillary services markets. 
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Chapter 1: Overview and Motivation 

Advances in information technology at the turn of the 21st century have hastened the rise of 

distributed, small  electric resources by allowing for real-time control. At the same time, 

technological and logistical advancements in manufacturing provided by a globalizing economy 

have made many of these resources cost effective even at small scale; for example, solar panels 

and electrochemical batteries have recently seen significant cost declines [1,2]. Many utilities, 

such as those in New York [3], Illinois [4], and California [5], anticipate a time in the future 

where their role is redefined to act primarily as a gatekeeper for consumers to transact with one 

another. 

These demand-side resources, so called for their typical location on the customer side of the 

utility meter, are taking an increasingly prominent role in providing essential grid services once 

provided by thermal power plants. In some regions of the U.S., peaking capacity and even fast-

response services like spinning reserve and frequency regulation are routinely provided by 

demand-side resources. Recognizing the benefits of resource diversity both in terms of 

economics and reliability, the federal government has policies in place to encourage demand-side 

resources in both the retail and wholesale electricity market. The Energy Policy Act of 2005 

specifically instructed the Secretary of Energy to quantify the national benefits of demand 

response (DR) and make recommendations for increasing DR penetration [6]. The Federal 

Energy Regulatory Commission (FERC) has instituted orders 745 [7] and 755 [8] that encourage 

wholesale market participation of demand response and energy storage, respectively, by 

regulating how these resources are compensated. Many states have also legislated goals for 

demand-side resources. Energy storage mandates have been set in California [9], New York [10], 

and Massachusetts [11]. 
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However, policies and regulation may not affect all resources in the same way, especially 

within the fragmented market design of the U.S. electricity system. Different geographical 

regions, end-uses, and technologies may behave differently under the same regulatory scheme. 

The research discussed in this thesis considers the economic feasibility and environmental effects 

of integrating demand-side resources with consideration given to the diversity of market and 

environmental conditions that can affect their behavior. 

Chapter 2 explores the private economics and system-level carbon dioxide reduction when 

using demand response for spinning reserve. Demand response (DR) for spinning reserve may be 

appropriate for customers whose operational constraints preclude participation in energy and 

capacity DR programs. Using data from California, I examine the business case across multiple 

customer end uses and business segments. With average annual revenue of ~$35/kW, steady end 

uses (e.g., lighting) are more than twice as profitable as seasonal end uses (e.g., cooling) because 

spinning reserve is needed year-round. Total costs for participation would need to be under 

$250/kW for many end uses and business segments to have payback periods less than 5 years, 

which is plausible given equipment cost data from Californiaôs Automated Demand Response 

programs. Avoided carbon emission damages from using DR instead of fossil fuel generation for 

spinning reserve could justify incentives for DR resources. 

Chapter 3 quantifies the system-level net emissions rate and private economics of behind-

the-meter energy storage. Behind-the-meter (BTM) electric storage can help customers reduce 

energy and demand charges, as well as provide grid services like spinning reserve and frequency 

regulation. I analyze BTM storage without co-located generation under different tariff 

conditions, battery characteristics, and ownership scenarios using metered load for several 

hundred commercial and industrial customers. Net emission rates are lower than marginal 
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emission rates for power plants and in-line with estimates of emission rates from grid-level 

storage. Emission rates are driven primarily by energy losses, not by the difference between 

marginal emission rates during battery charging and discharging. Economics are favorable for 

many buildings in regions with high demand charges like California and New York, even 

without subsidies. Future penetration into regions with average charges (e.g. Pennsylvania) will 

depend greatly on installation cost reductions and wholesale prices for ancillary services. 

Chapter 4 outlines a novel econometric model to quantify potential revenues from energy 

storage reducing customer demand charges. The model is intended for utilities and other third-

party storage providers who do not have the computing or human resources to build a 

complicated optimization model. The model is based on a novel predictive metric that is derived 

from the buildingôs load profile. While my model is easier to implement, it is somewhat less 

accurate than an optimization model, and I quantify this added uncertainty. During model fitting, 

I discovered that the revenue estimates generated are independent of the power capacity of the 

battery if the maximum power-to-energy ratio of the storage is held constant. This effect can be 

used to calculate the profit-maximizing storage size, which I explore in a case study. 

Finally, Chapter 5 analyzes the economic feasibility of flow batteries in the commercial and 

industrial market. Advanced lead-acid, lithium-ion, and flow batteries have a wide range of 

performance characteristics, so I investigate their effect on profitability across many commercial 

building and solar load profiles while applying different retail and wholesale market conditions. 

My analysis indicates that flow batteries are uncompetitive with li-ion and lead-acid batteries in 

the commercial and industrial market. Flow batteries at a 4-hour duration must be less expensive 

on a dollar per installed kWh basis, often by 20-30%, to break even with shorter duration li-ion 

or lead-acid despite allowing for deeper depth of discharge and superior cycle life. My results are 
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robust to assumptions of tariff rates, battery round-trip efficiencies, amount of solar generation 

and whether the battery can participate in the wholesale energy and ancillary services markets. 
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Chapter 2: The Economics of Commercial Demand Response for Spinning 

Reserve 

 

Abstract 

Demand response (DR) for spinning reserve may be appropriate for customers whose 

operational constraints preclude participation in energy and capacity DR programs. We 

investigate the private business case of an aggregator providing spinning reserve in California 

across customer end uses and business segments. Revenues are calculated using end use level 

hourly load profiles. With average annual revenue of ~$35/kW, steady end uses (e.g., lighting) 

are more than twice as profitable as seasonal end uses (e.g., cooling) because spinning reserve is 

needed year-round. Business segments with longer operating hours, such as groceries or lodging, 

have more revenue potential. Total costs for participation would need to be under $250/kW for 

many end uses and business segments to have payback periods less than 5 years, which is 

plausible given equipment cost data from Californiaôs Automated Demand Response programs. 

Avoided carbon emission damages from using DR instead of fossil fuel generation for spinning 

reserve could justify incentives for DR resources. 

 

This paper was published as Fisher, M.; Apt, J.; Sowell, F. The economics of commercial 

demand response for spinning reserve. Energy Systems. 2017, DOI: 10.1007/s12667-017-0236-x. 
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2.1 Introduction  

Load that can respond to price or reliability signals, referred to as ñdemand responseò (DR), 

lowers energy demand during periods of high prices or the need for generation capacity during 

periods of high load [1]; grid operators are now exploring the use of DR for ancillary services [2-

5].  

One ancillary service is spinning reserve. This type of reserve is also referred to as 

synchronous reserve and is often considered under the umbrella of contingency reserves, which 

include spinning and non-spinning reserve. Spinning reserves have traditionally been generators 

running at idle power and synchronized to the phase of the 50 or 60 Hz grid; they are able to 

provide rapid increases in power in response to an unexpected contingency event (e.g., loss of a 

transmission line or generating facility) [6]. The operational requirements vary across 

jurisdictions, but generally require the ability to increase generation in a short time, typically 10 

minutes [7], and to maintain that response for a minimum amount of time (typically 30 to 60 

minutes) [8]. 

The intrinsic characteristics of DR are a natural match to the requirements of spinning 

reserve resources. Load resources can provide higher ramp rates [3,9] at lower costs [10] than 

traditional generation. Furthermore, a large number of loads that are individually less reliable 

than a generator may provide aggregate reliability in excess of that provided by a few large 

generators [2,3]. The timescale on which spinning reserve operates is well served by DR because 

the average event lasts only 10-20 minutes [3]. Moreover, this short period is attractive to DR 

participants because it avoids customer fatigue and business operations changes required by the 1 

to 8 hour interruptions [11] seen in energy or capacity events. 
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Wholesale markets in the US Mid-Atlantic, New York, Texas, and the Mid-West all allow 

DR to participate in spinning reserve markets. However, current Western Electricity 

Coordinating Councilôs (WECC) rules implicitly prevent the California Independent System 

Operator (CAISO) from allowing DR in the spinning reserve market, but this is a purely 

regulatory barrier. WECC rules require immediate and automatic response to system frequency 

to participate in spinning reserve [12] while DR typically requires a signal from an outside 

operator to initiate response. For our analysis we assume this barrier is removed and regulators 

permit DR in the wholesale environment. 

The open question is whether market prices are sufficient to attract participation given time-

varying resource availability and the magnitude of implementation costs. Previous studies have 

examined the use of DR for ancillary services and the economics of participation. Kirby [2] and 

Mathieu et al. [13] consider residential air-conditioning loads in New York and California, 

respectively. They characterized resource size and calculated potential revenue assuming time-

invariant resource availability. MacDonald et al. [14] reviewed market clearing prices and 

participation requirements across the U.S., though they do not discuss potential resource revenue 

and assume the demand resource is time-invariant. MacDonald et al. [15] examined commercial 

building HVAC and lighting loads but did not discuss implementation costs or match time-

varying resource availability with market clearing prices. Ma et al. [16] and Hummon et al. [17] 

examined the market dynamics of the western interconnection using unit commitment and 

economic dispatch models with increased flexible demand resources for energy and ancillary 

services. They did not consider the costs to enable DR for these services. 

To our knowledge, no previous research has compared the costs and potential revenues of 

using DR for ancillary services while capturing the time-varying nature of resource availability 
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across many end uses and customer segments. The 2009 PG&E Participating Load Pilot [18] 

implemented DR for non-spinning reserve, and thus faced the true operational costs and potential 

revenues, but included only 3 participants in the study. We take a more comprehensive view 

using data from over 2,700 buildings in California. We examine the economics across 

geographic regions, building segments, and end uses within California using econometric 

models. California is used as an example because its varied load types and competitive market 

operations provide an ideal environment in which to examine the business case for DR and 

because the results may influence DR policy in WECC. We examine DR for commercial load, 

which represents approximately 50% of Californiaôs load [19]. This work adds to the existing 

literature by determining which commercial demand response applications are both profitable 

and significant to the grid, and making a first-order estimate of their environmental 

consequences. 

We focus on the case where DR participates solely in spinning reserve (not in energy or 

capacity). Customers may want to participate only in spinning reserve because of the low 

frequency and short duration of events. Indeed, customers accounting for approximately 50% of 

the MW signed up through the California Automated Demand Response program participate in a 

voluntary energy reduction program [20]. This suggests that these customers do not find the 

mandatory energy curtailment required by capacity events attractive. This work does not discuss 

frequency regulation (another ancillary service) because this application of commercial DR 

remains largely in its infancy [9] and the installation costs are highly scenario specific. 

There is a growing body of literature on the optimal control of demand-side resources in 

market and microgrid environments [21]. Here we assume the control algorithms and equipment 
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are sufficient to achieve the load reductions determined by our models and instead focus our 

analysis on the resource and the economics. 

We find that steady end uses (e.g., lighting) are better able to make a profit than are seasonal 

end uses (e.g., cooling) because, unlike a capacity resource, spinning reserve is needed 

throughout the year. Payback periods of 5 years or less are plausible in certain niche applications 

given data on equipment costs, but longer paybacks for many resources may discourage 

widespread participation. Therefore, we investigate if the damages from carbon emissions 

avoided by procuring DR in spinning reserve are sufficient to justify monetary incentives to 

encourage greater DR participation.  

Section 2 describes our methods and data used to characterize the implementation costs and 

calculate potential revenue. Section 3 presents and discusses the results of our analysis. Section 4 

estimates avoided carbon emissions damages by using DR for spinning reserve and Section 5 

presents our conclusions. 

2.2 Methods and Data 

We consider a DR aggregator who contracts with individual facilities to procure DR. These 

facilities receive compensation for agreeing to reduce load when called upon. In turn, the 

aggregator sells the cumulative DR capability to a utility or grid operator. We take the 

perspective of an aggregator, not an individual facility owner, because aggregators are more 

likely than individual facilities to have the resources necessary for sophisticated forecasting 

models and the complex administrative requirements necessary to participate in these markets. 

Aggregators are most likely to target large commercial participants. Overhead costs are 

lower for these customers as administrative and marketing costs often scale per customer rather 
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than per kW. Large customers are also more likely to participate in DR programs [22] and have 

the internal building controls required for automated response. 

Aggregators earn revenue based on the market clearing price and magnitude of load 

response, and incur costs to enable spinning reserve in participant facilities. Revenue is 

calculated by matching hourly DR resource availability with market clearing prices across 

geographic zones, building segments, and end uses. Detailed cost data are not available at the 

end-use or business segment level; we therefore treat costs parametrically to determine the level 

at which acceptable payback periods are achieved. We compare these cost levels to general cost 

estimates from the literature and from a cost database for an automated DR program in 

California. 

We do not model the effects of a call for spinning reserve on energy cost. This eliminates 

the uncertainty inherent in modelling events with probabilistic frequency and duration. A first-

order analysis shows that we are ignoring less than $5/kW-yr in potential revenue gains from 

energy reductions, which would not affect the conclusions of our work. Consider the case of an 

end use with no energy rebound after a spinning reserve event (e.g. lighting). End uses with 

energy rebound (e.g. cooling) will have less change in their total energy consumption. Assuming 

a fairly large number of events (30), long-duration events (1 hour), large energy reductions 

during all events (normalized value of 1 kW), and an average energy cost of $0.15/kWh, we can 

calculate that in this ñworst-caseò scenario we would be ignoring $4.50/kW-year of decreased 

energy costs. 

2.2.1 Potential Revenue Across End Uses, Business Segments, and Geographic Location 

To calculate potential revenue, we gathered hourly commercial load data that have been 

standardized to typical weather conditions and disaggregated by geographic zone, business 
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segment, and end use. Using models of these profiles, we created new profiles specifically for 

the period 2011-2013. Normalized hourly profiles were then matched with hourly market 

clearing prices to calculate potential revenue. 

By using normalized load profiles to represent DR resource availability, we assume that DR 

resource availability for reserves is proportional to the load of that particular end use at that 

particular time. For energy or capacity events, which can last from 1 to 8 hours in California 

[11], this may not be an appropriate assumption. Commercial customers may not want a portion 

of their electrical service interrupted for that period of time due to operational constraints. 

However, spinning reserve events typically last for only 10-20 minutes, and thus customers can 

shed larger percentages of their load without suffering major interruptions to business operations. 

Data from PJM, the only region to publish hourly market clearing resource amounts for DR in 

spinning reserve, support this assumption (see Appendix A for discussion of this topic). 

2.2.1.1 Load Disaggregation 

One of the only large scale studies to quantify end use level demand across a broad 

geographic area is the 2006 California Commercial End Use Survey (CEUS) [23]. The CEUS 

collected metered data from a stratified sample of approximately 2,700 buildings in order to 

create hourly end use level load profiles. The sample was stratified across 12 geographic zones 

and 12 building segments (Table 2-1). For each building in the survey, a simulation model that 

disaggregates whole-facility load into 13 end uses was built in a DOE-2.2 energy simulation 

environment. Simulation results were calibrated to actual consumption and weather data to 

ensure the model was accurate. Once calibrated, the building model was run on a new 

standardized weather set meant to represent a typical weather year in California. Buildings 

within each sample strata were aggregated to produce weighted average hourly profiles. 1,872 
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unique hourly profiles were created across all geographic zones, building segments, and end 

uses. 

Table 2-1: Building Segments and End Uses in CEUS 

Building Segments 

College School 

Grocery Restaurant 

Health Small Office 

Lodging Large Office 

Miscellaneous Refrigerated Warehouse 

Retail Un-refrigerated Warehouse 

End-Uses 

Heating Interior Lighting 

Cooling Exterior Lighting 

Ventilation Miscellaneous 

Refrigeration Office Equipment 

Hot Water Motors 

Cooking Process 

 Air Compressor 

 

Certain end uses from CEUS were removed from our consideration because they are not 

appropriate for spinning reserve. For example, exterior lighting is not a good candidate for 

spinning reserve because reducing exterior lighting at night may violate building codes. This left 

981 profiles. The list of removed end uses and business segments (along with a reason for 

removal) is contained in Table 2-2. 

Table 2-2: End Uses / Segments Removed in this Study 

End-Uses Removed Reason for Removal 

Exterior Lighting Code issues 

Process Business process constraints 

Cooking Business process constraints 

Office Equipment Business process constraints 

Miscellaneous Unknown resource type 

Segments Removed Reason for Removal 

Small Office Does not match cost data 
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2.2.1.2 Load Modelling 

To convert the standardized profiles from CEUS to 2011-2013 profiles, we first separated 

end uses into weather and non-weather dependent categories. Non weather-dependent end uses 

were converted using a day-matching method. Consumption values for each hour of the day in 

each month were averaged, treating weekdays and weekends separately. While heating would 

normally be considered a weather-dependent end use, regression modelling was not successful in 

capturing the variation of heating profiles. Therefore, the day-matching method was used for all 

heating profiles. 

Regression models with ARMA errors were used for weather-dependent end uses (cooling 

and ventilation). Via 10-fold cross-validation, we explored over 20 model specifications. The 

final model (Equation 1) showed the lowest average out-of-sample error across all cooling and 

ventilation profiles. We also investigated using lagged weather variables. Due to thermal mass, 

buildings often show a lagged response to outdoor temperature and humidity conditions. 

However, current weather conditions showed better out-of-sample prediction error than lagged 

weather conditions for the standardized CEUS load profiles. We believe this is an artifact of the 

modeling process used in the CEUS project and does not reflect what one would find if raw 

metered data was used. 

All models exhibited significant autocorrelation in the residuals. To facilitate more accurate 

prediction, we chose to model the error using time-series (ARMA) parameters. A necessary 

condition for parameter estimation using time-series models is homoscedasticity. However, a 

plot of the residuals for most load profiles revealed two distinct periods during the year for which 

residual variance was uneven (summer vs. winter). We thus split the annual standardized models 

into three periods: the first winter period (Jan-Apr), summer (May-October), and last winter 
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period (Nov-Dec). The selection of periods for boundary months (e.g. April) was performed by 

examining how closely the residual variance of the month compares to other months when it was 

included in the winter or summer model. 

The same ARMA model specification for the error term was used across all load profiles 

because it was successful in removing most of the autocorrelation in residuals across load 

profiles. We attempted to include parameters at other lags but often found that they did not 

reduce the Bayesian Information Criteria (BIC) and/or the coefficient estimates were not 

statistically significant. 

ÌÎὯὡ ‌

‍ȟ ))ὝὩάὴ

‍ȟ ))ὝὩάὴ

‍Ȣ
ȟ ))ὝὩάὴὙὩὰὌ

– 
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where: 

ρ ‰" ‰ " – ρ —" ‭ 

Table 2-3: Equation 1 Variable Descriptions 

Variable Description 

kWt Average kilowatt consumption in hour of the year t 

Id,Ih 
Indicator variables for day type d (weekday/weekend) and 

hour of day h 

Tempt Temperature (°F) in hour t 

RelHt Relative humidity in hour t 

♫●
▀ȟ▐

 
Regression coefficient for day type d and hour of day h for 

weather variable x (Temp, Temp2, or Temp*RelH) 

ɖt Error in hour t unexplained by exogenous weather variables 

B Backshift operator 

ɗi Coefficient for moving average term of lag i 

iꜚ  Coefficient for autoregressive term of lag i 

Ůt Unexplained error in time t 
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Once the model coefficients were estimated for each load profile, predicting the 2011-2013 

hypothetical load profiles was a 2-step process. Coefficients for exogenous weather variables 

were multiplied against actual hourly 2011-2013 weather data to form the base of the prediction. 

Next, 5,000 separate ARMA simulations were conducted using the time-series coefficients from 

each of the three period models (the length of the simulations was tailored for the period of the 

year). The simulated error at each time-step was independent and identically distributed (i.i.d.) 

and randomly drawn from a normal distribution with variance equal to the residual variance of 

the model. All simulations used a burn-in period of 50,000 iterations. The average path of the 

5,000 simulations was added to the predictions from the exogenous variables to form the overall 

predicted load profile. 

In using load data captured in 2002 to infer load profiles for 2011-2013, we assume the 

shape of the end use load profiles has not changed over time. Load shapes could change due to 

shifts in equipment stock (e.g. higher saturations of more efficient equipment) and equipment use 

patterns. However, commercial load has not grown in California since 2005 [19]. Load growth is 

not a perfect measure of changes in end use load profiles, but the authors believe it is reflective 

of a load environment that is in steady-state. 

2.2.1.3 Normalization and Revenue Potential 

Normalization of the load profiles was necessary to express our results in a standardized 

measure of size (per kW). Profiles were normalized to the average load during the top 50 hours 

in each year by temperature, which closely mirrors the method used to calculate peak kW for 

incentive payments in Californiaôs AutoDR program. Equation 2 displays the normalization 

calculation for each hour t in the profile. 
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(2) 

The calculation of revenue was completed by matching the hourly normalized resource 

availability with the day-ahead market clearing price in that hour. Market clearing prices for 

spinning reserve are not the same across the entire CAISO region. CAISO has established 

separate procurement requirements for operating reserves in areas ñnorth of path 26ò (NP26) and 

ñsouth of path 26ò (SP26) to ensure that contingencies can be mitigated even in the case of 

congestion on the Path 26 transmission line. The Path 26 transmission line in central California 

roughly delineates the boundary between SCE and PG&E. This area is a bottleneck for power 

trying to flow between northern and southern California. Variations in generation mix and 

transmission network topology among the two regions lead to price differences. Prices for NP26 

and SP26 were matched with the different forecasting zones from the CEUS. Table 2-4 details 

how the load forecasting zones (FCZ) were mapped to ancillary service zones (ACZ). 

Table 2-4: Forecasting Zone Mapping to Ancillary Service Zone Partitions 

FCZ in 

Service Zone ñCAISOò 

FCZ in 

Service Zone ñSP26ò 

FCZ 1 FCZ 7 

2 8 

3 9 

4 10 

5 13 

6  

In making this calculation we assume perfect forecasting of resource availability, which 

would tend to increase our revenue numbers. However, this did not affect the final conclusions 

of the study. We also assume that load resources are price-takers that do not affect the market 

clearing price. While ancillary service participants are worried that markets will saturate quickly 

and prices will collapse [24], as long as some traditional generation remains in the spinning 
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reserve market prices may not decrease significantly due to the payment of lost opportunity costs 

of energy production [5]. 

2.2.2 Costs 

An aggregator would incur a number of costs in setting up a spinning reserve portfolio, 

including equipment installation for controls and automated response, telemetry for monitoring 

loads, equipment maintenance, participant incentives, program administration, forecasting, and 

CAISO administrative fees. The communications architecture of such a system in described in 

Figure 2-1. These expenditures would also allow participation in capacity/energy DR programs, 

or frequency regulation markets as control devices advance in sophistication, though in our 

analysis we assume end users face business constraints that prevent them from participating in 

energy/capacity programs. 

Unfortunately, detailed cost information for this type of system across many types of 

loads/businesses does not exist. The closest program for which information is publicly available 

is PG&Eôs Participating Load Pilot [18]. It had only 3 participants and much of the cost for the 

program was spent on one-time startup costs. We were able to obtain generalized cost 

information for DR equipment installation (described in the next section) but cannot tie the data 

to specific end-uses or business types. Therefore, we treat the costs an aggregator would incur as 

a parametric variable in our results, reporting ranges that would provide a sufficient payback on 

invested capital. We use the generalized cost information on equipment installation to provide 

context for the reported cost ranges. 
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Figure 2-1: System communication architecture for loads participating in spinning reserve. 

Communication from the grid operator to the aggregator, and to and from the aggregator 

and the facility can take place over secure internet connections. Telemetry reporting from 

the aggregator to the grid operator must take place via a more demanding Supervisory 

Control and Data Acquisition (SCADA) protocol. Communication architecture design 

based on the OpenADR 2.0 standard (OpenADR Alliance 2014). Telemetry architecture 

from [25]. 

2.2.2.1 Equipment Cost for Event Communication and Automated Response 

In order for DR to provide spinning reserve within the required 10 minutes, automated 

response is necessary. Personal notifications (email or phone) and manual changes to equipment 

operating parameters cannot guarantee 10-minute response. Automated response can be enabled 

by pre-programming DR strategies into control equipment so the response is implemented 

without human intervention.  

California investor-owned utilities provide incentives for the installation and programming 

of such equipment through the Automated Demand Response (AutoDR) program. Salient 

features of the California AutoDR program are: 

1. Designed for commercial/industrial customers with peak load >200 kW. 

2. Requires participation in utility energy or capacity DR programs. 
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3. Incentives are capped at the minimum of 100% of total project cost or $300/kW of load 

response. These are one-time payments (not annual). 

4. The amount of load response must be proven through a test event or actual performance 

history from energy or capacity events. 

Incentive data were collected from Pacific Gas & Electric (PG&E) and Southern California 

Edison (SCE). Project-level incentive information from San Diego Gas & Electric and 

Sacramento Municipal Utility District was not available. See Appendix A for more information 

on the treatment of incentive data. Figure 2-2 displays the combined SCE and PG&E incentive 

information. The mean cost is approximately $180/kW. 

 

Figure 2-2: Incentives provided to install communications equipment, program and 

commission DR strategies. Note: incentive data includes commercial and industrial 

customers. Industrial customers could not be removed because the project database lacked 

identifying information. We do not believe that removing industrial customers would 

significantly affect the cost distribution as large projects were evenly spread across higher 

and lower $/kW values. 

We assume participating commercial buildings have a building energy management system 

(BEMS) that can communicate with end use level equipment. The market share of BEMS in 
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California commercial buildings is approximately 60% for buildings with an average demand of 

200kW [22]. 

An aggregator would also have to install telemetry at a participating building because it is 

required for participation in spinning reserve markets. Telemetry allows the grid operator to 

obtain real-time information on load characteristics, such as real and reactive power. Energy and 

capacity DR programs do not rely on telemetry for measurement and verification of load 

reductions ï they use interval meter data that are already captured for billing purposes. 

For small distributed resources like DR, the cost of telemetry is a significant obstacle to 

participation in ancillary service markets. Estimates of the cost of telemetry for a large 

commercial building are approximately $50,000-$80,000 [25]. Given the average load response 

in the AutoDR program, this cost would translate to over $200/kW. However, new designs have 

the potential to provide telemetry at much lower cost. Early tests show large commercial 

buildings could be outfitted with telemetry at an approximate cost of $50/kW of controlled load 

[25] or ¼ of the current cost estimate. We use the $50/kW estimate to provide context for our 

results. 

2.3 Results 

We find end uses with relatively constant load profiles throughout the year, such as lighting 

or refrigeration, are better suited for spinning reserve than seasonal end uses like cooling and 

heating. This is counter to the intuition behind traditional capacity-based DR programs that focus 

on seasonal end uses because they are highly correlated with the system peak demand. Spinning 

reserve, however, is needed at all times and is therefore best served by resources which are 
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available at all times. Figure 2-3 shows the results by end use and building segment 

combinations across all of the forecasting zones. 

 

Figure 2-3: Average annual revenue for end use / building segment combinations. The area 

of the dot represents the total peak load for that combination across all forecasting zones. 

The shading of the dot corresponds to the average annual revenue potential. Average 

annual revenue is calculated as a weighted average across all zones, weighted by peak load. 

While cooling is the largest end use by peak load in California, it nevertheless has very low 

revenue potential because of its seasonal nature. Interior lighting is a large end use and is well 

suited for spinning reserve, especially in building segments that operate on continuous schedules 

such as lodging. The school and college segments which have lower seasonal loads during 

capacity strained periods do especially poorly. 

These revenue figures are next used to determine the maximum allowable cost at which an 

aggregator would find the simple payback of their investment to be 5 years or less. Simple 

payback can be calculated as the ratio of costs to annual revenue. The 5 year simple payback 
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threshold is important because many companies use simple payback as a metric for energy 

decisions and most of these companies use a threshold of 5 years or less [26]. Figure 2-4 shows 

the distribution of these maximum costs across (a) end uses and (b) business segments. When 

viewing the figure, if the reader imagines that the true cost to an aggregator was $200/kW, any 

point on a distribution below $200/kW would have a payback greater than 5 years. In general, 

higher maximum allowable costs represent those end uses / business segments that have higher 

revenue. The horizontal lines spanning the graphic show the low and high end of the cost 

distribution for communication and control equipment discussed in Section 2.2.2. 
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Figure 2-4: Distribution of maximum allowable costs ($/kW) incurred by an aggregator to 

keep payback periods under 5 years across (a) end uses and (b) business segments. Higher 

maximum allowable costs represent end uses / segments that have higher revenue. 

Horizontal lines spanning the figure represent the low and high estimate of equipment 

installation costs, including control equipment and telemetry (ignores other types of costs 

like participant incentives). Each combination of geographic zone, business segment and 

end use represents a single point within each distribution. The heavy horizontal line in the 

middle of each box marks the median. The range of the box represents the interquartile 

range. The whiskers extend to the extremes of the distribution. 



24 

 

For the majority of potential participants, total costs incurred by the aggregator would need 

to be below $250/kW to achieve a payback of 5 years or less, though the highest cost for any end 

use to achieve the 5 year threshold is $340/kW. The median cost for a 5 year payback across all 

end uses excluding cooling and heating is $173/kW. These are plausible maximum cost values 

given the distribution of equipment installation costs, though we should remind the reader that 

this does not include many other costs an aggregator would face (e.g., participant incentives). 

Thus we find that the business case probably exists to provide spinning reserve from pooled DR 

resources, though the aggregator would need to be selective in targeting participants. 

We do not find important differences in revenue potential across geographic zones. The 

largest driver of difference across zones is the market price for spinning reserve; southern 

California (below the Path 26 transmission line) often has higher prices than northern California. 

Figure 2-5 shows price duration curves for northern and southern California. 

 

Figure 2-5: Partial price duration curves for California spinning reserve prices from 2011-

2013. Prices are often higher in the southern California zone (below the Path 26 

transmission line). Horizontal axis abbreviated for clarity. 
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2.4 Policy Implications ï Avoided Carbon Emissions 

We have shown that aggregators will have to be selective in targeting potential DR 

participants, possibly leaving a large amount of DR on the sidelines of the market. However, 

providing incentives to DR would improve economics and encourage participation. We now 

consider if such an incentive is justified by a market failure not currently captured in spinning 

reserve clearing prices: the damages associated with carbon dioxide (CO2) emissions from fossil 

fuel power generation. California already considers the social cost of carbon in their cost 

effectiveness tests for utility energy efficiency and DR programs [27]. 

To our knowledge, there has been no detailed study of the emissions avoided from DR 

participation in electricity markets for either energy or ancillary services. Studies of avoided 

emissions in reserve markets have mostly focused on renewable energy [28] or pumped 

hydroelectric power [29]. The most rigorous approach to this problem would make use of a 

dispatch model of the California grid to understand the quantity and type of fossil fuel power 

plants offset from DR and the duration of offset. Here we instead make a first-order estimate. 

The procurement of spinning reserve is fundamentally an option to produce power, not an 

actual call for power. Marginal changes in the fuel mix of reserves that do not change the overall 

energy dispatch will not displace emissions, as nothing has physically changed on the grid. 

However, if enough DR is procured to offset the reserve provided by an entire plant, that plant 

can shut down. This assumes that the marginal plant used for reserves is online only because of 

the need to provide reserve. We adjust for this assumption in our calculations. The emissions 

saved would be the difference between the reduction from turning off the partly-loaded reserve 

plant and the increase of the base load plant that is now making up for the energy generation of 

the reserve plant. 
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To calculate emissions savings, it is thus important to understand the fuel types that typically 

provide spinning reserve and base load. The 2013 CAISO Annual Report on Market Issues and 

Performance [30] reports that hydro supplies approximately half of the spinning reserve in a 

typical year. Natural gas and imports supply approximately a quarter of this reserve each. 

Droughts and changing climate patterns, however, may reduce the potential for high-elevation 

hydropower production in California in the future [31]. Reduced hydropower energy production 

is typically offset by natural gas in California [32]. We assume that reduced spinning reserve 

from hydropower is also offset by natural gas. 

Natural gas plants represent the majority of the available dispatchable generation in CAISO, 

hence the energy production from plants providing reserve that are offset by DR is likely 

assumed by other natural gas generation. We assume that all natural gas generation is performed 

by combined-cycle (NGCC) plants. In reality, some spinning reserve is provided by natural gas 

combustion turbines (NGCTs). NGCTs have higher heat rates than NGCC plants. Thus, ignoring 

NGCTs likely underestimates carbon savings. In this analysis, we focus just on the emissions and 

associated damages from CO2 and not from criteria pollutants (e.g., sulfur dioxide, nitrogen 

oxide, particulate matter). This first-order analysis does not consider the emissions savings 

during actual spinning reserve events, only the savings from a different economic dispatch of 

generation resources. However, criteria pollutant emissions savings during spinning reserve 

events may be significant. Nitrogen oxide ramping emissions from simple-cycle natural gas 

combustion turbines can be significantly higher than steady state emissions [34]. Thus during a 

spinning reserve event, demand response can offset much higher emissions from ramping natural 

gas plants than it does under normal dispatch conditions. 
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Social damages from CO2 are orders of magnitude larger than damages from criteria 

pollutants for natural gas plants. Assuming damages of $37 per tonne of CO2 [35] and emissions 

of 0.375 tonne of CO2 / MWh [36] for natural gas plants, we calculate damages of ~$14/MWh. 

From [37], we find damages from criteria pollutants emitted from natural gas plants on the order 

of $0.05/MWh. 

The relationship between CO2 output and power generation is nearly linear for a NGCC 

plant [33], thus marginally unloading one plant and reloading another of the same type saves no 

CO2. But if one plant is able to be fully shut down, the CO2 saved is equal to the no-load 

emissions of that plant. To make a first-order estimate of the annual CO2 saved from procuring 

DR for spinning reserve we use Equation 3. The input assumptions are presented in Table 2-5. 

Total reserve was divided by the idle generating capacity of an average plant in order to calculate 

the number of plants shut down by procuring DR. We assume that there is enough DR to offset 

the reserve of natural gas plants that provide half the average annual spinning reserve 

requirement. This corresponds to a future scenario where the proportion of reserves provided by 

natural gas has increased due to falling hydro reserves. 
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Table 2-5: Variable Descriptions and Assumed Values for Equation 3 

Variable 

(Units) 
Description Assumed Value Range 

   
Low Savings 

Scenario 

High Savings 

Scenario 

Total Reserve 

(MW) 

The total MW of 

spinning reserve in 

CAISO offset by DR 

500 MW (approx. half 

of average spin 

requirement) 

250 MWa 750MWb 

Idle (MW) 

The amount of 

spinning reserve 

provided by each 

natural gas plant (idle 

generating capacity) 

50 MWc (approx. 10-

min ramp capability 

for 200MW 

combined-cycle 

turbine) 

100MWd 40MWe 

Carbonno_load 

(Tonnes CO2 / 

hr) 

CO2 emissions at no 

load 
17.5 tonnes [33] 14 tonnesf 21 tonnesg 

%Reserve 

(Unitless) 

Percent of annual 

hours that system 

dispatch is reserve-

constrainedh 

77%i 74%j 80%k 

8,760 (Hours) 
Number of hours in a 

year 
   

a Scenario where DR displaces current reserves from natural gas (~25% of requirement) 
b Scenario where DR displaces current reserves from natural gas and hydro (~75% of requirement) 
c Ramp rate of 2.5%/min [28] 
d Ramp rate of 5%/min [38] 
e Ramp rate of 2%/min (lower end of ramp rates shown in [34] Figure 4-13) 
f 5% quantile of the true intercept of [33] Figure S4 
g 95% quantile of the true intercept of [33] Figure S4 
h Reserve-constrained means that the system dispatch was different from a hypothetical scenario where reserves are not required. 

Alternatively, a dispatch is not reserve-constrained if the removal of the reserve constraints from the system optimization 

problem does not change the overall dispatch. Reserve-constrained periods are those in which increased DR procurement would 

cause marginal reserve plants to shut down. 
i Calculated from the average number of hours that spinning reserve prices are above the minimum value from 2011-2013. A 

reserve price at the minimum value reflects a system which is not reserve-constrained. 
j Calculated from the low annual number of hours that spinning reserve prices are above the minimum value from 2011-2013. 
k Calculated from the high annual number of hours that spinning reserve prices are above the minimum value from 2011-2013. 

We estimate annual carbon savings at approximately one million metric tons (0.2 x 106 ï 

2.8 x 106 tonnes for the low and high scenarios, respectively). Avoided damages associated with 

carbon emission savings were calculated using two different values of carbon: (1) the social cost 

of carbon (SCC) computed by the United States government for emissions year 2010 under the 
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average 3% discount rate scenario ($37 in 2014 dollars) [35], and (2) the average 2014 market 

price for carbon under Californiaôs cap and trade system set up under AB32 ($12) [39]. The 

annual results are shown in Figure 2-6 relative to the up-front capital required to install telemetry 

on DR resources. 

 

Figure 2-6: Damages avoided from carbon emission savings due to DR procurement in 

spinning reserve market. Uncertainty bars reflect 90% confidence interval for uncertainty 

in the value of damages per metric ton and the uncertainty in the estimated magnitude of 

carbon savings (low to high savings scenarios of Table 2-5). No correlation was assumed 

between the value of damages per metric ton and the savings scenario. Uncertainty in the 

value of damages per metric ton for SSC were derived from the distribution of carbon 

value per ton for the 3% discount rate for emission year 2010 [35]. Uncertainty in the value 

of damages per metric ton for AB32 were derived from the variance of carbon allowance 

futures prices during 2014. Capital investment for telemetry calculated at $50/kW. 

Figure 2-6 demonstrates that meaningful incentives for DR might be justified by avoided 

damages from carbon emissions. The value of avoided damages under AB32 produce far less 

compelling results than under the SCC, but still reflect a payback of the up-front telemetry 

capital costs in approximately 2 years. 
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2.5 Discussion and Conclusion 

To allow DR to participate in spinning reserve in California, WECC must modify the 

definitions that govern eligible resources by removing the requirement to be immediately and 

automatically responsive to system frequency; thereby bringing its policy into alignment with 

most other U.S. wholesale markets. Diversifying the resources providing ancillary services will 

allow the grid to be more resilient and less operationally expensive. 

With an average revenue of ~$35/kW-year, steady end uses (e.g., lighting) have more than 

twice the revenue than seasonal end uses (e.g., cooling) because spinning reserve is needed year-

round. Similarly, business segments with longer operating hours, such as groceries or lodging, 

have more revenue potential. We find that niche applications of DR could present an attractive 

business opportunity: certain business segments in southern California can achieve nearly 

$60/kW-year in revenue from interior lighting. However, this will depend on the total cost to 

attract spinning reserve resources. To achieve a simple payback of 5 years or less, the median 

DR resource in California would need to have a total enablement cost of $173/kW or less. 

Refrigeration resources with more constant profiles could be profitable with median enablement 

costs of $200/kW, while cooling loads would require costs below $90/kW to be profitable. This 

is plausible given data on equipment installation costs for automatic DR in California, but the 

large range of cost data suggests an aggregator would need to be careful in targeting participants. 

Enablement costs for DR are likely to decrease in the future as technologies find a common 

standard and production volumes increase. NIST is working on smart grid interoperability 

standards [41] and California recently required new control systems for lighting, heating and air 

conditioning be able to receive automated DR signals [42]. Our analysis included a cost 

reduction for telemetry of a factor of 4 under current cost estimates. This will help make DR for 
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spinning reserve more economically attractive. At the same time, load patterns may change as 

end-use equipment evolves and the climate changes. This could affect our results by altering the 

coincidence of load and low/high market prices. 

Avoided carbon emissions from using DR instead of fossil fuel generation for spinning 

reserve could justify the provision of incentives for the cost of installing telemetry (~$50/kW) for 

DR resources. If 500MW of DR replaced fossil generation in the spinning reserve market, we 

estimate an annual carbon savings of approximately one million metric tons. Avoided emissions 

may be larger in other regions with higher proportions of coal-fired resources. 
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Appendix A:  Additio nal Modelling Details 

DR availability proportional to load  

Figure A-1 displays DR clearing MW in each hour of the day across 4 seasons for spinning 

reserve. The Pearson correlation coefficient between the median DR MW cleared in a given hour 

across all days of 2012-2013 and the median load for that hour of the day was 0.92. DR clearing 

amounts in the summer appears quite low ï this may be due to other more lucrative DR 

opportunities (such as capacity) during those times. 

 

Figure A-1: Demand response MW cleared in spinning reserve market for each hour of the 

day in PJM during the period 2012-2013. The pattern of cleared demand response mimics 

the typical overall load pattern seen in each season. The heavy horizontal line in the middle 

of each box marks the median. The range of the box represents the interquartile range. The 

whiskers extend to the extremes of the distribution. 

Reasoning for removal of projects from cost information in SCE 

Figure A-2 displays the incentive information from PG&E and SCE. 
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Figure A-2: (a) Incentives Provided by PG&E for AutoDR. (b) Incentives Provided by SCE 

for AutoDR. 

We conducted an investigation into the AutoDR program costs and found that nearly all of 

the projects which had incentives of $300/kW in the SCE territory were likely from one 

contractor that received money from the American Recovery and Reinvestment Act (ARRA) 

grant funds. We surmise that the use of ARRA funds may have led to different recruitment 

practices and cost reporting. Thus, we do not believe that the incentive information reported for 

these projects is representative of the rest of the project population. The list below provides 

details on why we believe that these projects were from one contractor. 

¶ An AutoDR program report stated that ñthe U.S Department of Energyôs $11.4 million 

American Recovery and Reinvestment Act grant influenced a larger load shed and 

enablement cost in the SCE territory.ò [19]  

¶ ARRA records show a total AutoDR project cost of $22.8M in SCE [40] attributable to 

one company. The 50% cost sharing required by ARRA leads to a grant of $11.4 million. 

¶ There are 348 facilities in the project incentive database from SCE that had project 

incentives of $300/kW. These projects have a total load response of 67MW. The total 
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rebate amount given to these participants was just over $20M, which closely matches the 

ARRA project cost report. 

We believe that most, if not all of the projects with incentive values at $300/kW were not 

representative of the true costs to install, program, and commission this equipment. This is 

especially apparent when you compare the incentive distribution from SCE with that of PG&E. 

There may be other projects in the database with incentive costs of less than $300/kW that were 

implemented by this DR contractor. However, we have no way of differentiating those projects. 
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Chapter 3: The Emissions and Economics of Behind-the-Meter Electricity Storage 

 

Abstract 

Annual installations of behind-the-meter (BTM) electric storage capacity are forecast to 

eclipse grid-side electrochemical storage by the end of the decade. Here we characterize the 

economic payoff and regional emission consequences of BTM storage without co-located 

generation under different tariff conditions, battery characteristics, and ownership scenarios 

using metered load for several hundred commercial and industrial customers. Net emissions are 

calculated as increased system emissions from charging minus avoided emissions from 

discharging. Net CO2 emissions range from 75 to 270 kg/MWh of delivered energy depending 

on location and ownership perspective, though in New York these emissions can be reduced with 

careful tariff design. Net NOx emissions range from -0.13 to 0.24 kg/MWh and net SO2 

emissions range from -0.01 to 0.58 kg/MWh. Emission rates are driven primarily by energy 

losses, not by the difference between marginal emission rates during battery charging and 

discharging. Economics are favorable for many buildings in regions with high demand charges 

like California and New York, even without subsidies. Future penetration into regions with 

average charges like Pennsylvania will depend greatly on installation cost reductions and 

wholesale prices for ancillary services. 

 

This paper was published as Fisher, M. J.; Apt, J. Emissions and Economics of Behind-the-Meter 

Electricity Storage. Environ. Sci. Technol. 2017, 51 (3), 1094ï1101. DOI: 

10.1021/acs.est.6b03536.  
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3.1 Introduction  

Stationary electrochemical (battery) storage has seen significant improvements in cost in the 

last decade and is a promising way to perform many electric grid functions [1,2]. Battery storage 

is being installed both on the utility side of the customer meter at the transmission/distribution 

level (ñgrid-scaleò), and ñbehind-the-meterò (BTM) for individual facilities. Grid-scale storage 

can be used to delay infrastructure upgrades, perform wholesale market transactions including 

energy price arbitrage and frequency regulation, and absorb over-generation by distributed 

generation resources, among other services. BTM batteries can reduce retail electricity costs by 

shifting the timing of utility purchases while also performing grid-scale services via aggregation 

or proper tariff structures. BTM storage is being adopted in areas that have high retail electricity 

prices and generous battery subsidies. BTM storage capacity is expected to double each year 

through 2019 in the U.S., when it will represent almost half (~400MW) of annual storage 

installations by capacity [3]. 

Policy makers are now implementing rules and subsidies that encourage large scale 

deployments of electric storage. California has set a storage procurement target of 1.3GW by 

2020 [4] and provided an incentive of $1,300/kW [5]. New York City has an incentive of 

$2,100/kW [6]. At the federal level, FERC Order 755 [7] instructed grid operators to compensate 

fast-responding resources like storage for their speed and accuracy in frequency regulation 

markets. 

The emissions consequences of deploying a storage technology depends in part on how it is 

operated; in turn the operating policies depend on who owns the storage. Previous research has 

focused on grid-scale storage. Investor-owned grid-scale batteries will be operated to maximize 

profit from wholesale market transactions, resulting in homogenous battery behavior across a 
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grid region. A number of studies have shown that grid-scale storage will increase total power 

system emissions under the gridôs current fuel mix when operated for energy arbitrage [8ï12], 

even in Texas which contains a relatively high penetration of natural gas and renewables [13]. 

Energy arbitrage shifts power from high cost periods (evening) to low cost periods (overnight). 

In most regions of the U.S., this use pattern will result in shifting generation from natural gas to 

coal [8] and in all regions more power is used, since storage has a round-trip efficiency that is 

less than 100%. 

The operation of BTM batteries is more heterogeneous because profit maximizing behavior 

will depend on the interaction between the load profile of the building, rate structures (these vary 

widely among utility service territories), and possible wholesale market transactions. There has 

been little investigation of the average behavior and grid-level consequences of a large 

deployment of BTM batteries. A number of studies explore optimal behavior in storage systems, 

but test their efficacy on a limited dataset containing few buildings and/or less than a year of 

data, and few discuss emissions [14ï16]. Neubauer and Simpson [17] used the National 

Renewable Energy Laboratoryôs (NREL) BLAST [18] model to study the behavior of a fleet of 

BTM batteries, but the work used load data from only 98 commercial buildings, used only one 

utility tariff scenario, did not consider ancillary services, and did not calculate emissions effects.  

Our analysis focuses on the operation of commercial and industrial (C&I) BTM storage 

under several market and tariff conditions and across ownership perspectives in order to 

characterize economics and net emissions. C&I is important because recent data show the 

storage capacity installed in this segment has outstripped residential installations by an order of 

magnitude [3]. The goal of our work is to understand the economic conditions under which BTM 
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storage will experience rapid adoption, the effects on system emissions, and alternative incentive 

structures that might mitigate those environmental effects. 

3.2 Methods 

3.2.1 Battery Optimization Model 

In this section we describe the model in general terms. The mathematical formulation and a 

detailed discussion of each equation can be found in Appendix B. Each building in our dataset is 

given a simulated battery. We assume a lithium-ion phosphate chemistry currently used by 

SonnenBatterie [19]. We formulate a linear program to minimize energy costs and maximize 

revenue to the battery owner for 1 year. Depending on the ownership perspective, the battery is 

able to perform energy arbitrage, reduce demand charges, and/or provide frequency regulation 

and spinning reserve. The optimization is conducted at 15-minute intervals to reflect the typical 

structure of demand charges and the sampling rate of many meters. We assume that the storage 

system is too small to affect market prices or marginal system emissions, though we assess the 

sensitivity of our results to ancillary service market prices. The battery charges from the grid 

only, not from co-located generation. 

Battery characteristics, such as capacity (kW), duration of discharge (hours), cost ($/kWh 

and $/kW), and round-trip efficiency (%) were fixed at the following values for the base case 

results. A full sensitivity analysis is given in Appendix B. Battery power was sized to 20% of the 

buildingôs peak load (sensitivity: 15%-25%) in increments of 18kW, the smallest SonnenBatterie 

unit [20]. Assumed capital costs of $600/kWh + $400/kW are taken from a 2011 Sandia National 

Laboratory report [21] (sensitivity: 33%-100% of base case). While these values are based on 

dated information, they provide a consistent way to scale costs across battery power and 
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duration, and match well to more recent values from Lazard [22] ($444 - $1,321/kWh; 4-hr 

duration) and Tesla [23] ($750/kWh; 2-hr duration). A 1 hour duration at rated power was 

chosen for energy capacity in our base case results, though we also show results for 0.5 ï 4 hour 

durations. Round-trip efficiency was assumed to be 83% [24] (sensitivity: 83%-91%). 

The economic incentives facing the battery owner will affect battery operations. In addition 

to a wholesale-only market participant and individual customer facing retail rates, an 

ñaggregatorò can pool retail resources for participation in wholesale markets. We examine all 

three ownership perspectives (customer, aggregator and wholesale-only) by varying the 

components of the objective function (Table 3-1) and constraints. BTM batteries would not be 

used solely for wholesale services, but the perspective is useful in benchmarking the 

performance of aggregator-owned batteries. All perspectives consider the economic tradeoff 

between battery use and degradation by multiplying the fraction of total lifetime energy used 

against the estimated replacement cost of the battery. This degradation model is accurate for the 

lithium-ion phosphate [25] chemistry we have assumed; degradation models for other lithium 

chemistries are more complex [26]. Analysis has demonstrated that our results are insensitive to 

assumptions around degradation. We do not account for the physical effects of degradation on 

charge capacity, which the California Public Utilities Commission estimates at 1% per year [27]. 

Table 3-1: Components of Total Energy Cost Minimization 

Perspective Customer 

Energy 

Cost 

Customer 

Demand 

Charge 

Wholesale 

Energy 

Cost 

Frequency 

Regulation 

Revenue 

Spinning 

Reserve 

Revenue 

Battery 

Degradation 

Customer V V    V 

Aggregator V V V V V V 

Wholesale   V V V V 
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We also vary the amount of information available to the battery owner. Accurate forecasting 

of future building load and market clearing prices is central to the batteryôs ability to minimize 

energy costs. Battery optimization software is proprietary, so we bound this real world scenario 

by assuming two different forecasts: a perfect forecast and a persistence forecast that makes a 

rolling-horizon prediction using the average of historical data. In practice, forecasting algorithms 

are likely to perform better than the persistence forecast, but not as well as the perfect forecast.  

The simulated battery faces three main types of physical and market constraints. 

1. Battery state of charge (SOC) ï Expressed as a fraction of total energy capacity, SOC is 

restricted to 20% - 100%, with a penalty function above 90%, to prevent increased 

degradation from high/low voltages. These restrictions are also found on electric vehicle 

batteries [28]. 

2. Total capacity ï The capacity used to charge/discharge the battery and held for ancillary 

services cannot be greater than the capacity of the battery. 

3. Frequency regulation capacity ï We assume that the frequency regulation signal is 

energy neutral (no net charging or discharging), similar to the dynamic regulation signal 

implemented in the PJM Interconnection (PJM) [29]. But during any given time period, 

the battery will gain and lose charge as it follows the regulation signal. Therefore, we 

place a constraint on capacity used for frequency regulation to ensure SOC limits are not 

violated. One year of regulation signal from PJM [30] was used to estimate the amount 

of charging/discharging possible during a single period. 

For spinning reserve, we make a simplification to reduce model complexity without 

affecting the results. We assume the battery gains revenue from offering spinning reserve 
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capacity, but is never called to provide the service. In practice, spinning reserve is called 

infrequently and for relatively short periods of time. Modelling reserve deterministically with the 

events called by PJM in 2013 yielded a decrease of only 0.01% in total revenue under base case 

assumptions. 

3.2.2 Data 

3.2.2.1 Load Data 

A utility in the Carolinas provided energy usage (kWh) data from 994 individual C&I 

meters at a 15-minute sample rate for 1 calendar year (2013). According to the utility, no 

customer had behind-the-meter generation. Data filters, including low power, missing data, and 

manual identification of meters attached solely to equipment were applied to screen unsuitable 

meters from our analysis, leaving us with 665 meters. Unfortunately, the data do not represent a 

true random sample. Our dataset was readily available to the utility because these customers had 

a long history of interval meter data. More details on the characteristics of the dataset and filters 

can be found in Appendix B. 

A number of threats to internal and external validity are raised when using one dataset 

across geographic regions and tariff scenarios. Average customer type (e.g., manufacturing vs. 

service) and weather (see Figure B-5) may cause differences in load profiles that are masked by 

using data from a single region. While the Carolina customers in our dataset do not face time-of-

use tariffs, such tariffs in other regions may shift when companies choose to consume energy, 

even without batteries, as commercial customers are somewhat price elastic [31]. We cannot 

comment on the size and direction of bias introduced by these threats. In figures B-12 ï B-14 and 

B-24, we compare the results from our Carolina dataset to the results from a geographically 
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diverse set of 100 buildings made public by EnerNOC [32]. While this dataset introduces 

identical biases, we are encouraged by the similarity of results. 

3.2.2.2 Emissions Data 

Marginal emissions factors (MEFs) from Siler-Evans, et al [33,34] are used to calculate the 

net effects of battery behavior on system CO2, SO2, and NOx emissions (see Figure B-8). MEFs 

attempt to capture the emissions rate (kg/MWh) of the marginal generator in a grid region that 

would be used to respond to changes in load from battery use. Siler-Evans, et al. used hourly 

emissions and operation data from 1,400 power plants in the U.S. to calculate factors by hour-of-

day and season. Estimates of MEF by North American Electric Reliability Corporation (NERC) 

region are used for each utility tariff in our analysis (California ï Western Electricity 

Coordinating Council (WECC); New York ï Northeast Power Coordinating Council (NPCC); 

Pennsylvania ï ReliabilityFirst Corporation (RFC)). Our results use MEFs generated from 2014 

emissions data. Appendix B contains an analysis using MEFs generated from average 2006-2014 

emissions data which shows slightly higher net emissions. This reflects the ongoing shift from 

coal to natural gas in the U.S. power mix. We believe this shift will be long-lasting, and therefore 

chose to use emissions data from 2014. 

The database used in Siler-Evans, et al. has an important limitation ï it includes only fossil 

fuel generators larger than 25MW. MEFs do not account for renewables or small fossil 

generators on the margin. PJM is the grid operator for Pennsylvania and is the only operator to 

publish hourly marginal fuel data [35]. Using this database, we found that non-fossil generation 

was on the margin 5% of the hours in 2014 and those hours were distributed throughout the day 

(Figure B-11). This distribution will effect charging and discharging emissions on a similar 

scale; consequently, the bias in net emissions introduced by this limitation is small for PJM. This 
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may be different for California which has a larger percentage of non-fossil generation. MEFs 

also do not account for heat-rate improvements on partially-loaded thermal generators as 

ancillary services are shifted to batteries. 

3.2.2.3 Tariff and Market Data 

C&I customers face two separate charges: one for energy and one for peak demand. Peak 

demand is typically defined as the highest 15-minutes of power consumption in the billing time 

period. We use tariffs from 4 different utilities; Duquesne Light in Pennsylvania, Consolidated 

Edison (ConEd) in New York, and two California utilities ï Pacific Gas & Electric (PG&E) and 

Southern California Edison (SCE). The highest demand charge in each tariff is as follows: 

Duquesne - $7/kW; ConEd - $32/kW; PG&E - $34; SCE - $39. Some of these charges vary by 

time-of-day and season ï see Appendix B for a full description of each tariff. 

While ConEd, PG&E and SCE were chosen because customers can receive incentives for 

installing batteries, they have very high electricity costs relative to the rest of the country. 

Duquesne Light in western Pennsylvania was chosen as a more nationally representative tariff; 

demand charges are 90% of a rough estimate of the national average and energy charges are 86% 

of the average. National averages were calculated from the OpenEI Utility Rate Database [36].  

Hourly clearing prices for real-time energy and ancillary services markets were downloaded 

from grid operators corresponding to the utility tariff being used (California ï CAISO; New 

York ï NYISO; Pennsylvania - PJM). Calendar year 2013 data are used to match the timing of 

load data. 
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3.2.3 Revenue and Emissions Calculations 

The charging and discharging time series are averaged over each hour of the year and 

matched against the hourly/seasonal MEFs described previously. Battery charging requires 

increased output, and therefore increased emissions, from the marginal generator, while 

discharging decreases output from the marginal generator. Net emissions are calculated as the 

sum of the increased and decreased emissions over the entire year and across all buildings in the 

dataset. Emissions are normalized to the delivered energy from the battery (e.g., kgCO2/MWh) 

for ease of comparison to values from other generation sources and studies. 

Total annual revenue from retail and wholesale services is assumed to be constant over the 

lifetime of the battery (10 years [37,38]). The present value of the revenue stream from each 

building is calculated with a discount rate of 15%, and divided by the capital cost to determine 

the net present value ratio. A ratio equal to or greater than one indicates a building with favorable 

economics. We do not include regional subsidies for any scenario. We ignore operational costs in 

maintaining a battery, assuming that each component (battery cells, inverter, etc.) lasts for the 

given lifetime. Appendix B includes a discussion of the chosen discount rate and lifetime, 

including sensitivity analysis (Figure B-20). 

3.3 Results 

3.3.1 Storage Economics 

Figure 3-1 shows averaged hourly battery charging/discharging behavior for each utility 

region under perfect forecasts. Capacity utilization is low because the load peaks that drive 

battery use are infrequent; the batteries are often idle for days. For the customer-owned and 

aggregator scenarios, discharging tends to coincide with peak building load because batteries 
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mitigate demand charges. However, charging occurs at different times. Aggregators are exposed 

to wholesale energy prices, waiting until they reach a minimum overnight before charging the 

battery. Customer owners face only retail pricing. Under flat-rate energy prices, as with 

Duquesne Light, customers will recharge as soon as their load profiles decrease in case an 

unexpected load spike occurs. This coincides with the late afternoon system peak in many U.S. 

locations. Wholesale-only participation leads to a charging profile similar to the aggregator 

scenario, but shifts the discharge profile later in the evening when energy prices peak. Tariff 

design under TOU rates must consider the distribution level impacts of many batteries suddenly 

charging at the same time when the lowest price block is reached; a similar concept to ñsmart-

chargingò schemes proposed for electric vehicle charging [39]. 

 

Figure 3-1: Average daily discharging (a) and charging (b) profile of battery fleet under 

perfect forecasts (note: different scales). Light solid lines are individual profiles for each 
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ownership perspective and utility region. Heavy dotted lines represent an hourly moving 

average of all utility regions for a particular ownership perspective. Average capacity 

utilization is low because the load peaks that drive battery use are infrequent. Customer 

and aggregator-owned batteries discharge during early afternoon hours when C&I 

building load peaks, in order to reduce demand charges. Wholesale-only batteries 

discharge later in the evening when wholesale energy prices peak. Aggregator and 

wholesale-only batteries charge in the early morning hours when wholesale energy prices 

are lowest. The charging profile of customer-owned batteries depends on the type of tariff; 

flat -rate tariffs provide no economic incentive to shift energy, and thus batteries charge as 

soon as building load begins to decrease in the afternoon while time-of-use tariffs 

encourage charging as soon as the lowest price block is reached. 

Persistence forecasts do a poor job of predicting volatile market prices and building load, 

and the batteries fail to meaningfully mitigate demand charges. In reality, forecasting models are 

more sophisticated but computationally expensive and will fall in between the perfect and 

persistence results. All buildings are uneconomic for persistence forecasts under base case 

assumptions, and we therefore choose to discuss only the perfect information cases below, 

though we present persistence sensitivity results in Appendix B. The gap between perfect and 

persistence results emphasizes the importance of accuracy in forecasting algorithms, which is an 

ongoing area of research [40]. We note that the emissions results from the persistence and perfect 

forecast cases are very similar. 

In the perfect information scenario, a significant number of buildings have favorable 

economics under ConEd, SCE, and PG&E tariffs without subsidies. This is driven by high 

demand charges. The economics for Duquesne Lightôs tariff are mixed. Demand charges are low 

which makes peak shaving less profitable, but ancillary service market prices are high in PJM, 

helping aggregator-owned batteries. For the 60-minute duration battery, average annual revenue 

ranged from $25-$112/kWh (installed energy capacity) for customer-owners and $108-

$181/kWh for aggregators across utility tariffs, though amortized installation costs were 
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$200/kWh. The majority of aggregator revenue was generated from demand charge mitigation in 

all regions except Duquesne Light, where frequency regulation dominated. 

Aggregators were able to successfully mitigate demand charges for the customer while 

simultaneously extracting high value from ancillary service markets. Across all tariffs, demand 

charge reduction under aggregators was nearly identical to the reduction under customer-owners 

for the same size battery, while ancillary service market revenue for aggregators was 89-99% of 

the revenue in the wholesale-only scenario. 

Figure 3-2 shows battery economics are more favorable at lower durations. While total 

revenue is higher at longer durations, lower energy capacity utilization means there are 

decreasing marginal returns to installing more energy capacity. Moving from a 30-minute to 240-

minute duration battery increases capital costs by 300% but revenue by only 57-100% and 64-

84% for customer-owners and aggregators, respectively. Demand charge management is 

typically the largest proportion of revenue, though the revenue share by service can be 

significantly different across tariffs (Figure B-18). 
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Figure 3-2: Project economics vs battery duration for customer owners (a) and aggregators 

(b). Solid lines represent the percent of total buildings that have a net present value greater 

than 1 in each utility territory. A discount rate of 15% and unsubsidized costs are used in 

net present value calculations. Bars show the average revenue by service across all tariffs 

normalized to the installed energy capacity of the battery. Installation costs amortized over 

the lifetime of the battery were $280, $200, $160, and $140/kWh for 30, 60, 120, and 240-

minute durations, respectively. Revenue is largely driven by demand charge mitigation 

where longer duration batteries allow for deeper absolute reductions. However, there are 

greatly diminishing returns to increases in duration because the extra energy capacity faces 

a much lower utilization rate. Normalized revenue decreases by nearly 5x as you move 

from a 30-minute to 240-minute battery. Absolute revenue increases by approximately 

75% across the same scale, but cost increases by 300%. 

Revenue for batteries in Duquesne Lightôs territory was driven largely by high prices for 

ancillary services in PJM, although this could not offset low demand charges in creating positive 

project economics. This region is highly sensitive to installation costs and ancillary service 

market prices. If system installation costs decrease by 30%, the percent of buildings with positive 

project economics increases from 0% to 86% for aggregators. However, if ancillary service 

market prices concurrently decrease by 50%, we again find that no projects have favorable 

economics (Figure B-21). The sensitivity to ancillary service prices in all regions is noteworthy 
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(Figure B-19) given the small size of most markets (hundreds of megawatts). They may be 

quickly saturated with a wide deployment of batteries. 

Roughly double the number of buildings have favorable battery economics as installation 

costs are decreased by one-third (~$1,000/kWh to ~$667/kWh), which is a conservative estimate 

of future costs given the 47% reduction in 5 years estimated by Lazard [22]. As battery capacity 

decreases from 20% to 15% of peak load, an additional 10% of the buildings in the sample 

become economic. Round-trip efficiency has a negligible effect on battery economics for most 

buildings (Figure S.19). Battery economics are sensitive to assumptions of lifetime and discount 

rate, with an additional 20% of the buildings becoming economic as you increase lifetime from 

10 to 15 years or decrease discount rate from 15% to 10% (Figure B-20). 

3.3.2 Net Emissions 

Figure 3-3 shows average net emission rates across all storage devices for CO2, NOx, and 

SO2 for each utility region. Net rates are calculated as increased emissions from charging minus 

avoided emissions from discharging. If the set of buildings is restricted to only those that have 

favorable economics, the emissions results do not change significantly. 
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Figure 3-3: Net CO2 (a), NOx (b) and SO2 (c) emission rates from battery operation across 

utility tariffs and ownership perspectives. Net rates are calculated as increased emissions 

from charging minus avoided emissions from discharging. Emission rates are primarily 

driven by energy losses from inefficiency. Duquesne Light has the highest rates because 

MEFs are high in RFC and energy losses from frequency regulation are significant. 

Persistence forecast results are extremely similar to that of perfect forecasts despite their 

poor accuracy. Persistence forecast emission rates are not shown for the wholesale-only 

perspective in PG&E and SCE because the values are biased by capacity factors that were 

essentially zero. In other words, the battery was almost never used and provided very little 

delivered energy. Net CO2 emissions were -370 and -145 kg/MWh in those cases, 

respectively. Uncertainty bars represent uncertainty in the regression parameter estimates 

used to calculate marginal emissions factors. 

Net CO2 emission rates with perfect forecasts range from 85 ï 130 kg/MWh, 75 ï 260 

kg/MWh, and 75 ï 270 kg/MWh for the customer, aggregator, and wholesale-only perspectives, 

respectively. Persistence forecast emissions rates are very similar despite low forecast accuracy 

(gray bars in Figure 3-3). Net NOx emissions with perfect forecasts range from 0.02 ï 0.14 

kg/MWh, -0.11 ï 0.23 kg/MWh, and -0.13 ï 0.24 kg/MWh for the customer, aggregator, and 

wholesale-only perspectives, respectively. Net SO2 emissions range from -0.01 ï 0.30 kg/MWh, 

-0.01 ï 0.58 kg/MWh, and 0.00 ï 0.58 kg/MWh for the customer, aggregator, and wholesale-

only perspectives, respectively. Emissions rates are higher for Duquesne Light for two reasons; 






























































































































































































































