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Abstract

Demandside resources are taking an increasingly prominent role in providing esgadtial
services once provided by thermal power plafiss thesis considers the economic feasibility
and environmental effects of integrating demait® resources into the electric grid with
consideration given to the diversity of market and environmentalitions that can affect their

behavior.

Chapter 2 explores the private economics and sykeeh carbon dioxide reduction when
using demand response for spinning rese®teadyend usesike lighting are more than twice as
profitable as seasonal ensles because spimg reserve is needed ygaund Avoided carbon
emission damages from usidgmand responsastead of fossil fuel generation for spinning

reserveare sufficient tqustify incentives fodemand responsesources.

Chapter 3 quantifies the systdavel net emissions rate and private economics of behind
themeter energy storage. Net emission rates are lower than marginal emission rates for power
plants and idine with estimates afietemission rates from gritvel dorage.The eonomics are
favorable for many buildings in regions with high demand charges like California and New
York, even without subsidies. Future penetration into regions with average charges like
Pennsylvania will depend greatly on installation eeductions and wholesale prices for

ancillary services.

Chapter 4 outlines a novel econometric model to quantify potential revenues from energy
storagehat reduces demand chargébe model is based on a novel predictive metric that is

derived fromtheb i | di n g 6 s Ndrnmabzed eyenue dstimates.are independent of the



power capacity of the battehplding other performance characteristics equal, wtéchbe used

to calculate th@rofit-maximizing storage size.

Chapter 5 analyzes the economiadibility of flow batteries in the commercial and
industrial market. Flow batteries at @dur duration must bless expensiven a dollar per
installed kWh basis, often by D%, to brealkeven with shorter duratiortion or leadacid
despite allowingdr deeper depth of discharge and superior cyclelllieseresults are robust to
assumptions of tariff rates, battery ronigh efficiencies, amount of solar generation and

whether the battery can participate in the wholesale energy and ancillary semaitets.
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Chapter 1: Overview and Motivation

Advances in information technology at the turn of th @htury have hastened the rise of
distributed smdl electricresourcedy allowing for realtime control.At the same time,
technologicabnd logisticardvancements in manufacturing provided by a globalizing economy
have made many of these resources effsctive even at small scaley example, solar panels
and electrochemical batteries have recently seen significant cost d€L|#jeMany utilities
such as those in New Yo[g], lllinois [4], ard California[5], anticipate a time in the future
wheretheir roleis redefinecto actprimarily as a gatekeeper for consumers to transact with one

anothe.

These émandside resourceso called for their typical location on the customer side of the
utility meter,are taking an increasingly prominent role in providing essential grid services once
provided by thermal power plant® some regions of the U,peakingcapacityand even fast
response services like spinning reserve and frequency regudatiooutinely provided by
demandside resourcefkecognizing the benefits of resource diversity both in terms of
economics and reliability, the federal gawerenthaspolicies in place to encourage demsande
resources in both the retail and wholesale electricity marketEnergy Policy Acbf 2005
specifically instructedhe Secretary of Energy to quantify the national benefits of demand
response (DR) anthake recommendations for increasing DR penetrg@prThe Federal
Energy Regulatory Commission (FERC) has instituted order$7]74md 7558] that encourage
wholesale market participation of demand response and energy storage, respectively, by
regulating how these seurces are compensatéthny states havalsolegislated goals for
demandside resourcegnergy storagemandateiave been set in Californj], New York[10],

and Massachusetf$1].



However, plicies and regulatiomay not affect all resources in the same vespecially
within the fragmented market design of the U.S. electricity syddéffierent geographical
regions, endises, and technologies maghlave differently under the same regulatory scheme.
Theresearcldiscussedn this thesisonsiders the economieasibility and environmental effects
of integrating demandide resourcewith consideration given to the diversity of market and

environmenthconditions that can affect their behavior

Chapter 2xplores the private economics and systewel carbon dioxide reductiomhen
using demand response for spinning resddemand response (DR) for spinning reserve may be
appropriate for customers whose operational constraints preclude participation in energy and
capacity DR programéJsing data fronCalifornia, | examine the business cas@osanultiple
customer end usesd business segments. With average annual revenue of ~$35/kW, steady end
uses (e.g., lighting) are more than twice as profitable as seasonal end uses (e.g., cooling) because
spinning reserve is needed yeaund. Total costs for participation would neede under
$250/kW for many end uses and business segments to have payback periods less than 5 years,
which is plausible given equipment cost dat a
programs. Avoided carbon emission damages from using DR indtézabib fuel generation for

spinning reserve could justify incentives for DR resources.

Chapter 3 quantifies the systdavel net emissions rate and private economics of behind
the-meter energy storagBehindthe-meter (BTM) electric storagean help cusmers reduce
energy and demand charges, as well as provide grid services like spinning reserve and frequency
regulation | analyzeBTM storage without céocated generation under different tariff
conditions, battery characteristics, and ownership scenasinog metered load for several

hundred commercial and instrial customers. Net emission rates are lower than marginal



emission rates for power plants andiive with estimates of emission rates from ¢gguel

storage Emission rates are driven pringriy energy losses, not by the difference between
marginal emission rates during battery charging and discharging. Economics are favorable for
many buildings in regions with high demand charges like California and New York, even
without subsidies. Futuggenetration into regions with average chan@eg.Pennsylvaniawill

depend greatly on installation cost reductions and wholesale prices for ancillary services.

Chapter 4 outlines a novetonometrianodel to quantify potential revenues from energy
storaggereducing customer demand chargBse model is intended for utilities and other third
party storage providers who do not have the computing or human resources to build a
complicated optimization moderhe model is based on a novel predictive metritithderived
from the buil di nmydmmdelliseasir tqpimptement, iteis. somdilvhiatlless
accurate thn an optimization model, andjliantify this added uncertainty. During model fitting,
| discovered that the revenue estimates generagaddependent of the power capacity of the
battery if the maximum powebo-energy ratio of the storage is held constant. This effect can be

used to calculate the profitaximizing storage size, whichelkplore in a case study.

Finally, Chapter @nalyzeshie economic feasibility dfow batteries in the commercial and
industrial marketAdvanced leaécid, lthium-ion, and flow batteriebave a wide range of
performance characteristics, so | investigate their effect on profitadiiioss many commercial
building and solar load profiles while applying different retail and wholesale market conditions.
My analysis indicates that flow batteries are uncompetitive witinland leaeacid batteries in
the commercial and industrial market. Flow batteries ahaut duration must bless expensive
on a dollar per installed kWh basis, often by3@o, to brealeven with shorter duratior-ion

or leadacid despite allowing for deeper depth of discharge and superior cycMyifesults are



robust to assumptiortf tariff rates, battery rounttip efficiencies, amount of solar generation

and whether the battery can participate in the wholesale energy and ancillary services markets.
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Chapter 2: The Economicsof Commercial Demand Response for Spinning

Reserve

Abstract

Demand response (DR) for spinning reserve may be appropriate for customers whose
operational constraints preclude participation in energy and capacity DR programs. We
investigate the private businessse of an aggregator providing spinning reserve in California
across customer end uses and business segments. Revenues are calculated using end use level
hourly load profiles. With average annual revenue of ~$35/kW, steady end uses (e.g., lighting)
are mae than twice as profitable as seasonal end uses (e.g., cooling) because spinning reserve is
needed yearound. Business segments with longer operating hours, such as groceries or lodging,
have more revenue potential. Total costs for participation woed ttebe under $250/kW for
many end uses and business segments to have payback periods less than 5 years, which is
pl ausi ble given equipment cost data from Cal
Avoided carbon emission damages from using DR austd fossil fuel generation for spinning

reserve could justify incentives for DR resources.

This paper was published as Fisher, M.; Apt, J.; Sowell, F. The economics of commercial

demand response for spinning reseBergy System2017, DOI:10.1007/42667017-0236X.



2.1 Introduction

Load that can respond to price or reliabil
lowers energy demand during periods of high prices or the need for generation capacity during
periods of high load [1]; grid operators are now exploring the LB&Rdor ancillary services |2

5],

One ancillary service is spinning reserve. This type of reserve is also referred to as
synchronous reserve and is often considered under the umbrella of contingency reserves, which
include spinning and nespinning resefe. Spinning reserves have traditionally been generators
running at idle power and synchronized to the phase of the 50 or 60 Hz grid; they are able to
provide rapid increases in power in response to an unexpected contingency event (e.g., loss of a
transmision line or generating facility) [6]. The operational requirements vary across
jurisdictions, but generally require the ability to increase generation in a short time, typically 10
minutes [7], and to maintain that response for a minimum amount of §piealty 30 to 60

minutes) [8].

The intrinsic characteristics of DR are a natural match to the requirements of spinning
reserve resources. Load resources can provide higher ramp rates [3,9] at lower costs [10] than
traditional generation. Furthermore, ag@ number of loads that are individually less reliable
than a generator may provide aggregate reliability in excess of that provided by a few large
generators [2,3]. The timescale on which spinning reserve operates is well served by DR because

the averagevent lasts only 220 minutes [3]. Moreover, this short period is attractive to DR

participants because it avoids customer fatigue and business operations changes required by the 1

to 8 hour interruptions [11] seen in energy or capacity events.

t



Wholesalanarkets in the US Mid\tlantic, New York, Texas, and the MM/est all allow
DR to participate in spinning reserve markets. However, current Western Electricity
Coordinating Councildés (WECC) rules implicitl
Operabr (CAISO) from allowing DR in the spinning reserve market, but this is a purely
regulatory barrier. WECC rules require immediate and automatic response to system frequency
to participate in spinning reserve [12] while DR typically requires a signal frooutside
operator to initiate response. For our analysis we assume this barrier is removed and regulators

permit DR in the wholesale environment.

The open question is whether market prices are sufficient to attract participation given time
varying resoure availability and the magnitude of implementation costs. Previous studies have
examined the use of DR for ancillary services and the economics of participation. Kirby [2] and
Mathieu et al. [13] consider residential-aonditioning loads in New York ar@alifornia,
respectively. They characterized resource size and calculated potential revenue assuming time
invariant resource availability. MacDonald et al. [14] reviewed market clearing prices and
participation requirements across the U.S., though theytdiscuss potential resource revenue
and assume the demand resource is-timariant. MacDonald et al. [15] examined commercial
building HVAC and lighting loads but did not discuss implementation costs or match time
varying resource availability with miet clearing prices. Ma et al. [16] and Hummon et al. [17]
examined the market dynamics of the western interconnection using unit commitment and
economic dispatch models with increased flexible demand resources for energy and ancillary

services. They didot consider the costs to enable DR for these services.

To our knowledge, no previous research has compared the costs and potential revenues of

using DR for ancillary services while capturing the timagying nature of resource availability



across many engses and customer segments. The 2009 PG&E Participating Load Pilot [18]
implemented DR for nespinning reserve, and thus faced the true operational costs and potential
revenues, but included only 3 participants in the study. We take a more compretiensive

using data from over 2,700 buildings in California. We examine the economics across
geographic regions, building segments, and end uses within California using econometric
models. California is used as an example because its varied load types aatitc@nmparket
operations provide an ideal environment in which to examine the business case for DR and
because the results may influence DR policy in WECC. We examine DR for commercial load,
which represents appr oxi ma tieworkad8sGtheexstin€al i f or
literature by determining which commercial demand response applications are both profitable
and significant to the grid, and making a fiostler estimate of their environmental

consequences.

We focus on the case where DR paptates solely in spinning reserve (not in energy or
capacity). Customers may want to participate only in spinning reserve because of the low
frequency and short duration of events. Indeed, customers accounting for approximately 50% of
the MW signed up tlmugh the California Automated Demand Response program participate in a
voluntary energy reduction program [20]. This suggests that these customers do not find the
mandatory energy curtailment required by capacity events attractive. This work does rsst discu
frequency regulation (another ancillary service) because this application of commercial DR

remains largely in its infancy [9] and the installation costs are highly scenario specific.

There is a growing body of literature on the optimal control of dersateresources in

market and microgrid environments [21]. Here we assume the control algorithms and equipment



are sufficient to achieve the load reductions determined by our models and instead focus our

analysis on the resource and the economics.

We findthat steady end uses (e.qg., lighting) are better able to make a profit than are seasonal
end uses (e.g., cooling) because, unlike a capacity resource, spinning reserve is needed
throughout the year. Payback periods of 5 years or less are plausibleimrieha applications
given data on equipment costs, but longer paybacks for many resources may discourage
widespread participation. Therefore, we investigate if the damages from carbon emissions
avoided by procuring DR in spinning reserve are sufficiefigtify monetary incentives to

encourage greater DR participation.

Section 2 describes our methods and data used to characterize the implementation costs and
calculate potential revenue. Section 3 presents and discusses the results of our analysid. Sect
estimates avoided carbon emissions damages by using DR for spinning reserve and Section 5

presents our conclusions.

2.2 Methods and Data

We consider a DR aggregator who contracts with individual facilities to procure DR. These
facilities receive compensan for agreeing to reduce load when called upon. In turn, the
aggregator sells the cumulative DR capability to a utility or grid operator. We take the
perspective of an aggregator, not an individual facility owner, because aggregators are more
likely than individual facilities to have the resources necessary for sophisticated forecasting

models and the complex administrative requirements necessary to participate in these markets.

Aggregators are most likely to target large commercial participants. Odecbsts are

lower for these customers as administrative and marketing costs often scale per customer rather



than per kW. Large customers are also more likely to participate in DR programs [22] and have

the internal building controls required for automatesponse.

Aggregators earn revenue based on the market clearing price and magnitude of load
response, and incur costs to enable spinning reserve in participant facilities. Revenue is
calculated by matching hourly DR resource availability with market clggmices across
geographic zones, building segments, and end uses. Detailed cost data are not available at the
enduse or business segment level; we therefore treat costs parametrically to determine the level
at which acceptable payback periods are aelieWe compare these cost levels to general cost
estimates from the literature and from a cost database for an automated DR program in

California.

We do not model the effects of a call for spinning reserve on energy cost. This eliminates
the uncertainty iherent in modelling events with probabilistic frequency and duration. A first
order analysis shows that we are ignoring less than $fkWpotential revenue gains from
energy reductions, which would not affect the conclusions of our work. Considersthefcan
end use with no energy rebound after a spinning reserve event (e.g. lighting). End uses with
energy rebound (e.g. cooling) will have less change in their total energy consumption. Assuming
a fairly large number of events (30), ledgration evertt (1 hour), large energy reductions
during all events (normalized value of 1 kW), and an average energy cost of $0.15/kWh, we can
calcul at e t fats eion stcleinsarii wo wet weenfofldedseased gnor i n

energy costs.
2.2.1 Potential Revenue éross End Uses, Business Segments, and Geographic Location
To calculate potential revenue, we gathered hourly commercial load data that have been

standardized to typical weather conditions and disaggregated by geographic zone, business
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segment, and end uddsing models of these profiles, we created new profiles specifically for
the period 201:2013. Normalized hourly profiles were then matched with hourly market

clearing prices to calculate potential revenue.

By using normalized load profiles to represBit resource availability, we assume that DR
resource availability for reserves is proportional to the load of that particular end use at that
particular time. For energy or capacity events, which can last from 1 to 8 hours in California
[11], this may nobe an appropriate assumption. Commercial customers may not want a portion
of their electrical service interrupted for that period of time due to operational constraints.
However, spinning reserve events typically last for onh2Q0ninutes, and thus custers can
shed larger percentages of their load without suffering major interruptions to business operations.
Data from PJM, the only region to publish hourly market clearing resource amounts for DR in

spinning reserve, support this assumption (see Appénthx discussion of this topic).

2.2.1.1 Load Disaggregation

One of the only large scale studies to quantify end use level demand across a broad
geographic area is the 2006 California Commercial End Use Survey (CEUS) [23]. The CEUS
collected metered data from tatified sample of approximately 2,700 buildings in order to
create hourly end use level load profiles. The sample was stratified across 12 geographic zones
and 12 building segment$dble2-1). For each building in the survey, a simulation model that
disaggregates whokacility load into 13 end uses was built in a DQR energy simulation
environment. Simulation results were calibrated to actual consumption arfteneata to
ensure the model was accurate. Once calibrated, the building model was run on a new
standardized weather set meant to represent a typical weather year in California. Buildings

within each sample strata were aggregated to produce weightedeakietaty profiles. 1,872
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unique hourly profiles were created across all geographic zones, building segments, and end

uses.

Table 2-1: Building Segments and End Uses in CEUS

Building Segments

College School
Grocery Restaurant
Health Small Office
Lodging Large Office
Miscellaneous Refrigerated Warehouse
Retail Un-refrigerated Warehouse
End-Uses
Heating Interior Lighting
Cooling Exterior Lighting
Ventilation Miscellaneous
Refrigeration Office Equipment
Hot Water Motors
Cooking Process

Air Compressor

Certain end uses from CEUS were removed from our consideration because they are not
appropriate for spinning reserve. For example, exterior lighting is not a good candidate for
spinning reserve because reducing exterior lighting at night may violatengudioldes. This left
981 profiles. The list of removed end uses and business segments (along with a reason for

removal) is contained ifable2-2.

Table 2-2: End Uses / Segments Removed in this Study

End-Uses Removed Reason for Removal

Exterior Lighting Code issues

Process Business process constraints
Cooking Business process constraints
Office Equipment Businesgprocess constraints
Miscellaneous Unknown resource type
Segments Removed Reason for Removal

Small Office Does not match cost data

12



2.2.1.2 Load Modelling

To convert the standardized profiles from CEUS to 22013 profiles, we first separated
end uses intaveather and neweather dependent categories. Non weatlegendent end uses
were converted using a dayatching method. Consumption values for each hour of the day in
each month were averaged, treating weekdays and weekends separately. While heating would
normally be considered a weatld@pendent end use, regression modelling was not successful in
capturing the variation of heating profiles. Therefore, therdaiching method was used for all

heating profiles.

Regression models with ARMA errors were ufadweatherdependent end uses (cooling
and ventilation). Via 14old crossvalidation, we explored over 20 model specifications. The
final model (Equation 1) showed the lowest averageobgtmple error across all cooling and
ventilation profiles. We atsinvestigated using lagged weather variables. Due to thermal mass,
buildings often show a lagged response to outdoor temperature and humidity conditions.
However, current weather conditions showed bettenfbgample prediction error than lagged
weatherconditions for the standardized CEUS load profiles. We believe this is an artifact of the
modeling process used in the CEUS project and does not reflect what one would find if raw

metered data was used.

All models exhibited significant autocorrelation hretresiduals. To facilitate more accurate
prediction, we chose to model the error using tsages (ARMA) parameters. A necessary
condition for parameter estimation using tisexies models is homoscedasticity. However, a
plot of the residuals for mostdd profiles revealed two distinct periods during the year for which
residual variance was uneven (summer vs. winter). We thus split the annual standardized models

into three periods: the first winter period (Japr), summer (MayOctober), and last winter
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period (NovDec). The selection of periods for boundary months (e.g. April) was performed by
examining how closely the residual variance of the month compares to other months when it was

included in the winter or summer model.

The same ARMA model specifitan for the error term was used across all load profiles
because it was successful in removing most of the autocorrelation in residuals across load
profiles. We attempted to include parameters at other lags but often found that they did not
reduce the Bagsian Information Criteria (BIC) and/or the coefficient estimates were not

statistically significant.

1" y)yaay
i Qo | thyyryaan - o
D y)yaaneao

where:
p Yo" %o " - p —" T

Table 2-3: Equation 1 Variable Descriptions

Variable Description

kW Average kilowatt consumption in hour of the year
1 | Indicator variables for day typa (weekday/weekend) an
' hour of dayh
Temp Temperature (°F) in hour
RelH Relative humidity in hout
=] Regression coefficient for day typeand hour of day for
e weather variabl& (Temp, Temp, or Temp*RelH)
o Error in hourt unexplained by exogenous weather variak
B Backshift operator
d Coefficient for moving average term of lag
i Coefficient for autoregressive term of lag
¥ Unexplained error in time

14



Once the model coefficients were estimated for eachpoafde, predicting the 20122013
hypothetical load profiles was asep process. Coefficients for exogenous weather variables
were multiplied against actual hourly 202013 weather data to form the base of the prediction.
Next, 5,000 separate ARMA sinations were conducted using the tiseries coefficients from
each of the three period models (the length of the simulations was tailored for the period of the
year). The simulated error at each tisiep was independent and identically distributed (j.i.d.
and randomly drawn from a normal distribution with variance equal to the residual variance of
the model. All simulations used a btimperiod of 50,000 iterations. The average path of the
5,000 simulations was added to the predictions from the exogeaoables to form the overall

predicted load profile.

In using load data captured in 2002 to infer load profiles for 2B, we assume the
shape of the end use load profiles has not changed over time. Load shapes could change due to
shifts in equipmergtock (e.g. higher saturations of more efficient equipment) and equipment use
patterns. However, commercial load has not grown in California since 2005 [19]. Load growth is
not a perfect measure of changes in end use load profiles, but the authorsitisliefiective

of a load environment that is in steaghate.

2.2.1.3 Normalization and Revenue Potential

Normalization of the load profiles was necessary to express our results in a standardized
measure of size (per kW). Profiles were normalized to the avkrageluring the top 50 hours
in each year by temperature, which closely mirrors the method used to calculate peak kW for
incentive payments in Californiads Aut oDR pro

calculation for each hour t in the profile.
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The calculation of revenue was completed by matching the hourly normalized resource
availability with the dayahead market clearing price in that hour. Market clearing prices for
spinning reserve are not the same across the entire CAISO region. CAIS<Dahéished
separate procurement requirements for operat.i
Asouth of path 2606 (SP26) to ensure that cont
congestion on the Path 26 transmission line. The Pattta@émission line in central California
roughly delineates the boundary between SCE and PG&E. This area is a bottleneck for power
trying to flow between northern and southern California. Variations in generation mix and
transmission network topology amotig two regions lead to price differences. Prices for NP26
and SP26 were matched with the different forecasting zones from the CTBhI&2-4 details

how the load feecasting zones (FCZ) were mapped to ancillary service zones (ACZ).

Table 2-4: Forecasting Zone Mapping to Ancillary Service Zone Partitions

FCZin FCZin
Service Zonel CAIl SO Service Zone
FCzZ1 FCz7
2 8
3 9
4 10
5 13
6

In making this calculation we assume perfect forecasting of resource availability, which
would tend to increase our revenue numbers. However, this did not affect the final conclusions
of the study. We also assume that load resources aretgkees that d not affect the market
clearing price. While ancillary service participants are worried that markets will saturate quickly

and prices will collapse [24], as long as some traditional generation remains in the spinning
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reserve market prices may not decresagaificantly due to the payment of lost opportunity costs

of energy production [5].
2.2.2 Costs

An aggregator would incur a number of costs in setting up a spinning reserve portfolio,
including equipment installation for controls and automated response, tigiéonenonitoring
loads, equipment maintenance, participant incentives, program administration, forecasting, and
CAISO administrative fees. The communications architecture of such a system in described in
Figure2-1. These expenditures would also allow participation in capacity/energy DR programs,
or frequency regulation markets as control devices advance in sophistication, though in our
analysis we assume end usexsef business constraints that prevent them from participating in

energy/capacity programs.

Unfortunately, detailed cost information for this type of system across many types of
loads/businesses does not exist. The closest program for which informatidaié/@mvailable
is PG&EbGs Participating Load Pilot [18]. |t
program was spent on ctiene startup costs. We were able to obtain generalized cost
information for DR equipment installation (describedha next section) but cannot tie the data
to specific enelses or business types. Therefore, we treat the costs an aggregator would incur as
a parametric variable in our results, reporting ranges that would provide a sufficient payback on
invested capitaWe use the generalized cost information on equipment installation to provide

context for the reported cost ranges.
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Figure 2-1: System communication architecture for loads participating in spinning reserve.
Communication from the grid operator to the aggregator, and to and from the aggregator
and the facility can take place over secure internet connections. Telemetry reporting from
the aggregator to the grid operator must take place via a more demanding Segvisory
Control and Data Acquisition (SCADA) protocol. Communication architecture design
based on the OpenADR 2.0 standard (OpenADR Alliance 2014). Telemetry architecture
from [25].
2.2.2.1 Equipment Cost for Event Communication and Automated Response

In order fa DR to provide spinning reserve within the required 10 minutes, automated
response is necessary. Personal notifications (email or phone) and manual changes to equipment
operating parameters cannot guaranteenirfute response. Automated response can aleleah
by preprogramming DR strategies into control equipment so the response is implemented

without human intervention.

California investorowned utilities provide incentives for the installation and programming
of such equipment through the Automatedria@ad Response (AutoDR) program. Salient

features of the California AutoDR program are:
1. Designed for commercial/industrial customers with peak load >200 kW.

2. Requires patrticipation in utility energy or capacity DR programs.
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3. Incentives are capped at thienimum of 100% of total project cost or $300/kW of load

response. These are etir@e payments (not annual).

4. The amount of load response must be proven through a test event or actual performance

history from energy or capacity events.

Incentive data wereotlected from Pacific Gas & Electric (PG&E) and Southern California
Edison (SCE). Projedevel incentive information from San Diego Gas & Electric and
Sacramento Municipal Utility District as not available. See AppendixXfédr more information
on the treiment of incentive datdigure2-2 displays the combined SCE and PG&E incentive

information. The mean cost is approximately $180/kW.
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¥ $150
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Mean = $180/kW
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Figure 2-2: Incentives provided to install communications equipment, program and
commission DR strategiesNote: incentive data includes commercial and industrial
customers. Industrial customers could not be removed because the projeatabase lacked
identifying information. We do not believe that removing industrial customers would
significantly affect the cost distribution as large projects were evenly spread across higher
and lower $/kW values.

We assume participating commercial dings have a building energy management system

(BEMS) that can communicate with end use level equipment. The market share of BEMS in
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California commercial buildings is approximately 60% for buildings with an average demand of

200kW [22].

An aggregator woul also have to install telemetry at a participating building because it is
required for participation in spinning reserve markets. Telemetry allows the grid operator to
obtain realtime information on load characteristics, such as real and reactive fiveegy and
capacity DR programs do not rely on telemetry for measurement and verification of load

reductiong they use interval meter data that are already captured for billing purposes.

For small distributed resources like DR, the cost of telemetrgignéficant obstacle to
participation in ancillary service markets. Estimates of the cost of telemetry for a large
commercial building are approximately $50,0080,000 [25]. Given the average load response
in the AutoDR program, this cost would transtate@ver $200/kW. However, new designs have
the potential to provide telemetry at much lower cost. Early tests show large commercial
buildings could be outfitted with telemetry at an approximate cost of $50/kW of controlled load
[25] or ¥4 of the current cogstimate. We use the $50/kW estimate to provide context for our

results.

2.3 Results

We find end uses with relatively constant load profiles throughout the year, such as lighting
or refrigeration, are better suited for spinning reserve than seasonal ehkeusesling and
heating. This is counter to the intuition behind traditional capdesed DR programs that focus
on seasonal end uses because they are highly correlated with the system peak demand. Spinning

reserve, however, is needed at all timesiartderefore best served by resources which are
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available at all timedzigure2-3 shows the results by end use and building segment

combinations across all of therézasting zones.
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Figure 2-3: Average annual revenue for end use / building segment combinationghe area

of the dot represents the total peak load for that combination across all forecasting zones.
The shading of the dot corresponds to the average annual revenue potential. Average

annual revenue is calculated as a weighted average across all zones, weighted by peak load.

While cooling is the largest end use by peak load in California, it neverthelegsrésw
revenue potential because of its seasonal nature. Interior lighting is a large end use and is well
suited for spinning reserve, especially in building segments that operate on continuous schedules
such as lodging. The school and college segnveimitsh have lower seasonal loads during

capacity strained periods do especially poorly.

These revenue figures are next used to determine the maximum allowable cost at which an
aggregator would find the simple payback of their investment to be 5 years.®ileple

payback can be calculated as the ratio of costs to annual revenue. The 5 year simple payback
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threshold is important because many companies use simple payback as a metric for energy
decisions and most of these companies use a threshold of ®temss [26] Figure2-4 shows

the distribution of these maximum costs across (a) end uses and (b) business segments. When
viewing the figure, if the reader imagingmsat the true cost to an aggregator was $200/kW, any

point on a distribution below $200/kW would have a payback greater than 5 years. In general,
higher maximum allowable costs represent those end uses / business segments that have higher
revenue. The harontal lines spanning the graphic show the low and high end of the cost

distribution for communication and control equipment discussed in S&cfidh
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Figure 2-4: Distribution of maximum allowable costs($/kW) incurred by an aggregator to
keep payback periods under 5 years across (a) end uses and (b) business segniéigfiser
maximum allowable costs represent end uses / segments that have higher revenue.
Horizontal lines spanning the figure represent tle low and high estimate of equipment
installation costs, including control equipment and telemetry (ignores other types of costs
like participant incentives). Each combination of geographic zone, business segment and
end use represents a single point withieach distribution. The heavy horizontal line in the
middle of each box marks the median. The range of the box represents the interquartile
range. The whiskers extend to the extremes of the distribution.
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For the majority of potential participants, totakts incurred by the aggregator would need
to be below $250/kW to achieve a payback of 5 years or less, though the highest cost for any end
use to achieve the 5 year threshold is $340/kW. The median cost for a 5 year payback across all
end uses excludingyoling and heating is $173/kW. These are plausible maximum cost values
given the distribution of equipment installation costs, though we should remind the reader that
this does not include many other costs an aggregator would face (e.g., participaivieisicent
Thus we find that the business case probably exists to provide spinning reserve from pooled DR

resources, though the aggregator would need to be selective in targeting participants.

We do not find important differences in revenue potential acragggehic zones. The
largest driver of difference across zones is the market price for spinning reserve; southern
California (below the Path 26 transmission line) often has higher prices than northern California.

Figure2-5 shows price duration curves for northern and southern California.
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Figure 2-5: Partial price duration curves for California spinning reserve prices from 201%
2013.Prices are often higher in the southern California zone (below the Path 26
transmission line). Horizontal axis abbreviated for clarity.
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2.4 Policy Implications 1 Avoided Carbon Emissions

We have shown that aggregators will have to be seldatitzegeting potential DR
participants, possibly leaving a large amount of DR on the sidelines of the market. However,
providing incentives to DR would improve economics and encourage participation. We now
consider if such an incentive is justified by arked failure not currently captured in spinning
reserve clearing prices: the damages associated with carbon dioxide (CO2) emissions from fossil
fuel power generation. California already considers the social cost of carbon in their cost

effectiveness tester utility energy efficiency and DR programs [27].

To our knowledge, there has been no detailed study of the emissions avoided from DR
participation in electricity markets for either energy or ancillary services. Studies of avoided
emissions in reserve mats have mostly focused on renewable energy [28] or pumped
hydroelectric power [29]. The most rigorous approach to this problem would make use of a
dispatch model of the California grid to understand the quantity and type of fossil fuel power

plants offet from DR and the duration of offset. Here we instead make @fast estimate.

The procurement of spinning reserve is fundamentally an option to produce power, not an
actual call for power. Marginal changes in the fuel mix of reserves that do ngecth@noverall
energy dispatch will not displace emissions, as nothing has physically changed on the grid.
However, if enough DR is procured to offset the reserve provided by an entire plant, that plant
can shut down. This assumes that the marginal ptad for reserves is online only because of
the need to provide reserve. We adjust for this assumption in our calculations. The emissions
saved would be the difference between the reduction from turning off the-lpadisd reserve
plant and the increasé the base load plant that is now making up for the energy generation of

the reserve plant.
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To calculate emissions savings, it is thus important to understand the fuel types that typically
provide spinning reserve and base load. The 2013 CAISO AnnualtRepdiarket Issues and
Performance [30] reports that hydro supplies approximately half of the spinning reserve in a
typical year. Natural gas and imports supply approximately a quarter of this reserve each.
Droughts and changing climate patterns, howawer reduce the potential for higtevation
hydropower production in California in the future [31]. Reduced hydropower energy production
is typically offset by natural gas in California [32]. We assume that reduced spinning reserve

from hydropower is alsoffset by natural gas.

Natural gas plants represent the majority of the available dispatchable generation in CAISO,
hence the energy production from plants providing reserve that are offset by DR is likely
assumed by other natural gas generation. We asthainall natural gas generation is performed
by combineecycle (NGCC) plants. In reality, some spinning reserve is provided by natural gas
combustion turbines (NGCTs). NGCTs have higher heat rates than NGCC plants. Thus, ignoring
NGCTs likely underestimas carbon savings. In this analysis, we focus just on the emissions and
associated damages from CO2 and not from criteria pollutants (e.g., sulfur dioxide, nitrogen
oxide, particulate matter). This firstder analysis does not consider the emissionsgavin
during actual spinning reserve events, only the savings from a different economic dispatch of
generation resources. However, criteria pollutant emissions savings during spinning reserve
events may be significant. Nitrogen oxide ramping emissions fnoplesicycle natural gas
combustion turbines can be significantly higher than steady state emissions [34]. Thus during a
spinning reserve event, demand response can offset much higher emissions from ramping natural

gas plants than it does under normal digpabnditions.
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Social damages from CO2 are orders of magnitude larger than damages from criteria
pollutants for natural gas plants. Assuming damages of $37 per tonne of CO2 [35] and emissions
of 0.375 tonne of CO2 / MWh [36] for natural gas plants, weutaie damages of ~$14/MWh.

From [37], we find damages from criteria pollutants emitted from natural gas plants on the order

of $0.05/MWh.

The relationship between CO2 output and power generation is nearly linear for a NGCC
plant [33], thus marginally unlaiing one plant and reloading another of the same type saves no
CO2. But if one plant is able to be fully shut down, the CO2 saved is equal to libeedno
emissions of that plant. To make a fistler estimate of the annual CO2 saved from procuring
DR for spinning reserve we use Equation 3. The input assumptions are presérable 5.

Total reserve was divided by the idle generating capacity of an average edrino calculate

the number of plants shut down by procuring DR. We assume that there is enough DR to offset
the reserve of natural gas plants that provide half the average annual spinning reserve
requirement. This corresponds to a future scenario wheneroportion of reserves provided by

natural gas has increased due to falling hydro reserves.
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Table 2-5: Variable Descriptions and Assumed Values for Equation 3

E/L?r?i?sb)le Description Assumed Value Range
Low Savings High Savings
Scenario Scenario
Total Reserve Th_e tc_)tal MW of _ 500 MW (app_rox. half
(MW) spinning reserve in of average spin 250 MW 750MWP
CAISO offset by DR  requirement)
The amount of 50 MWF (approx. 10
spinning reserve min ramp capability
Idle (MW) provided by each for 200MW 100MWA 40MW©
natural gas plant (idle combinedcycle
generating capacity) turbine)
Carbomo_load L
ET;)nnes CQ/ ggé emissions at no 17.5 tonne$33] 14 tonnes 21 tonne%
r
Percent of annual
%R_eserve h_ours tha_t system 7704 74% 8094
(Unitless) dispatch is reserve

constrainell

Number of hours in a

8,760 (Hours)
year

aScenario where DR displaces current reserves from natural gas (~25% of requirement)

b Scenario where DR displaces current reserves from natural gas and hydro (~75% of requirement)

¢ Ramp rate of 2.5%/mif28]

4 Ramp rate of 5%/mifB8]

€ Ramp rate of 2%/min (lower end of ramp rates showB4hFigure 413)

f5% quantile of thérueintercept of33] Figure S4

995% quantileof thetrueintercept of33] Figure S4

h Reserveconstrained means that the system dispatch was different fhgmoshetical scenario where reserves are not requ
Alternatively, a dispatch isiot reserveconstrained if the removal of the reserve constraints from the system optimi:
problem does not change the overall dispatch. Resemvstrained periods atkose in which increased DR procurement wo
cause marginal reserve plants to shut down.

i Calculated from the average number of hours that spinning reserve prices are above the minimum value 26182@1
reserve price at the minimum value reflextsystem which is not resergenstrained.

i Calculated from the low annual number of hours that spinning reserve prices are above the minimum value 20132011

k Calculated from the high annual number of hours that spinning reserve prices are above the minimum value-2082011

We estimate annual carbon savings at approximately one million metric tons (0.2 x 106
2.8 x 106 tonnes for the low and high scemsrrespectively). Avoided damages associated with
carbon emission savings were calculated using two different values of carbon: (1) the social cost

of carbon (SCC) computed by the United States government for emissions year 2010 under the
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average 3% discmt rate scenario ($37 in 2014 dollars) [35], and (2) the average 2014 market
price for carbon under Californiads cap and t
annual results are shownhigure2-6 relative to the ugront capital required to install telemetry

on DR resources.
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Figure 2-6: Damages avoided from carbon emission savings due to DR procurement in
spinning reserve market.Uncertainty bars reflect 90% confidence interval for uncertainty

in the value of damages per metric ton and the uncertainty in the estimated magnitude of
carbon savings (low to high savings scenarios dable 2-5). No correlation was assumed
between the value of damages per metric ton and the savings scenario. Uncertainty in the
value of damages per metric ton for SSC were derived from the digbution of carbon

value per ton for the 3% discount rate for emission year 2010 [35]. Uncertainty in the value
of damages per metric ton for AB32 were derived from the variance of carbon allowance
futures prices during 2014. Capital investment for telemiey calculated at $50/kW.

Figure2-6 demonstrates that meaningful incentives for DR might be justified by avoided
damages from carbon emissions. The value of avaldethges under AB32 produce far less
compelling results than under the SCC, but still reflect a payback of tfienigelemetry

capital costs in approximately 2 years.
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2.5 Discussion and Conclusion

To allow DR to patrticipate in spinning reserve in CaliforiidE CC must modify the
definitions that govern eligible resources by removing the requirement to be immediately and
automatically responsive to system frequency; thereby bringing its policy into alignment with
most other U.S. wholesale markets. Diversifying resources providing ancillary services will

allow the grid to be more resilient and less operationally expensive.

With an average revenue of ~$35/k}#ar, steady end uses (e.g., lighting) have more than
twice the revenue than seasonal end uses ¢eaing) because spinning reserve is needed year
round. Similarly, business segments with longer operating hours, such as groceries or lodging,
have more revenue potential. We find that niche applications of DR could present an attractive
business opportutly: certain business segments in southern California can achieve nearly
$60/kWyear in revenue from interior lighting. However, this will depend on the total cost to
attract spinning reserve resources. To achieve a simple payback of 5 years or lesdighe m
DR resource in California would need to have a total enablement cost of $173/kW or less.
Refrigeration resources with more constant profiles could be profitable with median enablement
costs of $200/kW, while cooling loads would require costs beldk$9 to be profitable. This
is plausible given data on equipment installation costs for automatic DR in California, but the

large range of cost data suggests an aggregator would need to be careful in targeting participants.

Enablement costs for DR are ligkgo decrease in the future as technologies find a common
standard and production volumes increase. NIST is working on smart grid interoperability
standards [41] and California recently required new control systems for lighting, heating and air
conditionng be able to receive automated DR signals [42]. Our analysis included a cost

reduction for telemetry of a factor of 4 under current cost estimates. This will help make DR for
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spinning reserve more economically attractéethe same time, load patterngaynchange as
enduse equipment evolves and the climate changes. This could affect our results by altering the

coincidence of load and low/high market prices.

Avoided carbon emissions from using DR instead of fossil fuel generation for spinning
reserve coul justify the provision of incentives for the cost of installing telemetry (~$50/kW) for
DR resources. If 500MW of DR replaced fossil generation in the spinning reserve market, we
estimate an annual carbon savings of approximately one million metriciarided emissions

may be larger in other regions with higher proportions of-ticed resources.
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Appendix A:  Additio nal Modelling Details
DR availability proportional to load

Figure A1 displays DR clearing MW in each hour of the day across 4 seasons for spinning
reserve. The Pearson correlation coefficient between the median DR MW cleared in a given hour
across all dayyof 20122013 and the median load for that hour of the day was 0.92. DR clearing
amounts in the summer appears quiteila¥is may be due to other more lucrative DR

opportunities (such as capacity) during those times.
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Figure A-1: Demand response MW clared in spinning reserve market for each hour of the
day in PIM during the period 20122013.The pattern of cleared demand response mimics
the typical overall load pattern seen in each season. The heavy horizontal line in the middle
of each box marks themedian. The range of the box represents the interquartile range. The
whiskers extend to the extremes of the distribution.

Reasoning for removal of projects from cost information in SCE

Figure A2 displays the incentive information from PG&E and SCE.
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Figure A-2: (a) Incentives Provided by PG&E for AutoDR. (b) Incentives Provided by SCE
for AutoDR.

We conducted an investigation into the AutoDR program costs and found that nearly all of
the projects which had incentives of $300/kW in the SCE territorg Vikeely from one
contractor that received money from the American Recovery and Raimat Act (ARRA)
grant funds. Weurmise that the use of ARRA funds may have led to different recruitment
pracices and cost reporting. Thus, @@ not believe that thecentive information reported for
these projects is representative of the rest of the project population. Toeddistprovides

details on why wédelieve that these projects were from one contractor.

T An Aut oDR program report stated that dAthe
American Recovery and Reinvestment Act grant influenced a larger load shed and

enabl ement cost in the SCE territory.o [19

1 ARRA records show a total AutoDR project cos$8P.8M in SCE [40] attributable to

one company. The 50% cost sharing required by ARRA leads to a grant of $11.4 million.

1 There are 348 facilities in the project incentive database from SCE that had project

incentives of $300/kW. These projects have a totad response of 67MW. The total
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rebate amount given to these participants was just over $20M, which closely matches the

ARRA project cost report.

We believe that most, if not all of the projects with incentive values at $300/kW were not
representative dhe true costs to install, program, and commission this equipment. This is
especially apparent when you compare the incentive distribution from SCE with that of PG&E.
There may be other projects in the database with incentive costs of less than $3@0AkAreh

implemented ¥ this DR contractor. However, weve no way of differentiating those projects.
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Chapter 3: The Emissions and Economics of Behinthe-Meter Electricity Storage

Abstract

Annual installations of behinthe-meter (BTM) electric storage capacitgdorecast to
eclipse gridside electrochemical storage by the end of the decade. Here we characterize the
economic payoff and regional emission consequences of BTM storage witHouatsd
generation under different tariff conditions, battery chareties, and ownership scenarios
using metered load for several hundred commercial and industrial customers. Net emissions are
calculated as increased system emissions from charging minus avoided emissions from
discharging. Net CO2 emissions range from&2%0 kg/MWh of delivered energy depending
on location and ownership perspective, though in New York these emissions can be reduced with
careful tariff design. Net NOx emissions range fr@i3 to 0.24 kg/MWh and net SO2
emissions range fror®.01 to 0.5&g/MWh. Emission rates are driven primarily by energy
losses, not by the difference between marginal emission rates during battery charging and
discharging. Economics are favorable for many buildings in regions with high demand charges
like California andNew York, even without subsidies. Future penetration into regions with
average charges like Pennsylvania will depend greatly on installation cost reductions and

wholesale prices for ancillary services.

This paper was published Bsher, M. J.; Apt, J. Bissions and Economics of Behitite-Meter
Electricity StorageEnviron. Sci. Technok017, 51 (3), 1094.101.DOI:

10.1021/acs.est.6b03536
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3.1 Introduction

Stationary electrochemical (battery) storage has seen significant improvements in cost in the
last cecade and is a promising way to perform many electric grid functions [1,2]. Battery storage
is being installed both on the utility side of the customer meter at the transmission/distribution
|l evels¢é@dlgeoyd, -temdt 8be h{ Bd M) facilitees. Gridscald stoiageu a |
can be used to delay infrastructure upgrades, perform wholesale market transactions including
energy price arbitrage and frequency regulation, and absorgereration by distributed
generation resources, among other sexwi BTM batteries can reduce retail electricity costs by
shifting the timing of utility purchases while also performing gridle services via aggregation
or proper tariff structures. BTM storage is being adopted in areas that have high retail glectricit
prices and generous battery subsidies. BTM storage capacity is expected to double each year
through 2019 in the U.S., when it will represent almost half (~400MW) of annual storage

installations by capacity [3].

Policy makers are now implementing rudasd subsidies that encourage large scale
deployments of electric storage. California has set a storage procurement target of 1.3GW by
2020 [4] and provided an incentive of $1,300/kW [5]. New York City has an incentive of
$2,100/kW [6]. At the federal leveFERC Order 755 [7] instructed grid operators to compensate
fastresponding resources like storage for their speed and accuracy in frequency regulation

markets.

The emissions consequences of deploying a storage technology depends in part on how it is
opeiated; in turn the operating policies depend on who owns the storage. Previous research has
focused on gricscale storage. Investowned gridscale batteries will be operated to maximize

profit from wholesale market transactions, resulting in homogendtesyhehavior across a
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grid region. A number of studies have shown that-gcale storage will increase total power
system emi ssions under the gridbds cuin2l,ent fue
even in Texas which contains a relativelghhpenetration of natural gas and renewables [13].

Energy arbitrage shifts power from high cost periods (evening) to low cost periods (overnight).

In most regions of the U.S., this use pattern will result in shifting generation from natural gas to

coal [8]and in all regions more power is used, since storage has atrquetficiency that is

less than 100%.

The operation of BTM batteries is more heterogeneous because profit maximizing behavior
will depend on the interaction between the load profile obthikling, rate structures (these vary
widely among utility service territories), and possible wholesale market transactions. There has
been little investigation of the average behavior andlgridl consequences of a large
deployment of BTM batteries. Aumber of studies explore optimal behavior in storage systems,
but test their efficacy on a limited dataset containing few buildings and/or less than a year of
data, and few discuss emissionsi[14]. Neubauer and Simpson [17] used the National
RenewableBer gy Laboratoryds (NREL) BLAST [18] mod
BTM batteries, but the work used load data from only 98 commercial buildings, used only one

utility tariff scenario, did not consider ancillary services, and did not calcutassiens effects.

Our analysis focuses on the operation of commercial and industrial (C&l) BTM storage
under several market and tariff conditions and across ownership perspectives in order to
characterize economics and net emissions. C&l is importantgecacent data show the
storage capacity installed in this segment has outstripped residential installations by an order of

magnitude [3]. The goal of our work is to understand the economic conditions under which BTM
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storage will experience rapid adoptjdhe effects on system emissions, and alternative incentive

structures that might mitigate those environmental effects.

3.2 Methods

3.2.1 Battery Optimization Model

In this section we describe the model in general terms. The mathematical formulation and a
detaileddiscussion of each equation can be foundppendix B Each building in our dataset is
given a simulated battery. We assume a lithiomphosphate chemistry currently used by
SonnenBatterie [19]. We formulate a linear program to minimize energy costsaximdize
revenue to the battery owner for 1 year. Depending on the ownership perspective, the battery is
able to perform energy arbitrage, reduce demand charges, and/or provide frequency regulation
and spinning reserve. The optimization is conducted-aibbte intervals to reflect the typical
structure of demand charges and the sampling rate of many meters. We assume that the storage
system is too small to affect market prices or marginal system emissions, though we assess the
sensitivity of our results ancillary service market prices. The battery charges from the grid

only, not from celocated generation.

Battery characteristics, such as capacity (kW), duration of discharge (hours), cost ($/kWh
and $/kW), and rounttip efficiency (%) were fixed at ehfollowing values for the base case
results. A full sensitivity analysis is given Appendix B Battery power was sized to 20% of the
buil di ngbds peak -25%)andncrénmemsoslBkV theismajlest SAnBe¥Batterie
unit [20]. Assumed capitzosts of $600/kWh + $400/kW are taken from a 2011 Sandia National
Laboratory report [21] (sensitivity: 33%00% of base case). While these values are based on

dated information, they provide a consistent way to scale costs across battery power and
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duraton, and match well to more recent values from Lazard [22] ($$44321/kWh; 4hr
duration) and Tesla [23] ($750/kWhh2 duration). A 1 hour duration at rated power was
chosen for energy capacity in our base case results, though we also show re@@is4drour

durations. Roundirip efficiency was assumed to be 83% [24] (sensitivity: &8P%).

The economic incentives facing the battery owner will affect battery operations. In addition
to a wholesal®nly market participant and individual customegifeg retail rates, an
Aaggregator o can pool retail resources for
three ownership perspectives (customer, aggregator and whalesgléy varying the
components of the objective functiofaple3-1) and constraints. BTM batteries would not be
used solely for wholesale services, but the perspective is useful in benchmarking the
performance of aggregatowned batterieAll perspectives consider the economic tradeoff

between battery use and degradation by multiplying the fraction of total lifetime energy used

against the estimated replacement cost of the battery. This degradation model is accurate for the

lithium-ion phasphate [25] chemistry we have assumed; degradation models for other lithium

chemistries are more complex [26]. Analysis has demonstrated that our results are insensitive to

assumptions around degradation. We do not account for the physical effects datiegran

charge capacity, which the California Public Utilities Commission estimates at 1% per year [27].

Table 3-1: Components of Total Energy Cost Minimization

Perspectivg Customer| Customer Wholesalel Frequency| Spinning| Battery
Energy | Demand | Energy Regulation| Reserve | Degradation

Cost Charge | Cost Revenue | Revenue
Customer |V Vv
Aggregator| V \Y,

Wholesale
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We also vary the amount of information available to the battery owner. Accurate forecasting
of future building |l oad and mar ket <cl earing
energy costs. Battery optimization software is proprietary, sbouad this real world scenario
by assuming two different forecasts: a perfect forecast and a persistence forecast that makes a
rolling-horizon prediction using the average of historical data. In practice, forecasting algorithms

are likely to perform bettehan the persistence forecast, but not as well as the perfect forecast.
The simulated battery faces three main types of physical and market constraints.

1. Battery state of charge (SOCEXpressed as a fraction of total energy capacity, SOC is
restrictedto 20%- 100%, with a penalty function above 90%, to prevent increased
degradation from high/low voltages. These restrictions are also found on electric vehicle

batteries [28].

2. Total capacityi The capacity used to charge/discharge the battery and helddidary

services cannot be greater than the capacity of the battery.

3. Frequency regulation capacityVe assume that the frequency regulation signal is
energy neutral (no net charging or discharging), similar to the dynamic regulation signal
implementedn the PJM Interconnection (PJM) [29]. But during any given time period,
the battery will gain and lose charge as it follows the regulation signal. Therefore, we
place a constraint on capacity used for frequency regulation to ensure SOC limits are not
violated. One year of regulation signal from PJM [30] was used to estimate the amount

of charging/discharging possible during a single period.

For spinning reserve, we make a simplification to reduce model complexity without

affecting the results. We assume Hatterygains revenue from offering spinning reserve
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capacity, but is never called to provide the service. In practice, spinning reserve is called
infrequently and for relatively short periods of time. Modelling reserve deterministically with the
eventscalled by PJM in 2013 yielded a decrease of only 0.01% in total revenue under base case

assumptions.

3.2.2 Data

3.2.2.1 Load Data

A utility in the Carolinas provided energy usage (kWh) data from 994 individual C&l
meters at a Yiinute sample rate for 1 calendar yed1(2). According to the utility, no
customer had behinthe-meter generation. Data filters, including low power, missing data, and
manual identification of meters attached solely to equipment were applied to screen unsuitable
meters from our analysis, leag us with 665 meters. Unfortunately, the data do not represent a
true random sample. Our dataset was readily available to the utility because these customers had
a long history of interval meter data. More details on the characteristics of the datd#tdrand

can be found iMppendix B

A number of threats to internal and external validity are raised when using one dataset
across geographregions and tariff scenarios. Average customer type (e.g., manufacturing vs.
service) and weather (see Figl®) may cause differences in load profiles that are masked by
using data from a single region. While the Carolina customers in our dataset do not faufe time
use tariffs, such tariffs in other regions may shift when companies choose to consume energy,
evenwithout batteries, as commercial customers are somewhat price elastic [31]. We cannot
comment on the size and direction of bias introduced by these threats. In Begl2ésB-14 and

B-24, we compare the results from our Carolina dataséie results 'm a geographically
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diverse set of 100 buildings made public by EnerNOC [32]. While this dataset introduces

identical biases, we are encouraged by the similarity of results.

3.2.2.2 Emissions Data

Marginal emissions factors (MEFs) from Silevans, et al [33,34]ra used taalculate the
net effects of battery behavior on system C0O2, SO2, and NOx emissions (sed@BF3QukEFs
attempt to capture the emissions rate (kg/MWh) of the marginal generator in a gridthegion
would be used to respond to changes in foamh battery use. SiléEvans, et al. used hourly
emissions and operation data from 1,400 power plants in the U.S. to calculate factorsdfy hour
day and season. Estimates of MEF by North American Electric Reliability Corporation (NERC)
region are usedf each utility tariff in our analysis (CaliforniaWestern Electricity
Coordinating Council (WECC); New YoikNortheast Power Coordinating Council (NPCC);
Pennsylvanid ReliabilityFirst Corporation (RFC)). Our results use MEFs generated from 2014
emissons dataAppendix Bcontains an analysis using MEFs generated from average220@6
emissions data which shows slightly higher net emissions. This reflects the ongoing shift from
coal to natural gas in the U.S. power mix. We believe this shift wilbhglasting, and therefore

chose to use emissions data from 2014.

The database used in Silevans, et al. has an important limitatioit includes only fossil
fuel generators larger than 25MW. MEFs do not account for renewables or small fossil
generators on the margin. PJM is the grid operator for Pennsylvania hedidy operator to
publish hourly marginal fuel data [35]. Using this database, we found thdbssihgeneration
was on themargin 5% of the hours in 2014 and those hours were distributed throughout the day
(FigureB-11). This distributiorwill effect charging and discharging emissions on a similar

scale; consequently, the bias in net emissions introduced by this limitation is small for PIM. This
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may be different for California which has a larger percentage ofaossil generation. MEFs
also do not aawnt for hearate improvements on partiallgaded thermal generators as

ancillary services are shifted to batteries.

3.2.2.3 Tariff and Market Data

C&l customers face two separate charges: one for energy and one for peak demand. Peak
demand is typically defineas the highest kBinutes of power consumption in the billing time
period. We use tariffs from 4 different utilities; Duquesne Light in Pennsylvania, Consolidated
Edison (ConEd) in New York, and two California utilitie®acific Gas & Electric (PG&E) and
Southern California Edison (SCE). The highest demand charge in each tariff is as follows:
Duquesne $7/kW; ConEd $32/kW; PG&E- $34; SCE $39. Some of these charges vary by

time-of-day and seasdnseeAppendix Bfor a full description of each tariff.

While ConEd, PG&E and SCE were chosen because customers can receive incentives for
installing batteries, they have very high electricity costs relative to the rest of the country.
Duquesne Light in western Pennsylvania was chosen as a more nationaigmeainee tariff;
demand charges are 90% of a rough estimate of the national average and energy charges are 86%

of the average. National averages were calculated from the OpenEl Utility Rate Database [36].

Hourly clearing prices for regime energy andreillary services markets were downloaded
from grid operators corresponding to the utility tariff being used (CalifordalSO; New
York T NYISO; PennsylvaniaPJM). Calendar year 2013 data are used to match the timing of

load data.
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3.2.3 Revenue and EmissianCalculations

The charging and discharging time series are averaged over each hour of the year and
matched against the hourly/seasonal MEFs described previously. Battery charging requires
increased output, and therefore increased emissions, framatiggnal generator, while
discharging decreases output from the marginal generator. Net emissions are calculated as the
sum of the increased and decreased emissions over the entire year and across all buildings in the
dataset. Emissions are normalizedhe delivered energy from the battery (e.g., kgCO2/MWh)

for ease of comparison to values from other generation sources and studies.

Total annual revenue from retail and wholesale services is assumed to be constant over the
lifetime of the battery (10 yea[37,38]). The present value of the revenue stream from each
building is calculated with a discount rate of 15%, and divided by the capital cost to determine
the net present value ratio. A ratio equal to or greater than one indicates a building withHdavorab
economics. We do not include regional subsidies for any scenario. We ignore operational costs in
maintaining a battery, assuming that each component (battery cells, inverter, etc.) lasts for the
given lifetime. Appendix B includesdiscussion of the asen discount rate and lifetime,

including sensitivity analysis (Figui#-20).

3.3 Results

3.3.1 Storage Economics

Figure3-1 shows averaged hourly battery charging/dischargettavior for each utility
region under perfect forecasts. Capacity utilization is low because the load peaks that drive
battery use are infrequent; the batteries are often idle for days. For the customdrand

aggregator scenarios, discharging tendsotocide with peak building load because batteries
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mitigate demand charges. However, charging occurs at different times. Aggregators are exposed

to wholesale energy prices, waiting until they reach a minimum overnight before charging the
battery. Customeswners face only retail pricing. Under flatte energy prices, as with

Duquesne Light, customers will recharge as soon as their load profiles decrease in case an
unexpected load spike occurs. This coincides with the late afternoon system peak in many U.S
locations. Wholesalenly participation leads to a charging profile similar to the aggregator

scenario, but shifts the discharge profile later in the evening when energy prices peak. Tariff

design under TOU rates must consider the distribution leveldtspd many batteries suddenly
charging at the same time when the | owest pri
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Figure 3-1: Average daily discharging (a) and charging (b) profile of battery fleet under
perfect forecasts(note: different scales). Light solid lines are individual profiles for each
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ownership perspective and utility region. Heavy dotted lines represent an hourly moving
average of all utility regions for a particular ownership perspective. Average capacity
utilization is low because the load peaks that drive battery use are infrequent. Customer
and aggregatorowned batteries discharge during early afternoon hours when C&l
building load peaks, in order to reduce demand charges. Wholesataly batteries
discharge later in the evening when wholesale energy prices peak. Aggregator and
wholesaleonly batteries charge in the early morning hours when wholesale energy prices
are lowest. The charging profile of customeowned batteries depends on the type of tariff;
flat-rate tariffs provide no economic incentive to shift energy, and thus batteries charge as
soon as building load begins to decrease in the afternoon while tiroé-usetariffs
encourage charging as soon as the lowest price block is reached.

Persistence forecasts do a poor job of predicting volatile market prices and building load,
and the batteries fail to meaningfully mitigate demand charges. In reality, forecastiaty @@
more sophisticated but computationally expensive and will fall in between the perfect and
persistence results. All buildings are uneconomic for persistence forecasts under base case
assumptions, and we therefore choose to discuss only the pefidectation cases below,
though we present persistence sensitivity resulégppendix B The gap between perfect and
persistence results emphasizes the importance of accuracy in forecasting algorithms, which is an
ongoing area of research [40]. Wete tlat the emissions results from the persistence and perfect

forecast cases are very similar.

In the perfect information scenario, a significant number of buildings have favorable
economics under ConEd, SCE, and PG&E tariffs without subsidies. This is dyivegh
demand charges. The economics for Duquesne Li
which makes peak shaving less profitable, but ancillary service market prices are high in PJM,
helping aggregateowned batteries. For the #0inute duratio battery, average annual revenue
ranged from $25112/kWh (installed energy capacity) for custoroemners and $108

$181/kWh for aggregators across utility tariffs, though amortized installation costs were
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$200/kWh. The majority of aggregator revenue wasegated from demand charge mitigation in

all regions except Duquesne Light, where frequency regulation dominated.

Aggregators were able to successfully mitigate demand charges for the customer while
simultaneously extracting high value from ancillary sgrmarkets. Across all tariffs, demand
charge reduction under aggregators was nearly identical to the reduction under costoersr
for the same size battery, while ancillary service market revenue for aggregators994s 80

the revenue in the wholalg-only scenario.

Figure3-2 shows battery economics are more favorable at lower durations. While total
revenue is higher at longer durations, lower energy capadiation means there are
decreasing marginal returns to installing more energy capacity. Moving frorman8€e to 240
minute duration battery increases capital costs by 300% but revenue by -drl9%7and 64
84% for customeowners and aggregatorsspectively. Demand charge management is
typically the largest proportion of revenudlepugh the revenue share by service can be

significantly different across tariffs (FiguB218).
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Figure 3-2: Project economics vs battery duration for customer owners (a) and aggregators
(b). Solid lines represent the percent of total buildings that have a net present value greater
than 1 in each utility territory. A discount rate of 15% and unsubsidized costs are used

net present value calculations. Bars show the average revenue by service across all tariffs
normalized to the installed energy capacity of the battery. Installation costs amortized over
the lifetime of the battery were $280, $200, $160, and $140/kWh 80, 60, 120, and 240
minute durations, respectively. Revenue is largely driven by demand charge mitigation
where longer duration batteries allow for deeper absolute reductions. However, there are
greatly diminishing returns to increases in duration becaus the extra energy capacity faces
a much lower utilization rate. Normalized revenue decreases by nearly 5x as you move
from a 30-minute to 240-minute battery. Absolute revenue increases by approximately

75% across the same scale, but cost increases by 300%

Revenue for batteries in Duquesne Lightqos t ¢
ancillary services in PJM, although this could not offset low demand charges in creating positive
project economics. This region is highly sensitive to installatostscand ancillary service
market prices. If system installation costs decrease by 30%, the percent of buildings with positive
project economicsicreases from 0% to 86% for aggregators. However, if ancillary service
market prices concurrently decreasebb§o, we again find that no projects have favorable

economics (Figur8-21). The sensitivity to ancillary service prices in all regions is noteworthy
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(FigureB-19) given the small size of masiarkets (hundreds of megawatts). They may be

quickly saturated #h a wide deployment of batteries.

Roughly double the number of buildings have favorable battery economics as installation
costs are decreased by ehed (~$1,000/kWh to ~$667/kWh), which is a conservative estimate
of future costs given the 47% reductim 5 years estimated by Lazard [22]. As battery capacity
decreases from 20% to 15% of peak load, an additional 10% of the buildings in the sample
become economic. Routidp efficiency has a negligible effect on battery economics for most
buildings (Figue S.19). Battery economics are sensitivagsumptions of lifetime and discount
rate, with an additional 20% of the buildings becoming economic as you increase lifetime from

10 to 15 years or decrease discount rate from 15% to 10% (HeR0e
3.3.2 Net Emissions

Figure3-3 shows average net emission rates across all storage devices for CO2, NOx, and
SO2 for each utility region. Net rates are calculated as increasesl@mifrom charging minus
avoided emissions from discharging. If the set of buildings is restricted to only those that have

favorable economics, the emissions results do not change significantly.
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Figure 3-3: Net CO2 (a), NOx (b) and SO2 (c) emission rates from battery operation across
utility tariffs and ownership perspectives.Net rates are calculated as increased emissions
from charging minus avoided emissions from discharging. Emission rates are primayl
driven by energy losses from inefficiency. Duquesne Light has the highest rates because
MEFs are high in RFC and energy losses from frequency regulation are significant.
Persistence forecast results are extremely similar to that of perfect forecasts dasgheir

poor accuracy. Persistence forecast emission rates are not shown for the wholesadly
perspective in PG&E and SCE because the values are biased by capacity factors that were
essentially zero. In other words, the battery was almost never usedaprovided very little
delivered energy. Net CO2 emissions wer870 and-145 kg/MWh in those cases,
respectively. Uncertainty bars represent uncertainty in the regression parameter estimates
used to calculate marginal emissions factors.

Net CO2 emissionates with perfect forecasts range fromi 8830 kg/MWh, 75 260
kg/MWh, and 75 270 kg/MWh for the customer, aggregator, and wholesalg perspectives,
respectively. Persistence forecast emissions rates are very similar despite low forecast accuracy
(gray bars irFigure3-3). Net NOx emissions with perfect forecasts range from0@24
kg/MWh, -0.117 0.23 kg/MWh, and0.13i 0.24 kg/MWh for the customer, aggregator, and
wholesaleonly perspectives, respeatly. Net SO2 emissions range fret01i 0.30 kg/MWh,
-0.017 0.58 kg/MWh, and 0.0D 0.58 kg/MWHh for the customer, aggregator, and wholesale

only perspectives, respectively. Emissions rates are higher for Duguesne Light for two reasons;

53













































































































































































































































































































































