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SUMMARY 

We design actuated cilia that can maneuver microscopic particles normal to a microfluidic 

channel wall and transport microscopic particles parallel to the channel wall. For identifying the 

design specifications, we employ a hybrid LBM/LSM computational model, to simulate 

hydrodynamic interactions between oscillating elastic cilia and microscopic particles in a 

microfluidic channel. The oscillating synthetic cilia are elastic filaments tethered to the channel 

wall and actuated by sinusoidal force acting at their free ends. The cilia are arranged in a square 

pattern. The microscopic particle is a neutrally buoyant solid sphere, which is sufficiently small 

compared to the cilium length and inter-cilium distances, so that the particle can move freely 

inside the ciliated layer. 

We study the effect of actuation frequency on the particle motion inside the ciliated layer. 

We show that depending on the frequency, particles can be either driven away from the ciliated 

channel wall or drawn towards the wall. We also examine how to use inclined cilia to transport 

particles along the ciliated layer. We show that the particle transport along the ciliated layer can 

be regulated by the frequency of cilium oscillation. The results uncover a new route for 

regulating particle position and transport in microfluidic devices. 
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CHAPTER 1 

INTRODUCTION 

There is currently great interest in combining the functional components that are necessary for 

performing complex chemical and bio-chemical analysis into micron-size integrated devices. 

The potential miniaturized integrated devices could have a number of technical capabilities: the 

ability to use very small quantities of samples, and reagents and to carry out separations and 

detections with high resolution and sensitivity; low cost; short times for analysis; and small 

footprints for the analytical devices [1-2]. This integrated unit has been described as micro total 

analysis system (� TAS) or Lab-on-a-chip devices [3-6]. It offers fundamentally new capabilities 

in the control of concentrations of molecules in space and time and therefore, these devices have  

potential to be of great importance in genomics, drug screening, and clinical applications.  

Microfluidics, i.e., the control of flow of small volumes (from fL  to Lm ) of liquids in 

microscopic (1-1000 � m) channels, is the central technology in this field. Microfabricated 

integrated circuits [7] revolutionized computation by vastly reducing space, labor and time 

required for calculation. Microfluidic systems offer similar promise for large-scale automation of 

chemistry and biology [5], suggesting numerous experiments being performed in parallel. The 

increasing availability of microfluidic systems of various geometries and materials for the 

downscaling of chemical or biochemical processes raises a strong demand for adequate 

techniques to precisely determine flow parameters and to control fluid and particle manipulation. 

Particle control in microfluidic channel poses an important problem, considering numerous 

biological applications involve navigating microscopic solid particles in microflows. Traditional 

particle transport by turbulence is not feasible in micro-flow characterized by low Re. For 

microflows, with higher surface area-to-volume ratio, inertia of particles become negligible 
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compared to enhanced viscous drag. Thus, traditional particle control methods, which rely on 

inertia, would not be effective in this length scale. 

1.1. Driving Mechanisms in Microfluidic Devices 

Driving surrounding fluid in microchannel is an essential requirement for propelling particles 

through micro-channel. Proximity of boundaries, owing to small size of micro-fluidic devices, 

posits strong influence of channel boundary effect in associated microflows. Expectedly, the 

driving techniques that exploit the boundary effects are quite effective in microfluidic 

manipulation.  Based on driving agents and their interactions with channel boundary, transport 

mechanisms in the context of microfluidic devices can be classified as being either mechanical or 

non-mechanical.  

Mechanical pumping systems are typically based upon the deflection of a thin membrane 

into a pumping chamber or channel. The deflected membrane forces the liquid through the 

channels to create a pumping action. Membrane actuation in these systems can be done 

electrostatically [8], piezoelectrically, or thermoneumatically [9-11]. By using multiple 

membrane chambers, a peristaltic pumping action can be achieved [12]. Alternatively, a 

reciprocating type pump can be constructed by combining two check valves with a single 

membrane actuator. These mechanical systems are designed for operating on continuous liquid 

streams; consequently, they may be well suited for simple continuous monitoring applications 

such as in liquid chromatography. 

Nonmechanical pumping involves application of body-force on fluid. Since Bart et al. 

have devised micro-electrohyrdodynamic pump [13], several methods for controlling the flow of 

liquids in microfluidic systems have been reported [14-15], and electrokinetic control in 

microfabricated capillaries has received the most attention [16]. Electrokinetic control has 
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several features that make it an attractive option for miniaturized systems: (i) pumping of fluids 

in the channels, which arises from electroosmotic flow (EOF) in capillaries with charged walls, 

and the control of the direction of flow are easy to implement and require only a computer-

controlled high-voltage (1-30 kV) power supply, electrodes, and a series of relays; (ii) in 

electrophoretic mode, electrokinetic control results in separations of molecules by size and 

charge and can be used for chemical analysis; (iii) the microscopic (<100mm ) channels required 

to generate EOF can be defined in a number of materials, e.g., glass, quartz, and polymers, using 

microfabrication. Electrokinetic pumping has some serious disadvantages as a method of 

controlling the flow of fluids, however. First, it is sensitive to the physicochemical properties, 

such as ionic strength and pH, of the fluid being pumped. For example, liquids with high ionic 

strength cannot be pumped using EOF due to excessive Joule heating; it is, therefore, difficult or 

impossible to pump biological fluids, such as blood and urine, by this method. Second, the high-

voltage power supplies used have adverse safety implications and power and space requirements. 

Third, because electrokinetic pumping requires continuity in the fluid in the channels, it does not 

work in the presence of trapped bubbles (e.g., air), and care has to be taken to ensure that the 

channels are free of bubbles. Finally, and most importantly, although EOF is well suited to 

controlling small volumes of liquids in narrow (<100 mm  ) channels, it cannot be used to pump 

liquids at high flow rates (>1 sL /m ) in wider channel capability that is needed for some 

microfluidic applications, e.g., sample preparations because of Joule heating. 

Magnetohydrodynamics presents another mechanism for driving liquid and particles in 

microfluidic devices.Jang et al. [17] developed a micropump based upon magnetohydrodynamics 

(MHD) principles. Since in many microfluidic applications, one uses buffers and solutions that 

are electrically conductive, one can transmit electric currents through the solutions. In presence 
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of an external magnetic field, the interaction between the electric currents and magnetic fields 

results in Lorentz body forces, which, in turn, can be used to propel and manipulate fluids. 

Trapping and transport of single cells are being investigated and recently, advances have been 

made towards the detection of magnetic material on-chip.  Magnetic particles can be transported 

with time-varying electromagnetic fields, along patterned metallic surfaces.[18] The advantage 

of MHD compared to electrokinetics is operation at relatively small electrode potentials, 

typically below 1 V, and much higher flow rates as long as the conduit’s dimensions are not too 

small. The disadvantage of MHD is that it is a volumetric body force which scales unfavorably 

as the conduit’s dimensions are reduced. Xiang et al. [19] further improved the MHD idea by 

introducing appropriate patterning of the electrodes.  

Using a rotating disc [20], variable flow rates , ranging from less than 10 nl s�1  to greater 

than 100 � l s�1  , can be achieved depending on disc geometry, rotational rate (RPM), and fluid 

properties. Duffey et al. [21] developed a centrifugal force based particle driving mechanism. 

Centrifugal effect in a rotating microchannel, is insensitive to physicochemical properties such as 

pH, ionic strength, or chemical composition (in contrast to AC and DC electrokinetic pumping). 

Aqueous solutions, solvents (e.g., DMSO), surfactants, and biological fluids (e.g., blood, milk, 

urine) have all been pumped successfully. This approach of fluid pumping facilitates valving 

action. In traditional pumps, two one-way valves form a barrier for both liquids and particles. In 

the case of the microcentrifuge, valving is accomplished by varying rotation speed and capillary 

diameter. 

  Few inertial phenomena such as acoustic streaming can play significant role in micro 

flow control. High frequency acoustic wave can circumvent difficulties associated with small 

scales. Even though it is periodic, due to inertial non-linearity, it can rectify oscillatory fluid 
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motion to give time-averaged flow referred as steady or acoustic streaming [22]. A manifestation 

of acoustic streaming is quartz wind [23]. The quartz wind is employed for driving microflow, 

by sending acoustic wave along a channel, with the length of )(1 wa -³L , where )(1 wa -  is the 

attenuation length of the acoustic wave. Non-linear inertial effect permits rectification forcing 

and gives rise to steady body force leading to a Poiseuille flow with a flow rate LU mwr /~ 42
0 . 

In quartz wind, streaming, arising within a fluctuating flow field, is commonly associated with 

attenuation due to viscosity. While quartz wind based streaming occurs in the bulk of the liquid, 

steady streaming flows occur around solid boundaries. Solid boundary with oscillatory flow 

gives rise to steady boundary-driven streaming [24] with time-averaged velocity )./(~ 2
0 RU w  

Examples that might find uses in mixing and pumping in microfluidic application include 

streaming due to oscillatory flow in curved pipes [25], tapering channels [26], and channels with 

variable cross-section [27]. 

1.2. Bio-inspired Micropumping 

Creating non-zero time-averaged flow in a typical biological system is challenging because of 

large viscous damping. The situation can be compared to swimming at a low-Re flow. Similar to 

microfluidic devices, fluidic environment of biological systems is typically characterized by sub-

millimeter length scales and a low Re hydrodynamics. Biological systems such as paramecium 

use cilia for pumping fluid. Cilia are a short hair-like structures (approximately mm10  in length), 

present on surfaces of many cells, notably in some protozoans and some type of vertebrate 

epithelium [28]. Cilia usually occur in large groups and are functionally and structurally similar 

to eukaryotic flagella. They exhibit beating motion induced by the molecular motors embedded 

in the cell membrane. Beating cycle of cilia consists of a fast power stroke and a slow reverse 

stroke [29] . Beating cilia can produce cell movement or current in the fluid surrounding them. 
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Typical range of beating frequency of biological cilia is Hz10010-  and cell propulsion velocity 

is of the order .min/10mm  In human lung, cilia are responsible for keeping it clean from foreign 

dust particles and bacteria. Marine animals use cilia for trapping food particles from their 

environment. Paramecium, a group of uniceller ciliated protozoa, utilizes beating motion of cilia 

for locomotion and food gathering [30].  

As highlighted by Riisgard et al. [31], ciliary sieving and ciliary collecting are prevalent 

particle extraction mechanism employed by invertebrate marine microorganisms. Examples of 

such arrays are found in bivalves, ascidians, brachiopods, bryozoans, phoronids, polychaetes and 

larval echinoderms. These motile, microscopic cilia experience the surrounding medium as a low 

Reynolds number fluid [32], i.e., a highly viscous environment, where the effects of inertia are 

negligible. Nevertheless, by oscillating in a periodic, time-irreversible manner, the cilia can 

generate net currents within the fluid and thereby, effectively pump the food particles towards 

the feeding animals. The velocity of water propulsion depends on cilia length, beat frequency, 

pattern of beating, the arrangement of the cilia and their co-ordination. Beating cilia influence a 

layer of water only two or three cilium lengths deep, with maximal velocity near the cilia tip 

[33]. Mayer et al. [34] developed numerical model of cilia-driven flow, simulating metachronal 

wave transporting the particle.  

The behavior of these biological cilia provides a useful design concept for creating 

microfluidic devices where actuated “synthetic cilia” would regulate the movement of 

microscopic particles (e.g., biological cells or polymeric microcapsules) within the device. 

Inspired by the effectiveness of biological cilia, recently there has been a tremendous interest in 

designing artificial ciliated system that is suitable for microfluidic mixing and flow 

manipulation. Lack of efficient manufacturing techniques and effective actuation impede the 
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progress of artificial cilia in microfluidics for long. However, Evan et al. [35]  have recently 

created a magnetic actuation technique for ciliated surfaces, based on high-aspect-ratio 

cantilevered micro- and nanorod arrays. This development triggered several investigation related 

to effect of actuated cilia on flow structure in microfluidics devices. Oh et al. [20] have 

developed a microfluidics mixer based on actuated cilia.  

The development of microfluidic channels that encompass synthetic cilia is still in its 

infancy; nonetheless, recent experiments [36] demonstrated that actuated polymeric cilia are 

effective at pumping fluids within a prototypical device. In addition, very efficient mixing is 

obtained using specially designed geometrical cilia configurations in a micro-channel. Since the 

artificial cilia can be actively controlled using electrical signals, they have exciting applications 

in micro-fluidic devices. Baltussen et al. [37] studied effectiveness of actuated cilia as a micro-

mixer exhaustively. Kieseok Oh et al. [38] developed a bio-mimetic microfluidic device that 

mimics the high compliance and the beating frequency of biological cilia in order to achieve bio-

compatible manipulation of microfluidics. To facilitate the design of the next stage devices, there 

is a need for computational studies that not only pinpoint the parameter space where the 

synthetic cilia would be most efficient, but also bring to light new functions that these filaments 

could perform. To date, there have been few simulations of the motion of microscopic particles 

in the three-dimensional fluid flow that is generated by the beating of cilia. The potential 

functionality of synthetic filaments in the selective trapping of particles from the solution or the 

expulsion of trapped species remains unexplored. Similarly, the effectiveness of actuated cilia in 

transporting a particle along a ciliated surface has not been studied.  
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1.3. Scallop Theorem 

The mechanism behind micro-flow created by actuated cilia is similar to swimming at low Re. 

Actuated cilia can be considered as tethered swimmers. According to  scallop theorem [39], to 

create a non-zero time-averaged flow, a swimmer must bend in way that is not invariant under 

time-reversal. In other word, one cannot swim at low Reynolds numbers with self-retracing 

strokes. An analog of scallop theorem for pumping states that there is neither momentum nor 

angular momentum transfer in a pumping cycle that is self-retracing. At low Re, flow through a 

micro-channel is linear. This can be seen from the fact that dtVs  is balanced by dtVs-  when 

the path is retraced. So, to create a time-averaged flow by a deforming body such as a tethered 

cilium, it must not deform in a time-variant reciprocal manner.  For a deformation to be time-

irreversible, the swimming system must have multiple degrees of freedom. Since cilia are 

tethered to the wall, it performs cyclic motion. We need to have some asymmetry in the system 

that can be done by rotation, facilitated by multiple degrees of freedom.   

As demonstrated in Figure 1, a body with two-degrees of freedom (� ,� ) performs cyclic 

motion. The body which has a shape shown by the solid line changes its shape to the dashed 

contour and then it changes back to its original shape. During this cyclic motion, it utilizes its 

multi-degree freedom for producing time-irreversible cyclic motion. As evident from figure 1, 

configuration S2 and S4 are not identical. So, the body is not performing time-invariant motion. 

This irreversibility is manifested by the rotation between state 1 (represented by solid blue line) 

and state 2 (represented by solid red line). This is enough to elude the scallop theorem. As 

momentum of the system is conserved, rotation of the body will create flow in the surrounding 

liquid. 
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Figure 1: Non-reciprocal cyclic motion and resultant effect on fluid pumping 

To create actuation that is not invariant under time-reversal, we can use oscillating elastic 

cilia, which have multiple (>2) degrees of freedom and can deform in such a manner that it need 

not have to retrace its trajectory. This justifies the choice of polymers for the material of artificial 

cilia. Unlike biological cilia, artificial cilia have identical forward and reverse strokes. The net 

transport in the layer of artificial cilia is due to secondary flow, generated by the non-recipetorial 

motion of elastic cilia. 

1.4.  Viscoelastic Coupling at Low Re Flow 

 Our system is governed by viscously over damped dynamics [40]. By numerical techniques, we 

couple elasticity theory and over-damped viscous hydrodynamics. Fluid flow in microfluidic 

devices is characterized by small length scale, result into low Reynolds number. At low Re, 

inertia is negligible compared to viscous effect. Since inertia is negligible, the motion is perfectly 

reversible in time. Time, in fact, makes no difference on flow pattern.  

Assuming the surrounding fluid to be incompressible and its motion is governed by the 

Navier-Stokes equations:  

S1 S2 S3 

S4 S5 

�  

�  

1 

2 
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In elastohydrodynamic actuation, oscillating elastic bodies are used for triggering micro 

flows by time-varying external force, )cos( tA w . This leads to bending in elastic cilia. The 

resultant flow field emerges due to the coupling between elastic force exerted on liquid by cilia 

and viscous drag force. The dynamics of elastic cilia in the limit of small deflection ),( txy  is 

governed by the following 4th order partial differential equation: 

 ,xxxxt yvy -=  (3) 

where v is the ratio of bending modulus and drag coefficient. Natural length of the system for 

frequency ,w  is 25.0)()(
wx

w
EI

l = . To characterize the frequency in this overdamped viscous 

system, we use a non-dimensional number, called ‘sperm number’, )(/ wllSp= . We therefore 

use the sperm number to characterize the motion of elastic cilia.  

Frequency of biological cilia is in the range of 10-200Hz [41]. For our artificial cilia of 

length, ,40 ml m=  square cross-section with side length, ,4 ma m= polymeric material elastic 

modulus, ,100KPaE =  surrounded by water with viscosity sPa.10 3- , and actuation frequency 

10-200 Hz, the ‘Sperm Number’, Sp of cilia is in the range of 3-5.  In low ,Sp  cilia wiggle time-

invariantly and unable to produce any time-averaged propelling effect. On the other hand, in 

large Sp, significant viscous damping suppresses cilia motion and again results a weak 

propelling effect. Within these two extremes, cilia dynamics and associated propulsion are 
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governed by interplay between elastic bending of cilia and viscous drag it experienced from 

surrounding fluid. In this range, we can expect effective propulsion from cilia. 

As explained later, bending modes of elastic cilia oscillating at 3=Sp  and 5=Sp  are 

different. For 3=Sp , cilia exhibit the first mode of bending, whereas for 5=Sp  the bending is 

characterized by the second mode. As we will show, the difference in viscoelastic coupling 

between two these Sp numbers leads to different directions of associated cilia-driven flow. 
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CHAPTER 2 

PROBLEM DEFINITION 

 We use three-dimensional computer simulations to probe the utility of a ciliated surface to 

control the motion of microscopic solid particles within a microfluidic channel, where the fluid is 

characterized by a low Reynolds number (Re). Specifically, the problem addressed in this thesis 

is to identify design specifications for artificial cilia based microfluidics devices, those are 

capable of maneuvering a microscopic particle vertical to the channel wall, and transporting the 

particle parallel to the channel wall. 

We model our system computationally, where the cilia are elastic filaments that are 

tethered to a solid wall and actuated by externally applied periodic forces. We introduce a 

neutrally buoyant, solid particle of radiusR , which is sufficiently small (compared to the cilium 

length and inter-cilium distances) that the particle can move freely inside the ciliated layer. We 

assume that the micron-scale particle and cilia are sufficiently large, however, so that they are 

not affected by Brownian fluctuations.  

As we show below, the actuated motion of these synthetic cilia can cause the particle to 

move perpendicular to the cilial layer. Furthermore, by changing the frequency of the applied 

force, we can regulate the direction of the particle’s migration. In effect, this synthetic system 

mimics the ability of the marine suspension-feeders to manipulate particulates in their 

environment and can be utilized to facilitate either the deposition or removal of particles from 

substrates in microfluidic devices. In addition, we investigate the capability of actuated cilial 

layer to transport particles parallel to a substrate wall. In this case, the cilia are tethered at an 



13 
 

angle 450 to the wall and actuated by externally applied forces. Similarly to the case of cilia 

perpendicular to the channel wall, we introduce a neutrally buoyant, solid particle that can move 

freely inside the ciliated layer, but not affected by Brownian fluctuations. As shown below for a 

given frequency and initial position of the particle, cilia can transport the particle by a 

considerable distance parallel to channel wall. 
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CHAPTER 3 

METHODOLOGY 

Our simulation box encompasses oscillating cilia and a suspended particle, which are immersed 

in a viscous fluid. To capture the complex fluid-structure interactions in this multi-component 

system, we employ a hybrid “LBM/LSM” approach [42-46], which integrates the lattice 

Boltzmann model (LBM) [47-48] for hydrodynamics and the lattice spring model (LSM) [49-50] 

for the micromechanics of elastic solids. Put succinctly, the LBM is an efficient solver for the 

Navier-Stokes equation. Via the LSM, we can fashion the cilia and the particle from a network of 

harmonic “springs”, which connect nearest and next-nearest neighbor lattice nodes. 

 

Figure 2: Schematic of computational system. The nodes that are connected by springs form the 
lattice spring lattice (for clarity, we omitted the diagonal springs that connect each node with all 
its next-nearest neighbors). The remaining nodes represent the lattice Boltzmann lattice (blue for 
fluid nodes and black for solid nodes). The solid lines are the solid-fluid interfaces. 
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3.1.  Lattice Boltzmann Model 

Lattice Boltzmann model is a lattice-based method for simulating hydrodynamic flows. The 

model is comprised of two processes. First is the propagation of fluid “particles” to neighboring 

lattice sites, and second being collisions between particles when they reach a site. The system is 

characterized by a single particle velocity distribution function, ),,(),( tcrntrn ii º  describing 

local mass density of fluid particles with velocity ic  at a lattice node at r  time t. Here, ic , r , 

and t  are discrete variables, while the distribution function itself is a continuous variable. The 

hydrodynamic quantities, mass density,r ; momentum density, ; momentum flux, 

re moments of the distribution function: 

 iiiiiiiii nccncjn S=PS=S= ,,r . (4) 

The distribution function varies with time in accordance with the discretized Boltzmann 

equation: 

 )],([),(),( trntrntttcrn iii D+=D+D+ . (5) 

Here, the collision operator )],([ trnD  quantifies the change in distribution function, in  

due to instantaneous collisions at the lattice nodes. A multi-relaxation time collision operator is 

employed for assigning independent values to the shear and bulk viscosities. This collision 

operator conserves mass and momentum. It also relaxes the momentum flux (or stress) toward 

local equilibrium. The velocity ic  in the i-th direction is specified such that fluid particles take 

exactly one time step tD for propagating from one lattice site to the next.  

A computationally efficient form for the collision operator can be modeled by linearizing 

about the local equilibrium eqn   as:  
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jiji
eq

ii nLnn S+D=D
 

(6) 

where  ijL  are the matrix elements of the linearized collision operator, neq
j

neq
j j

nnn -=  , and 

0)( =D eq
i n . The computational utility of lattice-Boltzmann models depends on the fact that only 

a small set of velocities are necessary to simulate the Navier–Stokes equations. 

A particular lattice-Boltzmann model is defined by a set of velocitiesic , an equilibrium 

distribution eq
in , and the eigen-values of the collision operator. The population density associated 

with each velocity has a weight cia  that describes the fraction of particles with velocity ic  in a 

system at rest; these weights depend only on the speed ic  and are normalized so that their sum 

equals to unity. Note that the velocities ic  are chosen such that all particles move from node to 

node simultaneously. For any cubic lattice, 

 ;12
2� =

i
ii

c cCcca i  (7) 

where, txci DD= / , xD  is the grid spacing, and 2C  is a numerical coefficient that depends on the 

choice of weights. However, in order for the viscous stresses to be independent of direction, the 

velocities must also satisfy the isotropy condition; 

 
}{4

4 bdaggbadgdabdgba dddddd ++=�
i

iiii
c cCCCcca i .  (8) 

In three dimensions, isotropy requires a multi-speed model; for example the 18-velocity 

model. This model employs the [100] and [110] directions of a simple cubic lattice, with twice 

the density of particles moving in [100] directions as in [110] directions; alternatively a 14-

velocity model can be constructed from the [100] and [111] directions with a density ratio of 7:1.  
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The form of the equilibrium distribution is constrained by the moment conditions 

required to reproduce the inviscid (Euler) equations on large length scales and time scales. In 

particular, the second moment of the equilibrium distribution should be equal to the inviscid 

momentum flux p1+ � uu : 
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i

eq
inr

 
(9) 

 
.i

i

eq
i cnj �=   (10) 
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(12) 

The linearized collision operator must satisfy the following eigen-value equations; 

 .,,0,0 22
jviji ijjijii iiji i iij cLcccLccLcL ll ==== ��� �  (13) 

where , indicates the traceless part of cici. The first two equations follow from conservation 

of mass and momentum, and the last two equations describe the isotropic relaxation of the stress 

tensor; the eigen-values  and  are related to the shear and bulk viscosities and lie in the range 

�2 <  < 0. In general the eigen-values of these kinetic modes are set to �1, which both 

simplifies the simulation and ensures a rapid relaxation of the non-hydrodynamic modes. 

The collision operator can be further simplified by taking a single eigen-value for both 

the viscous and kinetic modes. This exponential relaxation time (ERT) approximation, 

, has become the most popular form for the collision operator since it is simple and 

computationally efficient. However, the absence of a clear time scale separation between the 

kinetic and hydrodynamic modes can sometimes cause significant errors at solid-fluid 

boundaries.  
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The distribution function post-collision can be written as: 
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r .  (14) 

The zeroth (� ) and first (j= � u) moments are the same as in the equilibrium distribution but 

the non-equilibrium second moment � neq is modified by the collision process: 

 ,1)1:)(1(
3
1

)1(
* neq

v

neqneqi P++P+=P ll   (15) 

where eqneq P-P=P  ; The kinetic modes can also contribute to the post-collision distribution, 

but we choose the eigen-values of these modes to be �1, so that they have no effect on *in  with 

1-== vll is equivalent to the ERT model with 1=t  for 1-<l , the kinetic modes relax more 

rapidly than the viscous modes, which is the proper limit for hydrodynamics. 

3.2. Lattice Spring Model 

The elastic and plastic response of the material is represented by an array of `springs' which 

occupy the nearest, and next nearest neighbor, bonds of a simple cubic lattice. The energy 

associated with a node m in the lattice is assumed to be of the form, 

 .).().(
2
1 � --=

n nmmnnmm uuMuuE  (16) 

where the summation is over all the neighboring nodes, n, attached to m by a spring, um is 

the displacement of node m, and Mmn is a symmetric matrix which determines the elastic 

properties of the springs. It is shown in the subsequent parts of this section that this system of 

springs obeys, to first order, the equations of continuum elastic theory for isotropic elastic 

medium whose elastic constants can be determined in terms of the elements of the matrices Mmn. 

The harmonic form of the energy results in forces which are linearly dependent upon the 
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displacement of the nodes and the resulting set of sparse linear equations may be solved by a 

conjugate gradient method to find the equilibrium configuration which corresponds to no net 

force at each node. The matrices Mmn associated with a bond can be varied to represent the 

material properties present in different phases within the same material, hence allowing 

heterogeneous systems to be simulated. Bonds which straddle two phases are assigned linearly 

interpolated values.  

We assume that the matrix associated with the spring in the [100] direction is of the form 

 ,

00

00

00

1

1

1

]100[

�
�
�

�

�

�
�
�

�

�
=

c

c

k

M  (17) 

In this matrix, k1 and c1 correspond respectively to extensional and rotational force 

constants. We construct the matrices corresponding to the springs in the equivalent symmetry 

directions by a similarity transformation of the form 

 ,TRMRM ××=¢  (18) 

where R is the rotation matrix which rotates a vector in the [100] direction into the required 

direction. In addition the matrices corresponding to the set of directions [110] have the force 

constants (c1, k1) replaced by (k2 ,c2). 

Hence, for example, the matrix corresponding to the [110] direction is 
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2222

2222

]110[

00

0)()(

0)()(

2
1

c

ckck

ckck

M . (19) 

In the following analysis, we consider a homogeneous material in which only the force 

constants (k1, k2, c1, c2) are used. It is now shown how these constants may be chosen in order to 

recover an isotropic elastic medium. 



20 
 

In order to map the spring model onto the continuum equations we make the Taylor 

approximation: 

 ),,()(
2
1

),()(),())()(( 2
, yxucyxucyxuccxuuu mmmmymnyxmmnm Ñ·+Ñ·»-++»- (20) 

where, u(x, y) is the vector displacement field of a two dimensional continuum material and cmn 

are the bond vectors (not unit vectors). We may use this expansion in the expression 

� -=
n nmm uuMF ).(  for the force on node m and derive the form of the Lame equations for the 

spring model. Alternatively an expression for the energy density can be derived using the Taylor 

approximation in the energy Em given by equation. If we equate coefficients in these equations 

with those for the elastic continuum and assume the primitive cell of the simple cubic lattice has 

unit side, we find the following relationships between the elastic constants of the continuum and 

spring models 

 ),22(
2
1

2211 ckkb ++=  (21) 

 ,222 ckb -=  (22) 

  ,22 2123 cckb ++=  (23) 

 .4 211 ccd +=  (24) 

It is important to note that although the term d1 associated with the antisymmetric 

contribution to the free energy does not affect the elastic constants, it is essential for the term to 

be included if the mapping onto the continuum equations using the free energy expression and 

the Lame equations are to be consistent. In order for the spring model to become isotropic, we 

require 2b1 = b2+b3 and for simplicity we choose and k2 = k1 and c2 = c1 and hence the spring 

model has the following properties: 
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and hence, 
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   where K is the bulk modulus. Furthermore, in our simulations we set 0=c  leading to 25.0=n . 

In order to calculate the dynamics of an elastic solid, we assign a mass iM  to each LS 

node at position ir  and integrate Newton’s equation of motion, ( ) ( )22 dtdM iii r=rF , where F  is 

the total force acting on the node. Specifically, F  consists of the force due to the interconnecting 

springs and the force exerted by the fluid on the solid at the solid-fluid boundary. The velocity 

Verlet algorithm is used to integrate this equation of motion. 

3.3. Solid-Fluid Boundary Condition 

To capture the interactions between the solids and fluids, lattice spring nodes that are situated at 

the solid-fluid interface must impose velocities on the surrounding fluids through boundary 

conditions and, in turn, experience forces due to the fluid pressure and viscous stresses. Put 

concisely, the simulation precedes through the sequential update of both the lattice spring and the 

lattice Boltzmann systems. The LSM system is updated by first calculating the forces that are 

acting on the LSM nodes, due to the LSM springs and the surrounding solvent. New positions, 

velocities, and accelerations of the LSM nodes are then calculated using the Verlet algorithm. In 

updating the LBM system, we first establish LBM links intersect the solid/fluid interface. We 

then obtain the velocities at these points of intersection from neighboring LSM nodes. Next, we 
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propagate the distribution function by streaming fluid particles to their neighboring nodes 

whenever these nodes are in the fluid domain, and otherwise, we apply the appropriate boundary 

condition (described below). 

Finally, we modify the distribution functions at the LBM nodes to account for the 

collision step. We then repeat the entire cycle.  

 

 

Figure 3: Implementation of solid-fluid boundary conditions 

In our current implementation, fluid particles that are moving on a link that intersects the 

solid-fluid interface are bounced back into the fluid phase at the intersection point (or boundary 

node) rb. Here,
1

2111

-
--= rrrr bd , with r1 being the fluid node at which the fluid particles 

originate and ,12 tcrr i D+=   being the neighboring solid node in the direction of the fluid 

particles’ motion. For, ,
2
1

1 =d  these particles will arrive back at node r1 after precisely one time 

step with a velocity that is opposite in direction to their original motion. This situation represents 
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the well known link bounce-back rule. However, for ,
2
1

1 ¹d fluid particles will end up at 

positions that do not coincide with a regular lattice node, and some sort of interpolation is needed 

[51-52]. 

First we consider an interface that is stationary. For )2/1(1 <d , we obtain post-collision 

distribution function, ),( 0
* trf i  by linear interpolation between ),( 1

* ttcrf ii D- and ),( 1
* trf i . After 

travelling for one time step and being reflected at the boundary node, the interpolated 

postcollision distribution function at r0 will end up  precisely at the node r1  with velocity in the 

opposite direction (figure 2 (b)). Hence [22] 

 ),(2),()12(),(),( 1
*

111
*

10
*

1 trfttcrftrfttrf ikik dd +D--==D+ . (28) 

When 211 >d , we calculate a new distribution after it is bounced from the solid as follows, 
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Here, the subscript k  stands for fluid particles with a velocity in the opposite direction of 

the incoming particles, i.e. ik cc -= , and 181=ica  for the orthogonal directions and 361  for the 

diagonal links. we propagate the fluid particles at node r1, such that they end up at the position 

r0, i.e., fk(r0,t + ¢t) ) fi*( r1,t) (see Figure 2c). We then obtain fk(r1,t + ¢t) by linear interpolation 

between  fk(r1 - ci� t, t + � t) and fk(r0,t + � t) (figure 2 (c)). 

For a moving interface, we have to account for the velocity, ub of solid material at the 

intersection point rb . This leads to additional terms in equation (IV-25) and (IV-26) that are 

proportional to the component of the velocity ub in the direction of fluid particle velocity [22]. 
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(31) 

Here 18/1=ia  for the orthogonal direction and 1/36 for the diagonal links. The velocity 

bu is obtained by interpolation between lattice spring nodes on either side of the interpolation 

points, i.e, ),(),()1(),( 4232 trutrutru bb dd +-= , with 4332 / rrrr b --=d (see figure 2(a)). This 

implementation gives no-slip boundary condition with second order accuracy [42]. 

As a result of the bounce-back process, the fluid exerts a force on the solid. This force is 

taken to be equal to the rate of exchange in momentum that takes place as the fluid particles are 

reflected at the interface, i.e., 

 
( ) ( ) ( )[ ] ( ) ( )[ ]{ } 13

1111
*

2
1 ,,,,, -DD-D+--=D+ txtttfttftt kikiiibb crrcrrrF rara . (32) 

The terms ( )ti ,1rra  compensate for the ambient pressure, ensuring that the force on the 

interface is zero when the entire system is at rest. The force bF  is distributed as a load to the 

neighboring LSM nodes, while conserving the normal and tangential force on the interface: 
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3.4. Model Validation  

The coupled LBM/LSM model have been previously validated [42] in the limit of low Reynolds 

numbers, 1Re<< . Specifically, we verified the boundary conditions for a static non-compliant 

interface by simulating the drag force on a regular array of parallel cylinders, whose axes lie 

perpendicular to the mean flow direction and an array of regularly spaced spheres. We also 

calculated the drag force on a sphere placed in a middle of a periodical box. That arrangement 

represents an array of regularly spaced spheres that are constructed from two concentric layers of 

LSM nodes. The drag force was compared with previously published solutions and excellent 

agreement was found.  

The dynamical coupling between the LBM and LSM models was validated by simulating 

the breathing modes of a fluid-filled cylindrical shell in vacuum [42]. The results indicate that 

our coupled model captures the correct frequencies to within one percent of the theoretical 

prediction for a large range of shell stiffness values. Similarly, we have studied the breathing 

modes of spherical fluid-filled shells and found close agreement with corresponding analytical 

solutions. 

Additionally, we calculated the drag force on a flat plate for finite values of the Reynolds 

number. In these two-dimensional simulations, a steady flow was imposed parallel to the rigid 

plate. The results are shown in Figure 4, where they are compared with the prediction of a 

theoretical model. For a wide range of Reynolds numbers, we find perfect agreement with the 

theory in terms of the friction coefficient dC , providing confidence that our hybrid model can 

capture the flows for a wide range of Reynolds numbers.  
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Figure 4 : Drag Coefficient vs Re 

 

3.5. Dimensionless Parameters 

The elasto-hydrodynamic behavior of beating cilia is normally analyzed in terms of the sperm 

number, Sp, which characterizes the relative importance of the viscous force and the bending 

rigidity of oscillating cilia [53]. In particular,Sp ( ) 25.0EIL zw= , where pnrz 4=  is the viscous 

drag coefficient, fpw 2=  is the angular velocity of the driving force, and EI  is the bending 

rigidity of the cilium. In our simulations, we set the fluid density 1=r  and kinematic viscosity 

61=n  (in LB units), and vary f  to alter the magnitude ofSp. When Sp is relatively large, the 

dominant viscous effects suppress the wiggling of the elastic cilia, and consequently, no net fluid 

flow is generated. For relatively small Sp, the dynamic shape of the cilium is governed by its 

elasticity, leading to time-reversible oscillations that are unable to generate net flows at low Re. 

It is only for intermediate values of Sp, where the effects of cilium elasticity and fluid viscosity 

are of comparable magnitudes, that a coupling between elastic filaments and viscous fluid 

permits transport in the low Re environment.  
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Each cilium is driven by an oscillatory force that is applied to its free end. This sinusoidal 

force, which sets the entire system into periodic motion, is directed along the x -axis and has 

dimensionless amplitude EIaLA 2
3
1=  and a frequencyf . Here, a  is the force amplitude, and 

124bI =  is the cilium’s moment of inertia. In the ensuing simulations, we set 1=A , for 

studying the particle deposition discussed in the next Chapter, and A=5, for particle transport by 

tilted cilia described in Chapter 5. 

3.6. Comparison with Experimental Parameters 

When it comes to synthetic systems, a broad range of polymeric materials can be used to 

manufacture artificial cilia with sperm numbers in the range of interest. For example, let us 

consider a cilium that is m10m  in length and m1m in diameter oscillating in water with a 

frequency of about 10 Hz (which corresponds to biologically relevant frequencies). For such 

cilia, a sperm number in the range from 1 to 10 can be obtained with polymers having a modulus 

of about kPa200Pa20 - , which is in the range of experimentally realistic values. Gueron et al. 

[54] explored different physical quantities related to biological cilia. In our model, we use radius 

of the particle as an independent parameter. We choose density and elastic constant equal to 1, 

and kinematic viscosity 1/6 based on our simulation scheme. We compared the values of Sp 

between our model and biological cilia, shown in table (1). We find that values of Sp used in our 

computational model are comparable to the values typical for biological cilia. We therefore 

expect similar functionality from our model. 
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 Table 1: Comparison between a biological system and the computational model, where 

radius of particle, unitBLR ..10=  

Parameter             Biological System       Computational Model 

L  mm12  R4  

a  mm1.0  R4.0  

f  sbeats/28  ----------------------------------------- 

F  N1210-  203.0 R  

bE  224 /1025 mN-´  1 

m )/(001.0 msKg  6/1  

Sp 6.5  3-5 

 

3.7. Modeling Elastic Cilia 

We construct each cilium from cubic elementary LSM units to form an elastic cantilever beam, 

which has a length of RL 4= , and a width of Lb 1.0= .  The inter-cilium separation is RB 3= . 

Given that k  is the spring constant of the interconnecting harmonic springs, the Young’s 

modulus of the cilium is LS25 xkE D=  and the solid density is 3
LSxMs D=r , where 34LS =Dx  

is the spacing between the LS nodes. We set the Young’s modulus 1=E  and density 1=sr  (in 

LB units). This simple lattice model is restricted to a Poisson’s ratio of 4/1 , although more 

complicated many-body interactions can be included to vary the ratio.  
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3.8. Modeling Particle 

The particle’s three-dimensional shell is constructed from two concentric layers of LS nodes. By 

using the Delaunay triangulation technique, we distribute nodes in a regular manner on each 

surface. These two concentric surfaces are separated by a distance that is equal to the average 

size of a triangular bond and are connected by springs between the nearest and next nearest 

neighbor nodes. The spring constant for springs located on the capsule surfaces and normal to the 

surfaces is k , while the diagonal springs have spring constants of k32 . The particle has a radius 

of 10=R lb units, with 6420 =N  nodes on the surface, a shell thickness of 4.1»D cx , and 

density of 1=sr . The Young’s modulus of the shell is 185»E . 

3.9. Cilia-Particle Overlap 

To prevent overlap between the capsule and the cilium, we introduce the following Morse 

potential: ( ) ( )[ ]( )2
0exp1 kef rrr ---= . Here, e  and k  characterize the respective strength and 

range of the interaction potential, and r  is the distance between a pair of LS nodes, where one 

node lies on the capsule’s outer surface and the other lies at the cilium-fluid interface. The 

parameter 8.10 =r  is the equilibrium distance where the force due to the potential is zero. We fix 

005.0== ree  for the repulsive part of the potential ( 0rr < ), while for the attractive part 

( 0rr > ), we set 0=e and 1=k . We use all numbers in lb units. 
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CHAPTER 4 

PARTICLE DEPOSITION  

4.1. Computational Setup 

We use four cilia and a particle in our simulation box as shown in Figure 5. The height of the 

simulation box is chosen to be R10  and the width equalsR6 . We apply periodic boundary 

conditions along the lateral directions. Each cilium is driven by an oscillatory force that is 

applied to its free end. This sinusoidal force, which sets the entire system into periodic motion, is 

directed along the x -axis and has dimensionless amplitude1=A .The only independent 

parameter in our problem is particle radius, equal to 10 lb units.  

                        

Figure 5: Schematic showing the three-dimensional arrangement of the cilia and the location of 
the spherical particle within the system. 
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4.2. Results and Discussion 

Figure 6 shows snapshots from our simulations that illustrate the time-varying periodic 

movement of the compliant, synthetic cilia and solid particle. At the onset, we place a particle in 

the center (at 0,0 == zx ) between four initially quiescent cilia. We then apply the periodic, 

horizontal force, which drives the cilia to bend back and forth in the yx -  plane and thereby 

induce the movement of the fluid. The viscous fluid, in turn, imposes a periodic drag on the 

suspended particle. As a result, the particle follows the oscillatory motion of the beating cilia.  

 

Figure 6: Snapshots from our simulations illustrating periodic oscillations of beating cilia and 
movement of solid particle for 3Sp= . The colors on the cilium surface show the magnitude of 
material strain. The arrows indicate the direction and magnitude of fluid velocity at the 
plane 0=z . Panels (a), (b), (c), and (d) correspond to times0=tf , 0.25, 0.5, and 0.75, 
respectively. 
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We investigate the effect of actuation frequencies on the dynamics of the particle motion. 

As mentioned previously, the actuation frequencies are characterized by
25.0

�
�

�
�
�

�=
EI

LSp
xw

. 

Specific trajectories for the particle’s center of mass motion, scaled by the radius of the particle, 

are shown for 3Sp=  and 5Sp=  in Figure 7 (a) and (b), respectively. We observe that the 

particle follows an oscillatory trajectory. The particle oscillates in zx -  plane, i.e., in the plane 

parallel to force direction and normal to the channel wall. Interestingly, after a short initial 

transient behavior, the particles steadily migrate in a particular direction along the cilia (i.e., 

along they -direction). For lower frequency, characterized by 3Sp= , the particle moves toward 

the bottom wall of the microchannel. When we increase the oscillatory frequency, characterized 

by 5Sp= , the migration direction is reversed and the particle moves away from the surface. In 

other words, by simply changing the oscillating frequency, the actuated cilia can navigate solid 

particles toward or away from the channel wall, thereby controlling particle transport in vertical 

direction w.r.t. the channel wall. From Figure 7 (a), we observe that in 25 oscillations the particle 

migrates a distance equal to 0.6R. Thus, when 3Sp=  for a particle of size mR m10= , the 

transported distance is equal to 6µm. From Figure 7 (b), we find that in 25 oscillations the 

particle migrates by distance equal to 0.015R, which corresponds to the transport of a particle of 

size mR m10=  by a distance is equal to 0.15µm. The slower transport at higher frequency can be 

explained by a higher viscous damping. Furthermore, larger amplitude of particle oscillations at 

lower frequency demonstrates the fact that, at lower Sp cilia wiggle more intensely. 
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Figure 7: Trajectory of particles during 25 periods (a) low frequency characterized by Sp=3 and 
(b) high frequency characterized by Sp=5 

 

We quantify the particle migration inside the ciliated layer by measuringU , the period 

averaged velocity normal to the channel wall. In these simulations, we allow the cilia to oscillate 

up to 25 periods to avoid the effect of the initial transient behavior. We calculate the period 

average velocity by measuring differences in displacements for successive periods and compute 

the average of the differences. The computed velocity, normalized by Rv-4Sp , is shown in 

Figure 8 as a function of particle distance from the channel wall for differentSp. A positive 

velocity indicates that the particle is drifting away from the wall and vice versa. 

We find that the drift direction indeed depends on the magnitude ofSp. Moreover, for 

both 3Sp=  and 5Sp= , the velocities do not change sign inside the layer and even slightly 

above the cilia tips; this behavior indicates that actuated cilia can transport these particles in a 
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unidirectional manner all the way from the channel wall to the outer stream,  where the effect of 

the beating cilia on the fluid flow eventually dissipates.  

More specifically when 3Sp= , the actuated cilia can actually trap a particle in the fluid 

above the layer and bring it into direct contact with the channel surface. Maximum normalized 

velocity, 41SpURv-  reached by the particle at 3Sp=  is equal to about 0.1, as shown in Figure 8. 

For a particle of size, mR m10=  in water of kinematic viscosity sm /10 26- , the velocity is equal 

to 0.0001 ms-1. Negative velocity indicates the fact that, the particle is migrating towards the 

channel wall. Assuming average velocity is half of the maximum velocity, we can estimate that 

the actuated cilia will take 0.04s to deposit particle from outer layer to the channel wall. In this 

manner, the cilia can enhance the rate of deposition of suspended particles onto the underlying 

substrate.  

Alternatively, cilia oscillating with 5Sp=  can expel particles from the cilia layer and 

propel them into the outer fluid. In this way, actuated cilia can prevent particle accumulation on 

the surface. Maximum normalized velocity, 41SpURv-  reached by the particle at 5Sp=  is equal 

to about 0.1, as shown in Figure 8. For a particle of size, mR m10=  in water of kinematic 

viscosity sm /10 26- , the velocity U  is equal to 0.00016 ms-1. Positive velocity indicates the fact 

that, the particle is migrating away from the channel wall. Assuming average velocity is half of 

the maximum velocity, we can estimate that the actuated cilia will take 0.25s to expel particles 

from the channel wall to outer layer. In this manner, the cilia can enhance the cleaning rate of 

suspended particles from the cilia layer.  

We note that when the cilia are oscillating at 4Sp= , the velocity fluctuates around zero 

and thus, there is little effect of the beating cilia on the net particle displacement relative to the 



35 
 

channel wall. At this point, it is prudent to note that for all Sp=3 and 5 maximum particle 

velocity is at .8.0 Ly »  Also, the particle velocity tends to be zero above cilia layer. These 

observations can be explained by the existence of secondary flows within cilial layer, as 

discussed further below. 
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Figure 8: Velocity of particles as a function of distance from the bottom wall. The lines with 
triangles, circles, and squares show the particle velocities for Sp=3, Sp=4, and Sp=5, respectively 

 

In the above simulations, we placed the particles along a line [ ]0,0 == zx  in the center of 

the simulation box and varied the particle’s initial distance from the bottom wall. With the square 

arrangement of cilia considered here, these particle positions are symmetric relative to the 

beating filaments and, for this reason, allow particle migration only in the direction normal to the 

wall. To probe the generality of the observed behavior, it is instructive to break the planer 

symmetry and investigate the migration behavior of particles that are initially shifted in the x  

and z  directions, i.e., placed along the lines [ ]0, == zx d  and[ ]d== zx ,0 . For both 3Sp=  and 

5, we plot in Figure 9 (a) and (b) the velocities of particles displaced from the center of the 
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domain by distances of c=d  and c5.0=d , where ( )bBc += 5.0 . Note that c=d  are symmetry 

lines and, therefore, particles located on these lines can only migrate normal to the wall, whereas 

c5.0=d  allows for migration both normal to the bottom surface and in-plane of the layer. For 

comparison purposes, we also plot in Figure 9 (a) and (b) the velocity for particles at 

[ ]0,0 == zx . 

For 3Sp=  (see Figure 9 (a)), particles along [ ]0,0 == zx  migrate down to the channel 

wall. When particles were shifted by c5.0  in the z -direction, i.e., normal to the plane of the 

cilium oscillation, the velocity of the shifted and non-shifted particles are almost identical. When 

we shifted the particles farther to cz = , the oscillating cilia come into contact with particles that 

are initially located near the cilium height. The latter contacts prevent the particles from moving 

into the cilial layer. In this case, we cannot measure the velocity since the cilia hit the particles 

during the first oscillation and push them to a position right above the layer, Ly 2.1» . These 

situations are indicated by the discontinuity in the velocity profile in Figure 9 (a). As a result, the 

particles accumulate above the cilia. On the other hand, those particles that are initially relatively 

close to the wall migrate downwards and accumulate at Ly 5.0» , where the velocity is zero. For 

particles shifted in the x -direction, i.e. parallel to the plane of cilia oscillations, and 3Sp= , we 

found that for cx = , the particles move downwards only if they are initially closer than Ly 7.0=  

to the bottom wall. Otherwise, particles are repelled to the outer fluid, although with a velocity 

that is relatively slow compared to that at 0=x . For particles at cx 5.0= , the velocity is always 

downward, similar to the case for 0=x . Interestingly, the velocity at cx 5.0=  is approximately 

the average between the velocities at 0=x  and c . (Since the magnitude of the velocity at cx =  

is smaller than that at 0=x , we expect that particles located between 0=x  and c  will mostly 
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move downwards.).In Figure 9 (b), we show how the migration velocity changes for 5Sp=  

when particles are displaced either in the x  or z -direction. For this sperm number, particles in 

the middle of the domain migrate upwards from the solid wall. For c=d , the velocities are 

relatively slow and fluctuate around zero. The particles that are initially closer to the cilium tips 

exhibit positive velocities and migrate out of the layer, whereas particles closer to the channel 

wall concentrate near this surface. Again, we find that particles at c5.0=d  have velocities that 

are approximately an average of the velocities at [ ]0,0 == zx  and c=d , and always move away 

from the bottom wall. Hence, for 5Sp= , the actuated cilia will propel the particles away from the 

wall; except for a few cases where the particles are located between pairs of beating cilia (see 

Figure 9 (b)). 

 

 

 

 

 

 

Figure 9: Velocity of particles as a function of distance from the bottom wall for (a) 3Sp=  and 
(b) 5Sp= . Particles with positive velocity move away from the wall. The dashed lines with 
filled circles indicate the velocity for particles located at the middle between oscillating cilia 

0=x  and 0=z . The lines with the empty and filled squares indicate particles shifted to 
cx 5.0=  and cx = , respectively. The lines with the empty and filled triangles indicate particles 

at cz 5.0=  and cz = , respectively. 
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To gain insight into the effects that contribute to the controllable migration of the particle 

with changes inSp, we examined the bending patterns for an individual cilium at both 3Sp=  

and 5 as shown in Figure 10 (a) and (b). It reveals that indeed the cilium exhibit different 

dynamical behavior at these differentSp. In particular, at 3Sp= , the cilium makes extensive 

excursions in both the forward and backward motion. At the higherSp, however, the effect of 

viscous damping is more pronounced and the cilium makes smaller deviations in the lateral 

direction. Similar dynamic behavior was previously observed for cilia that were tilted with 

respect to the substrate and were actuated by a periodic force. In the latter case, by changing Sp 

(by altering the driving frequencyf ), one could switch the direction of the net flow within the 

microchannel [34]. Thus, it is clear that changes in Sp affect not only the oscillatory behavior of 

the cilia, but also the fluid flow within the system. 

 

 

 

 

 

Figure 10: Cilium deformation during one beat cycle for (a) 3Sp=  and (b) 5Sp= . The blue lines 
show cilia when the force is directed to the right and the green lines show cilia when the force is 
directed to the left. For 5Sp= , the horizontal deflection is magnified tenfold for clarity. 

 

In the current problem of particle deposition, the cilia are tethered normal to the solid 

surface and oscillation is symmetrical w.r.t. the normal of channel wall, therefore, no net flow is 

generated. Our simulations indicate, however, that the undulating filaments induce circulatory 

(a) (b) 
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secondary flows in the liquid and that the direction of these flows is controlled by the mode of 

filament deformation. To explore this effect, we introduced size-less tracer particles into the fluid 

and measured the flow velocities inside the cilia layer. As seen in Figure 11, where we plot the 

period averaged tracer velocities, the direction of flow circulation indeed depends on the 

magnitude of the sperm number. Specifically for velocities in the mid-plane between the actuated 

cilia, the flow is directed downwards when 3Sp=  and upwards for 5Sp= . These flow patterns 

agree with the directions of motion for the solid particles shown in Figures 9 (a) and (b). We note 

that the fluid continuity implies that the averaged fluid flow near a cilium surface and in the gap 

between cilia have opposite directions. For the relatively large particles considered here, 

however, the spheres remain in the middle between oscillating cilia and thus, follow the fluid 

flow arising in this location. This behavior, in turn, results in the observed unidirectional 

migration of the particles in the ciliated layer.  

It is interesting to note that particle migration direction strictly follows secondary flow 

field direction. It demonstrates the negligible inertial effect on particle motion, typical of an 

overdamped highly viscous fluidic system. 
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Figure 11: Hydrodynamic flow field in the middle between the cilia for (a) 3Sp=  and (b) 5Sp= . 
The velocities have been averaged over one period. The left and right parts of the plot represent 
the flow fields in yx -  and yz-  planes. 

 

4.3. Validation and Closure 

At this point of discussion, it is prudent to estimate the possible effect of gravity on particle 

motion and explore validity of our assumption of neutrally buoyant particles considered in our 

simulations. Terminal velocity of a particle in creeping flow is governed by the following 

equation, 

 ( ).
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For a polymer particle with density 3/1330 mkg , suspended in water of dynamic viscosity 

sPa.10 3- and density 3/1000 mkg , terminal velocity is on the order of sm/10 10-
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simulation, maximum velocity of a spherical particle at 5=Sp  , is in the order of sm/10 5- . So, 

we can safely neglect any effects due to buoyancy. 

We can also calculate the terminal velocity of a bubble in a typical microfluidic device 

based on Equation (35). Typical bubble velocity is in the order of sm/10 6-
. Again, comparing to 

the particle velocity which is of the order of sm/10 5-
 the bubble motion is significantly slower. 

Re .Therefore, we can claim even in the presence of air bubble, actuated particle can propel 

particles. Since the developed technique is independent of the presence of air bubble, the 

encapsulation of microfluidic devices utilizing the technique would not be an essential 

consideration. This is advantageous for fabricating a robust microfluidic device.     

To estimate the effectiveness of oscillating synthetic cilia compared to diffusion velocity 

of at low Reynolds number, we calculate the diffusive rate for a microscopic particle in  

microfluidic devices. To this end we use the Einstein-Stokes equation 

 
,

6 r
TK

D B

pm
=

 
 (36) 

Where the Boltzmann constant, KJkB /1038.1 23-´= . For a microscopic particle of radius, 

mr 510~ -
 at temperature KT 300= , the diffusion rate in water is of the order of sm /10 212- . 

Clearly, the Brownian diffusion does not have any significant effect on the particles considered 

in our studies. 

 To sum up, we have designed a technique for microscopic particle control in microfluidic 

devices. We have computationally demonstrated that by utilizing the technique, microscopic 

particle can be maneuver normal to the microfluidic channel wall at the rate much higher than 

diffusion that qualify our design to be a potential particle control technique in microfluidic 
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device. We have also quantified the effect of presence of air bubble and gravity and from that; 

we can safely conclude that the developed technique is robust to the presence of air bubble and 

the bouncy effect. 
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CHAPTER 5 

PARTICLE TRANSPORT  

5.1. Computational Setup 

The computational setup we use to examine the transport of particles by inclined cilia is shown 

in Figure 12. In these studies, the height of the simulation box is Rh 6=   and the width 

is Rw 6= . Periodical boundary condition is imposed in the lateral directions. Each cilium is 

driven by an oscillatory force that is applied to its free end with dimensionless amplitude 5=A . 

The cilia are inclined at an angle 045=a  with respect to the substrate. The outer radius of 

particle is 10=R  and cilium length is RL 4= . 

 

 

 

 

 

 

 

 

Figure 12: Schematic showing the three-dimensional arrangement of the cilia and the location of 
the spherical particle within the system. 
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5.2. Results and Discussions 

Figure 13 shows snapshots from our simulations that illustrate the periodic movement of the 

compliant, synthetic cilia and solid particle. At the onset, we place a particle at a distance R5.4  

from the bottom channel wall and in the center between two rows of inclined cilia. We then 

apply the periodic, horizontal force, which drives the cilia to bend back and forth in the yx -  

plane and thereby induce the movement of the fluid. The viscous fluid, in turn, imposes a 

periodic drag on the suspended particle. As a result, the particle follows the oscillatory motion of 

the beating cilia.  

 

              

 

 

             

 

 

 

Figure 13: Snapshots from our simulations illustrating periodic oscillations of beating cilia and 
movement of solid particle for 5Sp= . The colors on the cilium surface show the magnitude of 
material strain. The arrows indicate the direction and magnitude of fluid velocity at the 
plane 0=z . Panels (a), (b), (c), and (d) correspond to times 1,75.0,5.0,25.0=tf , respectively. 
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Specific trajectories for the particle’s center of mass motion over 25 oscillation periods 

are shown for 5Sp=  and 3Sp=  in Figures 14 (a) and (b), respectively. While the particle 

follows oscillatory trajectories, it shows preferential drift direction. We find that at the distance 

R5.4  the particle exhibits maximum velocity along the ciliated layer. For both Sp, the particle 

migrates from left to right, along the cilia layer, however, for higher frequency the particle is 

transported by larger distance, equals to 3.5(B+b) compared to ,3=Sp  where displacement is 

marginal. 

                                

 

                                        

             

 

  

 

 

 

 

 

Figure 14: Trajectory of particles for 25 oscillations for particular frequencies characterized by 
(a) Sp=5 and (b) Sp=3 
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 We quantify larger transport rate at 5=Sp  by computing period-averaged velocity along 

the ciliated layer. To this end, we average the velocity per period of the ciliated layer and 

normalize the particle velocity as follows 41SpURv- . The normalized velocity is plotted in Figure 

15 as a function of non-dimensional particle position, )/( bBx + . The particle velocity is positive 

everywhere, which indicates that actuated cilia transport particle in unidirectional manner along 

the ciliated layer and the transport direction is from left to right. We can associate this direction 

with the inclination direction of the quiescent cilia. 

                                 

Figure 15: Velocity of particles as a function of distance along the ciliated layer for actuation 
frequency characterized by 5=Sp   

 

From Figure 15, we can estimate average velocity, URv-1Sp4 , which is equal to 

approximately 4.7. For a particle of size, mR m10= in water of kinematic viscosity, 

smv /10 26-= , the transport velocity, U is about 0.002 ms-1. With this velocity, transport time for 

a particle to traverse inter-cilia gap is about 0.015s.  
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5.3. Efficiency and Closure 

To characterize the particle transport performance achieved by actuated cilia, we estimate 

mechanical efficiency, e  by calculating the ratio between work required to transport particle in 

the viscous fluid during one oscillation period and work input required for driving oscillating 

cilia. We find in our simulation that the resulting efficiency is about %1.0 .which is consistent 

with previously published results for pumping tilted cilia [45]. 

 To sum up, we have designed a technique for transporting microscopic particles parallel 

to microfluidic channel wall. 
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CONCLUSIONS  

We find that actuated cilia can control the deposition of solid particles in microfluidic devices. 

For low frequency oscillations characterized by a sperm number of 3Sp= , the cilia effectively 

draw particles from outside the layer and deposit particles to the underlying surface. For larger 

frequencies characterized by 5Sp= , the cilia expel particles and therefore, can be used to clean 

the ciliated surface from foreign entities and inclusions.  

In addition, we also find that actuated inclined cilia can regulate the transport velocity of 

solid particles along the ciliated layer. For higher frequency oscillations characterized by ,5=Sp  

the particle velocity along the ciliated layer is faster compared to lower frequency oscillation 

characterized by .3=Sp Thus, we can use actuated cilia for transporting particles in microfluidic 

devices used for example in biomedical analysis. 

It is noteworthy that on a very general level, our results show qualitative agreement with 

observations that the capture of food particles by certain suspension feeders is most effective for 

a finite range of ciliary beat frequencies. Furthermore, it is worth noting that behavior similar to 

what we find for 5Sp=  has been observed experimentally in a microfluidic device that utilizes 

actuated synthetic cilia. In particular, the researchers detected an upward migration of suspended 

microscopic particles when the cilia are driven to beat at frequency of 65 Hz.  

In addition to revealing new methods for manipulating particles for lab-on-a-chip 

applications, our studies can also provide some insight into factors that control the interactions 

between cilia in the respiratory tract and particulates such as dust or mucous. In particular, it has 

been reported that certain chemicals can increase the ciliary beat frequency and consequently, the 

cilia-driven particle transport within the trachea of mice. The physical mechanism for this 
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behavior is not completely understood. Ultimately, computational studies such as those described 

herein could reveal fundamental principles that contribute to the effective removal of unwanted 

particulates from the respiratory system. 
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