Designing oscillating cilia for regulating
particle motion in microfluidic devices

A Thesis
Presented to
The Academic Faculty

by

Rajat Ghosh

In Partial Fulfillment
of the Requirements for the Degree of Master oéism in
The George W. Woodruff School of Mechanical Engrmae

Georgia Institute of Technology
May 2010



Designing oscillating cilia for regulating
particle motion in microfluidic devices

Approved by:

Dr. Alexander Alexeev, Advisor
Woodruff School of Mechanical Engineering
Georgia Institute of Technology

Dr. Minami Yoda
Woodruff School of Mechanical Engineering
Georgia Institute of Technology

Dr. David Hu

Woodruff School of Mechanical Engineering
Georgia Institute of Technology

Date Approved: April 1, 2010



This work is dedicated to the almighty God andtesautiful nature. | wish to know how the
nature works, and aspire to utilize her energytfar benefits of mankind. Exploring her

mysteries in the context of technological advancgras been my greatest motivation.



ACKNOWLEDGEMENTS

In the present research work, | was extremely fatel to be advised by Dr. Alexander Alexeev
at Georgia Tech. From his vast academic experi@amd&iid mechanics, he has guided my
research as a Master's student. By working witim,hi have got a valuable exposure in
advanced fluid mechanics research and developeadbifity to tackle a fluid mechanics problem
in a systematic manner. | am deeply indebted t@dwgribution in this scholastic work. | would
also like to express my gratitude to Dr. Minami dodnd Dr. David Hu for spending their
valuable time as my committee member. | have imelgnisenefited from their advices on my
thesis. | appreciate their assistance, and tedhngight. | would also like to thank my lab-mates
— Hassan Masoud, Wenbin Mao, and Alex Kilimnik tieeir sincere support and encouragement.

Hassan and Wenbin, as senior students, guided memerous occasions.

My research was partially funded through teachisgistantship | received from G.W.
Woodruff School of Mechanical Engineering, Georgexh. In this regard, | am very thankful to
Dr. Wayne Whiteman, Dr. Levant Degertekin, Dr. \iths E. Singhose, and Dr. J. Rhett Mayor
for their supervision. | would also mention my &8l teaching assistants, Alex Williams, Daichi
Fujioka, Mark Varady and others for their suppbsiould also appreciate the efforts from Ms.

Glenda Johnson for her constant administrativestzssie.

| must also pay homage to all course instructor&@brgia Tech, [IT Kharagpur, my
Schools and different tutors for their dedicatefdréfand time for educating me with study and
research skills of different levels. It is theirtipat training that shapes my intellectual
personality. Last but not the least; | am extrentagnkful to my parents and sister for their

constant encouragement and support. Without thest,tl would never get this education.



LIST OF CONTENTS
ACKNOWLEDGEMENTS
LIST OF TABLES
LIST OF FIGURES

SUMMARY
CHAPTER

1. INTRODUCTION
1.1. Driving Mechanisms in Microfluidic Devices
1.2. Bio-inspired Micropumping
1.3. Scallop Theorem

1.4. Viscoelastic Coupling at Low Re Flow
2. PROBLEM DEFINITION

3. METHODOLOGY
3.1. Lattice Boltzmann Model
3.2. Lattice Spring Model
3.3. Solid-Fluid Boundary Condition
3.4. Model Validation
3.5. Dimensionless Parameters
3.6. Comparison with Experimental Parameters
3.7. Modeling Elastic Cilia
3.8. Modeling Particle

3.9. Cilia-Particle Overlap

4. PARTICLE DEPOSITION

vii

viii

12

14
15
18
21
25
26

28
29

29

30

27



4.1. Computational Setup
4.2. Results and Discussion

4.3. Validation and Closure

5. PARTICLE TRANSPORT
5.1. Computational Setup
5.2. Results and Discussions

5.3. Efficiency and Closure
CONCLUSIONS

REFERENCES

Vi

30
31

40

43
43
44

a7

48

50



LIST OF TABLES

Table 1: Comparison between a biological systemtaeadomputational model, where radius of
particle, R =L1OL.B.UNIT ......uuuiiiiiie e e e e e e e e e e e e e e e e e e aeae e raans 28

Vil



LIST OF FIGURES

Figure 1: Non-reciprocal cyclic motion and resultaffect on fluid pumping .............cceuvueee. 9

Figure 2: Schematic of computational system. Theeesdhat are connected by springs form the
lattice spring lattice (for clarity, we omitted tdeagonal springs that connect each node
with all its next-nearest neighbors). The remaimioges represent the lattice Boltzmann
lattice (blue for fluid nodes and black for soliddes). The solid lines are the solid-fluid

=T = Tt 1 PP PPPPPPUPPPPPPPPR 14
Figure 3: Implementation of solid-fluid boundaryncitions..............coeeeiiiiiiiiiiiiinn e, 22
Figure 4 :Drag COEffICIENT VS RE ......oviiiiceeeee it e e e e 26

Figure 5: Schematic showing the three-dimensiomahgement of the cilia and the location of
the spherical particle Within the SYSIEM. .. .eewweeeeeeiiieie e 30

Figure 6: Snapshots from our simulations illustrgtperiodic oscillations of beating cilia and
movement of solid particle foBp=3. The colors on the cilium surface show the magieitu
of material strain. The arrows indicate the dirmetand magnitude of fluid velocity at the
planez=0. Panels (a), (b), (c), and (d) correspond to tifnek, 0.25, 0.5, and 0.75,
FESPECTIVEIY. ottt ettt e e e e e e e e e e e e e e e et e eeeneneeeeeeeeseneb b e e e e e as 31

Figure 7: Trajectory of particles during 25 peridgdslow frequency characterized by Sp=3 and
(b) high frequency characterized DY SP=5....cccoriiiiiiiiii e 33

Figure 8: Velocity of particles as a function o$tdince from the bottom wall. The lines with
triangles, circles, and squares show the partielecities for Sp=3, Sp=4, and Sp=5,
LSS 0 1=Tod 1LY/ S 35
Figure 9: Velocity of particles as a function o$tdince from the bottom wall for (&p=3 and
(b) Sp=5. Particles with positive velocity move away fronetwall. The dashed lines with

filled circles indicate the velocity for particlescated at the middle between oscillating cilia
x=0 andz=0. The lines with the empty and filled squares iatkcparticles shifted to
x=05c and x=c, respectively. The lines with the empty and filtedngles indicate
particles atz= 05C andz =C, reSPECHVEIY. ........ccoiiiiiiiiiiiiiiii e 37

Figure 10: Cilium deformation during one beat cyfdie(a) Sp=3 and (b5p=5. The blue lines
show cilia when the force is directed to the right the green lines show cilia when the
force is directed to the left. FBp=5, the horizontal deflection is magnified tenfola fo
(03 =T 41 Y2 SRR PPTTPRURTRR 38

Figure 11: Hydrodynamic flow field in the middletiaeen the cilia for (app=3 and (bS5p=5.

The velocities have been averaged over one péftual left and right parts of the plot
represent the flow fields im- y andz- y planes. .......cccccoiiiiiiiiiiiiiiie 40

Figure 12: Schematic showing the three-dimensiarmangement of the cilia and the location of
the spherical particle Within the SYSIEM. .. .eeweeeeeeeiiiei e 43

Figure 13: Snapshots from our simulations illugtgperiodic oscillations of beating cilia and
movement of solid particle f@p=5. The colors on the cilium surface show the magieitu

viii



of material strain. The arrows indicate the dirmetand magnitude of fluid velocity at the
planez=0. Panels (a), (b), (c), and (d) correspond to tifhes025 ,050.75]1,
FESPECTIVEIY. oottt ettt e e e e e e e e e e e e e e e ettt teeeane et eeeeesenbbbn e e e e eeas 44

Figure 14: Trajectory of particles for 25 osciltats for particular frequencies characterized by
(2) SP=5 aNd (D) SP=3 ... ettt et ————— et r b 45

Figure 15: Velocity of particles as a function @dtdnce along the ciliated layer for actuation
frequency characterized BYP=S5 ... 46



SUMMARY

We design actuated cilia that can maneuver micpmsecparticles normal to a microfluidic
channel wall and transport microscopic particlesaiel to the channel wall. For identifying the
design specifications, we employ a hybrid LBM/LSMngoutational model, to simulate
hydrodynamic interactions between oscillating étasilia and microscopic particles in a
microfluidic channel. The oscillating syntheticiailre elastic flaments tethered to the channel
wall and actuated by sinusoidal force acting airtfiee ends. The cilia are arranged in a square
pattern. The microscopic particle is a neutrallpyant solid sphere, which is sufficiently small
compared to the cilium length and inter-cilium drstes, so that the particle can move freely

inside the ciliated layer.

We study the effect of actuation frequency on thgige motion inside the ciliated layer.
We show that depending on the frequency, particégsbe either driven away from the ciliated
channel wall or drawn towards the wall. We alsoneix& how to use inclined cilia to transport
particles along the ciliated layer. We show that plarticle transport along the ciliated layer can
be regulated by the frequency of cilium oscillatioFhe results uncover a new route for

regulating particle position and transport in mifttrimlic devices.



CHAPTER 1

INTRODUCTION

There is currently great interest in combining thectional components that are necessary for
performing complex chemical and bio-chemical arialysto micron-size integrated devices.
The potential miniaturized integrated devices ccwddle a number of technical capabilities: the
ability to use very small quantities of samplesy a@agents and to carry out separations and
detections with high resolution and sensitivitywl@ost; short times for analysis; and small
footprints for the analytical devices [1-2]. Thigagrated unit has been described as micro total
analysis system [TAS) or Lab-on-a-chip devices [3-6]. It offers fuardentally new capabilities

in the control of concentrations of molecules iac@and time and therefore, these devices have
potential to be of great importance in genomicagdicreening, and clinical applications.

Microfluidics, i.e., the control of flow of smallolumes (from fL tosL) of liquids in

microscopic (1-1000 m) channels, is the central technology in thisdfieMicrofabricated

integrated circuits [7] revolutionized computatiby vastly reducing space, labor and time
required for calculation. Microfluidic systems aff@milar promise for large-scale automation of
chemistry and biology [5], suggesting numerous erpents being performed in parallel. The
increasing availability of microfluidic systems efrious geometries and materials for the
downscaling of chemical or biochemical processasesaa strong demand for adequate
techniques to precisely determine flow parametedsta control fluid and particle manipulation.
Particle control in microfluidic channel poses amportant problem, considering numerous
biological applications involve navigating micropao solid particles in microflows. Traditional

particle transport by turbulence is not feasiblemicro-flow characterized by low Re. For

microflows, with higher surface area-to-volume aatinertia of particles become negligible



compared to enhanced viscous drag. Thus, traditjpasdicle control methods, which rely on
inertia, would not be effective in this length cal

1.1. Driving Mechanisms in Microfluidic Devices

Driving surrounding fluid in microchannel is an essal requirement for propelling particles
through micro-channel. Proximity of boundaries, ogvio small size of micro-fluidic devices,
posits strong influence of channel boundary efiacassociated microflows. Expectedly, the
driving techniques that exploit the boundary eBeare quite effective in microfluidic
manipulation. Based on driving agents and thdgractions with channel boundary, transport
mechanisms in the context of microfluidic devicasa be classified as being either mechanical or

non-mechanical.

Mechanical pumping systems are typically based uperdeflection of a thin membrane
into a pumping chamber or channel. The deflectednibnane forces the liquid through the
channels to create a pumping action. Membrane wmtuan these systems can be done
electrostatically [8], piezoelectrically, or thermeumatically [9-11]. By using multiple
membrane chambers, a peristaltic pumping action lmanachieved [12]. Alternatively, a
reciprocating type pump can be constructed by com@itwo check valves with a single
membrane actuator. These mechanical systems agneédor operating on continuous liquid
streams; consequently, they may be well suitedsiimple continuous monitoring applications

such as in liquid chromatography.

Nonmechanical pumping involves application of bddsece on fluid. Since Bart et al.
have devised micro-electrohyrdodynamic pump [18}esal methods for controlling the flow of
liquids in microfluidic systems have been reporfdd-15], and electrokinetic control in

microfabricated capillaries has received the mdstndon [16]. Electrokinetic control has
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several features that make it an attractive ogtorminiaturized systems: (i) pumping of fluids
in the channels, which arises from electroosmatizv f(EOF) in capillaries with charged walls,
and the control of the direction of flow are easyirnplement and require only a computer-
controlled high-voltage (1-3&V) power supply, electrodes, and a series of reléyks;in
electrophoretic mode, electrokinetic control result separations of molecules by size and
charge and can be used for chemical analysistfg)microscopic (<108m) channels required
to generate EOF can be defined in a number of m&tee.g., glass, quartz, and polymers, using
microfabrication. Electrokinetic pumping has sonmariaus disadvantages as a method of
controlling the flow of fluids, however. First, i& sensitive to the physicochemical properties,
such as ionic strength and pH, of the fluid beingnped. For example, liquids with high ionic
strength cannot be pumped using EOF due to exe3eive heating; it is, therefore, difficult or
impossible to pump biological fluids, such as bl@wdl urine, by this method. Second, the high-
voltage power supplies used have adverse safetjcatipns and power and space requirements.
Third, because electrokinetic pumping requires ioaity in the fluid in the channels, it does not
work in the presence of trapped bubbles (e.g., amjl care has to be taken to ensure that the
channels are free of bubbles. Finally, and mostomamtly, although EOF is well suited to

controlling small volumes of liquids in narrow (<@Bm ) channels, it cannot be used to pump
liquids at high flow rates (>#L/s) in wider channel capability that is needed fomso
microfluidic applications, e.g., sample preparatitiecause of Joule heating.
Magnetohydrodynamics presents another mechanismdriging liquid and particles in
microfluidic devices.Jang et al. [17] developediaropump based upon magnetohydrodynamics

(MHD) principles.Since in many microfluidic applications, one useffdrs and solutions that

are electrically conductive, one can transmit electurrents through the solutions. In presence



of an external magnetic field, the interaction be#w the electric currents and magnetic fields
results in Lorentz body forces, which, in turn, da@ used to propel and manipulate fluids.
Trapping and transport of single cells are beingegtigated and recently, advances have been
made towards the detection of magnetic materiattop- Magnetic particles can be transported
with time-varying electromagnetic fields, alongtpated metallic surfaces.[18] The advantage
of MHD compared to electrokinetics is operation ratatively small electrode potentials,
typically below 1 V, and much higher flow rateslasg as the conduit’s dimensions are not too
small. The disadvantage of MHD is that it is a wodiric body force which scales unfavorably
as the conduit’'s dimensions are redudegang et al. [19] further improved the MHD idea by

introducing appropriate patterning of the electsode

Using a rotating disc [20], variable flow ratesinging from less than 10 nf go greater
than 100 | s* , can be achieved depending on disc geometrytionta rate (RPM), and fluid
properties.Duffey et al. [21] developed a centrifugal forceséad particle driving mechanism.
Centrifugal effect in a rotating microchannel,nsensitive to physicochemical properties such as
pH, ionic strength, or chemical composition (in tast to AC and DC electrokinetic pumping).
Aqueous solutions, solvents (e.g., DMSO), surfastaand biological fluids (e.g., blood, milk,
urine) have all been pumped successfully. This @gagr of fluid pumping facilitates valving
action.In traditional pumps, two one-way valves form arigarfor both liquids and particles. In
the case of the microcentrifuge, valving is accasmad by varying rotation speed and capillary
diameter.

Few inertial phenomena such as acoustic streacangplay significant role in micro
flow control. High frequency acoustic wave can eimvent difficulties associated with small

scales. Even though it is periodic, due to inemiah-linearity, it can rectify oscillatory fluid



motion to give time-averaged flow referred as sye@dacoustic streaming [22]. A manifestation

of acoustic streaming is quartz wind [23he quartz wind is employed for driving microflow,
by sending acoustic wave along a channel, withieghgth ofL 3 a *(w), wherea *(w)is the
attenuation length of the acoustic wave. Non-lineartial effect permits rectification forcing
and gives rise to steady body force leading to iaeRdle flow with a flow rate~ rUZw” / n.

In quartz wind, streaming, arising within a fluding flow field, is commonly associated with
attenuation due to viscosity. While quartz winddshstreaming occurs in the bulk of the liquid,

steady streaming flows occur around solid boundar&olid boundary with oscillatory flow
gives rise to steady boundary-driven streaming j2ih time-averaged velocity-UZ /(R ).

Examples that might find uses in mixing and pumpingmicrofluidic application include
streaming due to oscillatory flow in curved pip88]| tapering channels [26], and channels with
variable cross-section [27].

1.2. Bio-inspired Micropumping

Creating non-zero time-averaged flow in a typicaldgical system is challenging because of
large viscous damping. The situation can be contprewimming at a low-Re flow. Similar to
microfluidic devices, fluidic environment of biolmgl systems is typically characterized by sub-
millimeter length scales and a low Re hydrodynamBislogical systems such as paramecium

use cilia for pumping fluid. Cilia are a short hhlke structures (approximatetyOzm in length),

present on surfaces of many cells, notably in spmmozoans and some type of vertebrate
epithelium [28]. Cilia usually occur in large graupnd are functionally and structurally similar

to eukaryotic flagella. They exhibit beating motimnluced by the molecular motors embedded
in the cell membrane. Beating cycle of cilia cotssisf a fast power stroke and a slow reverse

stroke [29] . Beating cilia can produce cell movemer current in the fluid surrounding them.
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Typical range of beating frequency of biologicdiecis 10- 100Hz and cell propulsion velocity
is of the orderlOmm/ min. In human lung, cilia are responsible for keepingjean from foreign
dust particles and bacteria. Marine animals usi édr trapping food particles from their
environment. Paramecium, a group of uniceller w@tigprotozoa, utilizes beating motion of cilia
for locomotion and food gathering [30].

As highlighted by Riisgard et al. [31], ciliary siag and ciliary collecting are prevalent
particle extraction mechanism employed by invedebmarine microorganisms. Examples of
such arrays are found in bivalves, ascidians, boacils, bryozoans, phoronids, polychaetes and
larval echinoderms. These motile, microscopic @kperience the surrounding medium as a low
Reynolds number fluid [32], i.e., a highly viscoaisvironment, where the effects of inertia are
negligible. Nevertheless, by oscillating in a pdr time-irreversible manner, the cilia can
generate net currents within the fluid and theredffectively pump the food particles towards
the feeding animals. The velocity of water propasdepends on cilia length, beat frequency,
pattern of beating, the arrangement of the cilid #reir co-ordination. Beating cilia influence a
layer of water only two or three cilium lengths de&ith maximal velocity near the cilia tip
[33]. Mayer et al. [34] developed numerical modetitia-driven flow, simulating metachronal

wave transporting the patrticle.

The behavior of these biological cilia provides seful design concept for creating
microfluidic devices where actuated “synthetic &iliwould regulate the movement of
microscopic particles (e.g., biological cells orlypoeric microcapsules) within the device.
Inspired by the effectiveness of biological ciliacently there has been a tremendous interest in
designing artificial ciliated system that is sulebfor microfluidic mixing and flow

manipulation. Lack of efficient manufacturing teaures and effective actuation impede the



progress of artificial cilia in microfluidics forohg. However, Evan et al. [35] have recently
created a magnetic actuation technique for ciliagenfaces, based on high-aspect-ratio
cantilevered micro- and nanorod arrays. This dearaknt triggered several investigation related
to effect of actuated cilia on flow structure inonofluidics devices. Oh et al. [20] have
developed a microfluidics mixer based on actuatal c

The development of microfluidic channels that enpass synthetic cilia is still in its
infancy; nonetheless, recent experiments [36] destnated that actuated polymeric cilia are
effective at pumping fluids within a prototypicaéwce. In addition, very efficient mixing is
obtained using specially designed geometrical citiafigurations in a micro-channel. Since the
artificial cilia can be actively controlled usintgetrical signals, they have exciting applications
in micro-fluidic devices. Baltussen et al. [37] died effectiveness of actuated cilia as a micro-
mixer exhaustively. Kieseok Oh et al. [38] develdme bio-mimetic microfluidic device that
mimics the high compliance and the beating frequeridiological cilia in order to achieve bio-
compatible manipulation of microfluidics. To fatdie the design of the next stage devices, there
is a need for computational studies that not onhp@nt the parameter space where the
synthetic cilia would be most efficient, but alsanl to light new functions that these filaments
could perform. To date, there have been few sinauatof the motion of microscopic particles
in the three-dimensional fluid flow that is generhtby the beating of cilia. The potential
functionality of synthetic filaments in the seleetitrapping of particles from the solution or the
expulsion of trapped species remains unexploradil&@ly, the effectiveness of actuated cilia in

transporting a particle along a ciliated surface hat been studied.



1.3. Scallop Theorem

The mechanism behind micro-flow created by actuatkal is similar to swimming at low Re.
Actuated cilia can be considered as tethered swisindecording to scallop theorem [39], to
create a non-zero time-averaged flow, a swimmertesd in way that is not invariant under
time-reversal. In other word, one cannot swim at IReynolds numbers with self-retracing
strokes. An analog of scallop theorem for pumpiteges that there is neither momentum nor
angular momentum transfer in a pumping cycle thaeif-retracing. At low Re, flow through a

micro-channel is linear. This can be seen fromftoe that V. dt is balanced by -V, dt when

the path is retraced. So, to create a time-averfigedby a deforming body such as a tethered
cilium, it must not deform in a time-variant re@pel manner. For a deformation to be time-
irreversible, the swimming system must have mudtigdegrees of freedom. Since cilia are
tethered to the wall, it performs cyclic motion. \Weed to have some asymmetry in the system

that can be done by rotation, facilitated by midtigegrees of freedom.

As demonstrated in Figure 1, a body with two-degreefreedom (, ) performs cyclic
motion. The body which has a shape shown by thd $aok changes its shape to the dashed
contour and then it changes back to its originalpgh During this cyclic motion, it utilizes its
multi-degree freedom for producing time-irreversilgyclic motion. As evident from figure 1,
configuration S2 and S4 are not identical. So,bibey is not performing time-invariant motion.
This irreversibility is manifested by the rotatibetween state 1 (represented by solid blue line)
and state 2 (represented by solid red line). Toigriough to elude the scallop theorem. As
momentum of the system is conserved, rotation efthdy will create flow in the surrounding

liquid.



Figure 1: Non-reciprocal cyclic motion and resulteffect on fluid pumping

To create actuation that is not invariant undeetimeversal, we can use oscillating elastic
cilia, which have multiple (>2) degrees of freedand can deform in such a manner that it need
not have to retrace its trajectory. This justifies choice of polymers for the material of artgici
cilia. Unlike biological cilia, artificial cilia hee identical forward and reverse strokes. The net
transport in the layer of artificial cilia is due $econdary flow, generated by the non-recipetorial
motion of elastic cilia.

1.4.  Viscoelastic Coupling at Low Re Flow

Our system is governed by viscously over dampetaahycs [40]. By numerical techniques, we
couple elasticity theory and over-damped viscoudrdgynamics. Fluid flow in microfluidic
devices is characterized by small length scalgjltresto low Reynolds number. At low Re,
inertia is negligible compared to viscous effeehc® inertia is negligible, the motion is perfectly
reversible in time. Time, in fact, makes no diffece on flow pattern.

Assuming the surrounding fluid to be incompressibid its motion is governed by the

Navier-Stokes equations:



Ty, Ty, iz ji
r(—+u,—)= + Foyee 1
(,"t ,ﬂxj) e 1)
At low Re, in negligible inertia, it reduces to
t.
T sF @
X

In elastohydrodynamic actuation, oscillating eastdies are used for triggering micro

flows by time-varying external forceAcost). This leads to bending in elastic cilia. The

resultant flow field emerges due to the couplingMeen elastic force exerted on liquid by cilia

and viscous drag force. The dynamics of elastia @il the limit of small deflectiog(x,t) is

governed by the following‘ﬁorder partial differential equation:
Vi =- vyxxxx’ (3)

where Vis the ratio of bending modulus and drag coeffici®&atural length of the system for

025

frequency w, is |(W)=(%) . To characterize the frequency in this overdampisdous

system, we use a non-dimensional number, calleginspumber’,Sp=1/1(n). We therefore
use the sperm number to characterize the motiehastfic cilia.

Frequency of biological cilia is in the range of2@0Hz [41]. For our atrtificial cilia of
length, | =40nm, square cross-section with side lengthz 47/m polymeric material elastic
modulus, E =100KPa , surrounded by water with viscosity *Pas, and actuation frequency
10-200Hz, the ‘Sperm Number’'Sp of cilia is in the range of 3-5. In loBp cjlia wiggle time-
invariantly and unable to produce any time-averageapelling effect. On the other hand, in
large Sp, significant viscous damping suppresses cilia amtand again results a weak

propelling effect. Within these two extremes, ciignamics and associated propulsion are
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governed by interplay between elastic bending b& @nd viscous drag it experienced from
surrounding fluid. In this range, we can expect@ile propulsion from cilia.

As explained later, bending modes of elastic akaillating at Sp= 3and Sp= 5 are
different. ForSp= 3 cilia exhibit the first mode of bending, wherdas Sp=>5 the bending is

characterized by the second mode. As we will shibw, difference in viscoelastic coupling

between two thes&p numbers leads to different directions of assodiatka-driven flow.
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CHAPTER 2

PROBLEM DEFINITION

We use three-dimensional computer simulations rtbg the utility of a ciliated surface to
control the motion of microscopic solid particleghin a microfluidic channel, where the fluid is
characterized by a low Reynolds number (Re). Sigatlif, the problem addressed in this thesis
is to identify design specifications for artificiailia based microfluidics devices, those are
capable of maneuvering a microscopic particle gattio the channel wall, and transporting the

particle parallel to the channel wall.

We model our system computationally, where theacdre elastic filaments that are
tethered to a solid wall and actuated by externafpplied periodic forces. We introduce a
neutrally buoyant, solid particle of radiBs which is sufficiently small (compared to the wih
length and inter-cilium distances) that the pagtichn move freely inside the ciliated layer. We
assume that the micron-scale particle and ciliasaféciently large, however, so that they are

not affected by Brownian fluctuations.

As we show below, the actuated motion of thesehgfitt cilia can cause the particle to
move perpendicular to the cilial layer. Furthermdrg changing the frequency of the applied
force, we can regulate the direction of the patscimigration. In effect, this synthetic system
mimics the ability of the marine suspension-feed&rs manipulate particulates in their
environment and can be utilized to facilitate eittiee deposition or removal of particles from
substrates in microfluidic devices. In addition, wmeestigate the capability of actuated cilial

layer to transport particles parallel to a substraall. In this case, the cilia are tethered at an

12



angle45’ to the wall and actuated by externally applieccést Similarly to the case of cilia
perpendicular to the channel wall, we introduceesatrally buoyant, solid particle that can move
freely inside the ciliated layer, but not affectegd Brownian fluctuations. As shown below for a
given frequency and initial position of the pamiclcilia can transport the particle by a

considerable distance parallel to channel wall.

13



CHAPTER 3

METHODOLOGY

Our simulation box encompasses oscillating cilid arsuspended patrticle, which are immersed
in a viscous fluid. To capture the complex fluiddsture interactions in this multi-component
system, we employ a hybrid “LBM/LSM” approach [48}4 which integrates the lattice
Boltzmann model (LBM) [47-48] for hydrodynamics attné lattice spring model (LSM) [49-50]
for the micromechanics of elastic solids. Put sucity, the LBM is an efficient solver for the
Navier-Stokes equation. Via the LSM, we can fashiancilia and the particle from a network of

harmonic “springs”, which connect nearest and medrest neighbor lattice nodes.

Figure 2:Schematic of computational system. The nodes tieat@nected by springs form the
lattice spring lattice (for clarity, we omitted tdeagonal springs that connect each node with all
its next-nearest neighbors). The remaining nodaesent the lattice Boltzmann lattice (blue for
fluid nodes and black for solid nodes). The sdhes$ are the solid-fluid interfaces.

14



3.1. Lattice Boltzmann Model

Lattice Boltzmann model is a lattice-based method dimulating hydrodynamic flows. The
model is comprised of two processes. First is tiopggation of fluid “particles” to neighboring
lattice sites, and second being collisions betwmsaticles when they reach a site. The system is
characterized by a single particle velocity disttion function, n,(r,t) ° n(r,c,,t) describing
local mass density of fluid particles with velocity at a lattice node at timet. Here,c, r,

andt are discrete variables, while the distributiondtion itself is a continuous variable. The

hydrodynamic quantities, mass density, momentum density,j = pu; momentum flux,

IT ; are moments of the distribution function:
r=8n,j=s¢n,P =Sccn. (4)
The distribution function varies with time in acdance with the discretized Boltzmann
equation:
n(r+cDtt+Dt) =n(r,t)+D{n(r,t)]. (5)
Here, the collision operatdd[n(r,t)] quantifies the change in distribution functiom,
due to instantaneous collisions at the lattice sodemulti-relaxation time collision operator is
employed for assigning independent values to thearstand bulk viscosities. This collision
operator conserves mass and momentum. It alsoeldre momentum flux (or stress) toward
local equilibrium. The velocityc, in thei-th direction is specified such that fluid partickeke
exactly one time stept for propagating from one lattice site to the next.

A computationally efficient form for the collisiooperator can be modeled by linearizing

about the local equilibriunm®® as:
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D\(n) = D, (n*) +S,L, )", (6)

[ | |

where L, are the matrix elements of the linearized collisaperator,n,"*=n, - n"™* , and
J

D, (n*") =0. The computational utility of lattice-Boltzmann dels depends on the fact that only
a small set of velocities are necessary to simufeédNavier—Stokes equations.

A particular lattice-Boltzmann model is defined &yset of velocities , an equilibrium
distribution n*, and the eigen-values of the collision operatde population density associated
with each velocity has a weighat® that describes the fraction of particles with witlp c ina
system at rest; these weights depend only on teedsp and are normalized so that their sum

equals to unity. Note that the velocities are chosen such that all particles move from node t
node simultaneously. For any cubic lattice,

a‘cc =C,c’L (7)

where,c =Dx/Dt, Dx is the grid spacing, an@, is a numerical coefficient that depends on the

choice of weights. However, in order for the viss@iresses to be independent of direction, the

velocities must also satisfy the isotropy condition

aCi Cla Clbcigc;ld = C4C4{0:ab dgd + daddgb + dagdbd} . (8)

In three dimensions, isotropy requires a multi-spe®del; for example the 18-velocity
model. This model employs the [100] and [110] dits of a simple cubic lattice, with twice
the density of particles moving in [100] directioas in [110] directions; alternatively a 14-

velocity model can be constructed from the [10@] HIl1] directions with a density ratio of 7:1.
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The form of the equilibrium distribution is constrad by the moment conditions
required to reproduce the inviscid (Euler) equaiom large length scales and time scales. In
particular, the second moment of the equilibriuratribution should be equal to the inviscid

momentum fluxpl+ uu:

r= n% ()]

j= . (10)
0% = rc’1+ ruu. (11)
n“= n"% =0 (12)

i i
The linearized collision operator must satisfy fibléowing eigen-value equations;

L; =0, gL, =0 ccly=/cgc, L =/ (13)

i 1l I i vT)

where’;c;, indicates the traceless partad. The first two equations follow from conservation

of mass and momentum, and the last two equatiosritie the isotropic relaxation of the stress
tensor; the eigen-valugsand 4, are related to the shear and bulk viscositiesliand the range

2 < A < 0. In general the eigen-values of these kinetad@s are set to 1, which both
simplifies the simulation and ensures a rapid r&iax of the non-hydrodynamic modes.
The collision operator can be further simplified taking a single eigen-value for both

the viscous and kinetic modes. This exponentiabxagion time (ERT) approximation,

A= —n;" /1, has become the most popular form for the coligiperator since it is simple and
computationally efficient. However, the absenceaotlear time scale separation between the
kinetic and hydrodynamic modes can sometimes caigerificant errors at solid-fluid

boundaries.
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The distribution function post-collision can be t#en as:

IS, (ruu+ P4 ): e - ) .

n=a% r+ i
CS 2c

(14)

The zer8 () and first = u) moments are the same as in the equilibrium distion but

the non-equilibrium second momeni®*¥is modified by the collision process:
pred = (1+/)Eneq+%(1+/v)('°neq 111, (15)

where P™=P - P® : The kinetic modes can also contribute to thet-poBision distribution,
but we choose the eigen-values of these modes tb, Ise that they have no effect am with
/ =/, =-1is equivalent to the ERT model with=1 for/ <- 1, the kinetic modes relax more

rapidly than the viscous modes, which is the praéip@t for hydrodynamics.

3.2. Lattice Spring Model

The elastic and plastic response of the materiaésesented by an array of “springs' which
occupy the nearest, and next nearest neighbor,sbohd simple cubic lattice. The energy

associated with a nodrin the lattice is assumed to be of the form,

E. =% Uy - u)M (U - u). (16)

where the summation is over all the neighboringasaa attached ton by a spring, g is
the displacement of noden, and Mp, is a symmetric matrix which determines the elastic
properties of the springs. It is shown in the sghsat parts of this section that this system of
springs obeys, to first order, the equations oftioomm elastic theory for isotropic elastic
medium whose elastic constants can be determintzrirs of the elements of the matridég,.

The harmonic form of the energy results in forcesicw are linearly dependent upon the
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displacement of the nodes and the resulting sespafse linear equations may be solved by a
conjugate gradient method to find the equilibriuonfiguration which corresponds to no net
force at each node. The matrices,Missociated with a bond can be varied to represent t
material properties present in different phaseshiwitthe same material, hence allowing
heterogeneous systems to be simulated. Bonds vgfiatidle two phases are assigned linearly
interpolated values.

We assume that the matrix associated with the gmithe [100] direction is of the form

o)

M (100 ~ (17)

o o
o .0 o
O o o

In this matrix, k; and c; correspond respectively to extensional and ratatidorce
constants. We construct the matrices correspondirtpe springs in the equivalent symmetry
directions by a similarity transformation of therfo

M ¢= RxM xR’ (18)
where R is the rotation matrix which rotates a oedh the [100] direction into the required
direction. In addition the matrices correspondingtiie set of directions [110jave the force

constantsd, ki) replaced byk; ,c).

Hence, for example, the matrix corresponding to11€] direction is

1 (kz +Cz) (kz - Cz) 0
Mg ZE (k,-¢c,) (k,+c,) O . (19)
0 0 (o

In the following analysis, we consider a homogesematerial in which only the force
constantski, ko, ¢, ¢;) are used. It is now shown how these constantsbeashosen in order to

recover an isotropic elastic medium.
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In order to map the spring model onto the continuespations we make the Taylor

approximation:

Uy - Uy > U(X+ (Cmm) X,y + (Cmn)y) - U(X, y) » (Cmm ’ N)U(X, y) +%(Cmm ’ N)Zu(x, y), (20)

where, uk, y) is the vector displacement field of a two dimensil continuum material anghn,

are the bond vectorsngt unit vectors). We may use this expansion in theresgon

F.= M.(u,- u,) for the force on nodm and derive the form of the Lame equations for the

m

spring model. Alternatively an expression for tinergy density can be derived using the Taylor
approximation in the energyFgiven by equation. If we equate coefficients insthe@quations
with those for the elastic continuum and assumeptimitive cell of the simple cubic lattice has
unit side, we find the following relationships be®wn the elastic constants of the continuum and

spring models

b= (k + 2k, +20), @)
b, =k, - c,, (22)

b, =2k, +¢, +2¢,, (23)
d, =c, +4c,. (24)

It is important to note that although the tedn associated with the antisymmetric
contribution to the free energy does not affectdlastic constants, it is essential for the term to
be included if the mapping onto the continuum eiguat using the free energy expression and
the Lame equations are to be consistent. In omlethe spring model to become isotropic, we
require d; = by+bs and for simplicity we choose and = k; andc, = ¢; and hence the spring

model has the following properties:
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Mi10g = 0 , Mg =5 kec kic (25)
1
/ =(k-c), m=§(2k+3c). (26)
and hence,
=5k(2k+30)' . k-c' K=3/+2”=5—k. 27)
(4k +c) c+4k 3 3

whereK is the bulk modulus. Furthermore, in our simulasiove sett =0 leading ta? = 025.

In order to calculate the dynamics of an elastidsave assign a mashl, to each LS
node at position; and integrate Newton’s equation of motidi{y, )= M, (d°r, /dt?), whereF is
the total force acting on the node. Specificabyconsists of the force due to the interconnecting

springs and the force exerted by the fluid on wledsat the solid-fluid boundary. The velocity

Verlet algorithm is used to integrate this equatdmotion.

3.3.  Solid-Fluid Boundary Condition

To capture the interactions between the solidsflunds, lattice spring nodes that are situated at
the solid-fluid interface must impose velocities thre surrounding fluids through boundary
conditions and, in turn, experience forces dueh ftuid pressure and viscous stresses. Put
concisely, the simulation precedes through the esatipl update of both the lattice spring and the
lattice Boltzmann systems. The LSM system is uptide first calculating the forces that are
acting on the LSM nodes, due to the LSM springs thiedsurrounding solvent. New positions,
velocities, and accelerations of the LSM nodestlaga calculated using the Verlet algorithm. In
updating the LBM system, we first establish LBMkinintersect the solid/fluid interface. We

then obtain the velocities at these points of gegetion from neighboring LSM nodes. Next, we
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propagate the distribution function by streamingidi particles to their neighboring nodes
whenever these nodes are in the fluid domain, #nerwise, we apply the appropriate boundary
condition (described below).

Finally, we modify the distribution functions ateth.BM nodes to account for the

collision step. We then repeat the entire cycle.

Figure 3: Implementation of solid-fluid boundarynciitions
In our current implementation, fluid particles tlzae moving on a link that intersects the

solid-fluid interface are bounced back into thedlphase at the intersection point (or boundary
node)ry. Hered, =r, - r|r,- r,[* , with ry being the fluid node at which the fluid particles
originate andr, =r,+cDt , being the neighboring solid node in the directminthe fluid
particles’ motion. Forg] :%, these particles will arrive back at nodeafter precisely one time
step with a velocity that is opposite in directtortheir original motion. This situation represents
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the well known link bounce-back rule. However, fof? %,fluid particles will end up at

positions that do not coincide with a regular t@thode, and some sort of interpolation is needed
[51-52].

First we consider an interface that is station&ord, < (1/2), we obtain post-collision
distribution function, f," (r,,t) by linear interpolation betweef’ (r, - c¢,Dt,t) and f,; (r,,t). After
travelling for one time step and being reflected tli¢ boundary node, the interpolated

postcollision distribution function ap will end up precisely at the nodg with velocityin the

opposite direction (figure 2 (b)). Hence [22]
f (r,t+Dt) = fi* (ro,t) = (20, - 1) fk* (.- c,Dtt) + 20, fi* (rut). (28)

When g, >1/2, we calculate a new distribution after it is bouné®n the solid as follows,

frot+ D) =28 ¢ (1o DLE+ D)+ =1 f, (1t + DY)
] 24,
2d -1 1 (29)
= 1- f*r,t +—f.*r,t.
4 )

Here, the subscript stands for fluid particles with a velocity in tbpposite direction of

the incoming particles, i.e, =-¢,, anda® =1/18 for the orthogonal directions aneé for the

diagonal links. we propagate the fluid particlesiatler;, such that they end up at the position
ro, i.e.,fi(ro,t + ¢t) ) fi*(r1t) (see Figure 2c). We then obtdifr 1t + ¢t) by linear interpolation
betweenf(ry-¢ t, t+ t)andfy(ro,t+ t) (figure 2 (c)).

For a moving interface, we have to account forakcity, u, of solid material at the
intersection pointy, . This leads to additional terms in equation (IV-28)d (IV-26) that are

proportional to the component of the veloaityn the direction of fluid particle velocity [22].
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hmﬁ+D0=fUm0=Q¢-DﬂXG-Quiﬁﬂ¢ﬂYw0-%;fmﬁmud%ﬂ,
f

(30)

1
d <=
)

20,- 1. 1 .. a;
)= 2 e 2 ) e

fk(rl,t+ Dt
g3l
2 (31)

Here a, = 1/18for the orthogonal direction and 1/8& the diagonal links. The velocity
u, is obtained by interpolation between lattice spnmagles on either side of the interpolation
points, i.e,u,(r,,t) = @- dy)u(ry,t) +dyu(r,,t ) with d, =|r, - r,|/|r, - r,|(see figure 2(a)). This
implementation gives no-slip boundary conditionhnsecond order accuracy [42].

As a result of the bounce-back process, the fluette a force on the solid. This force is

taken to be equal to the rate of exchange in mameniat takes place as the fluid particles are
reflected at the interface, i.e.,

Fb(rb’t+%Dt):{|_fi*(r1't)_ air(rl’t)jci - [fk(rlvt"'Dt)' air(rl’t)]ck}[)xsu-l' (32)

The termsa,r(,,t) compensate for the ambient pressure, ensuringtatorce on the
interface is zero when the entire system is at fBHs¢ forceF, is distributed as a load to the

neighboring LSM nodes, while conserving the norarad tangential force on the interface:

Furat+5 D) = (0 ), (1, 1+ D0), (33)

Fb(r4’t+%Dt) :a’zFb(rb,t+%Dt). (3%
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3.4. Model Validation

The coupled LBM/LSM model have been previously daied [42] in the limit of low Reynolds

numbers,Re<<1. Specifically, we verified the boundary conditiofes a static non-compliant

interface by simulating the drag force on a regalany of parallel cylinders, whose axes lie
perpendicular to the mean flow direction and arayamf regularly spaced spheres. We also
calculated the drag force on a sphere placed inddlenof a periodical box. That arrangement
represents an array of regularly spaced sphereatba&onstructed from two concentric layers of
LSM nodes. The drag force was compared with prehopublished solutions and excellent

agreement was found.

The dynamical coupling between the LBM and LSM mnisdeas validated by simulating
the breathing modes of a fluid-filled cylindricadiedl in vacuum [42]. The results indicate that
our coupled model captures the correct frequenwewithin one percent of the theoretical
prediction for a large range of shell stiffnessuesl. Similarly, we have studied the breathing
modes of spherical fluid-filled shells and founds®# agreement with corresponding analytical

solutions.

Additionally, we calculated the drag force on & fiate for finite values of the Reynolds
number. In these two-dimensional simulations, adgelow was imposed parallel to the rigid
plate. The results are shown in Figure 4, wherg @ne compared with the prediction of a
theoretical model. For a wide range of Reynolds bers, we find perfect agreement with the

theory in terms of the friction coefficier@,, providing confidence that our hybrid model can

capture the flows for a wide range of Reynolds nersb
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Figure 4 : Drag Coefficient vs Re

3.5. Dimensionless Parameters

The elasto-hydrodynamic behavior of beating ciianormally analyzed in terms of the sperm

number, Sp, which characterizes the relative importance ef tiscous force and the bending

)025

rigidity of oscillating cilia [53]. In particulaSp = L(zw/EI)**°, where z = 4pnr is the viscous
drag coefficient,w =2pof is the angular velocity of the driving force, aid is the bending

rigidity of the cilium. In our simulations, we stte fluid densityr =1 and kinematic viscosity

n =16 (in LB units), and varyf to alter the magnitude 8p. When Sp is relatively large, the

dominant viscous effects suppress the wigglindhefelastic cilia, and consequently, no net fluid

flow is generated. For relatively sm&ip, the dynamic shape of the cilium is governed By it

elasticity, leading to time-reversible oscillatioimat are unable to generate net flows at low Re.

It is only for intermediate values &p, where the effects of cilium elasticity and fluigscosity

are of comparable magnitudes, that a coupling batwelastic filaments and viscous fluid

permits transport in the low Re environment.
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Each cilium is driven by an oscillatory force tiwmapplied to its free end. This sinusoidal

force, which sets the entire system into periodatiom, is directed along th&-axis and has

dimensionless amplitudé\:%aLz/El and a frequency . Here, a is the force amplitude, and

| =b*/12 is the cilium’s moment of inertia. In the ensuisgnulations, we sei=1, for

studying the particle deposition discussed in thet IChapter, and=5, for particle transport by

tilted cilia described in Chapter 5.

3.6. Comparison with Experimental Parameters

When it comes to synthetic systems, a broad rahgelgmeric materials can be used to
manufacture artificial cilia with sperm numberglie range of interest. For example, let us
consider a cilium that i$07m in length andlzmin diameter oscillating in water with a
frequency of about 10 Hz (which corresponds todgmally relevant frequencies). For such
cilia, a sperm number in the range from 1 to 10mawbtained with polymers having a modulus
of about20Pa- 200kPa, which is in the range of experimentally realistedues. Gueron et al.
[54] explored different physical quantities relatediological cilia. In our model, we use radius
of the particle as an independent parameter. Wesehdensity and elastic constant equal to 1,
and kinematic viscosity 1/6 based on our simulasicimeme. We compared the values of Sp
between our model and biological cilia, shown ioleg(1). We find that values of Sp used in our
computational model are comparable to the valugisayfor biological cilia. We therefore

expect similar functionality from our model.
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Table 1: Comparison between a biological system artie computational model, where

radius of particle, R=10L.B.unit

Parameter Biological System Comgational Model
L 12/mm 4R
a 0.1//im 04R
f P I e ——
F 10N 003R?
E, 25 10%N/m? 1
n 0.001Kg/(ms) 1/6
Sp 6.5 35

3.7. Modeling Elastic Cilia

We construct each cilium from cubic elementary L8Mts to form an elastic cantilever beam,
which has a length of =4R, and a width ofo=0.1L. The inter-cilium separation iB = 3R.

Given that k is the spring constant of the interconnecting hoamia springs, the Young's
modulus of the cilium isE = 5k/2Dx,; and the solid density is, = M /Dx’; , where Dx ¢ = 4/3
is the spacing between the LS nodes. We set theg'sunodulust =1 and densityr, = Xin

LB units). This simple lattice model is restrictéml a Poisson’s ratio 4f4, although more

complicated many-body interactions can be includedary the ratio.
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3.8. Modeling Patrticle

The patrticle’s three-dimensional shell is conseddrom two concentric layers of LS nodes. By
using the Delaunay triangulation technique, weritiste nodes in a regular manner on each
surface. These two concentric surfaces are sepabgt@ distance that is equal to the average
size of a triangular bond and are connected byngprbetween the nearest and next nearest
neighbor nodes. The spring constant for springatéxton the capsule surfaces and normal to the
surfaces isk, while the diagonal springs have spring constah/3k . The particle has a radius

of R=10Ib units, with N, = 642 nodes on the surface, a shell thicknesbxpf , hdd

density ofr, = 1 The Young’s modulus of the shellgs» 5/18.

3.9. Cilia-Particle Overlap
To prevent overlap between the capsule and thantiliwe introduce the following Morse
potential 7(r)=e(- exd- (- r,)/k]f . Here,e and k characterize the respective strength and

range of the interaction potential, andis the distance between a pair of LS nodes, wbheee
node lies on the capsule’s outer surface and therdies at the cilium-fluid interface. The

parameterr, = 1.8s the equilibrium distance where the force duth®potential is zero. We fix
e=e =0.005 for the repulsive part of the potentiat €r,), while for the attractive part

(r>r,), we sete =0andk =1. We use all numbers in Ib units.
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CHAPTER 4

PARTICLE DEPOSITION

4.1. Computational Setup

We use four cilia and a particle in our simulatimox as shown in Figure 5. The height of the
simulation box is chosen to BEOR and the width equaBR We apply periodic boundary
conditions along the lateral directions. Each afliuss driven by an oscillatory force that is
applied to its free end. This sinusoidal force,ahhsets the entire system into periodic motion, is
directed along thex-axis and has dimensionless amplitddel.The only independent

parameter in our problem is particle radius, eqoidlO Ib units.

b
B —

A 1 S

A 4

Figure 5: Schematic showing the three-dimensiomahgement of the cilia and the location of
the spherical particle within the system.
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4.2, Results and Discussion

Figure 6 shows snapshots from our simulations tHastrate the time-varying periodic
movement of the compliant, synthetic cilia and d@article. At the onset, we place a particle in
the center (at=0,z=0) between four initially quiescent cilia. We theppéy the periodic,
horizontal force, which drives the cilia to bencchand forth in thex- y plane and thereby
induce the movement of the fluid. The viscous fluid turn, imposes a periodic drag on the

suspended particle. As a result, the particle ¥adlohe oscillatory motion of the beating cilia.

(a)

(c)

trai
Y 0.05

-0.05

Figure 6: Snapshots from our simulations illustrgtperiodic oscillations of beating cilia and
movement of solid particle foBp=3. The colors on the cilium surface show the magietof

material strain. The arrows indicate the directimmd magnitude of fluidvelocity at the
planez=0. Panels (a), (b), (c), and (d) correspond to tifnesD, 0.25, 0.5, and 0.75,

respectively.
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We investigate the effect of actuation frequencieshe dynamics of the particle motion.

025
As mentioned previously, the actuation frequencégse characterized 8p=L alid

El

Specific trajectories for the particle’s centemadiss motion, scaled by the radius of the particle,
are shown forSp=3 and Sp=5 in Figure 7 (a) and (b), respectively. We obsetivat the
particle follows an oscillatory trajectory. The pele oscillates irx- z plane, i.e., in the plane
parallel to force direction and normal to the chalnwall. Interestingly, after a short initial
transient behavior, the particles steadily mignatea particular direction along the cilia (i.e.,
along they -direction). For lower frequency, characterizedSpy 3, the particle moves toward
the bottom wall of the microchannel. When we inseethe oscillatory frequency, characterized
by Sp=5, the migration direction is reversed and the plrtmoves away from the surface. In
other words, by simply changing the oscillatinggirency, the actuated cilia can navigate solid
particles toward or away from the channel wallréhg controlling particle transport in vertical
direction w.r.t. the channel wall. From Figure 7, {@e observe that in 25 oscillations the particle
migrates a distance equal to 0.6R. Thus, wBg=3 for a particle of sizeR=10mm, the
transported distance is equal tpne@ From Figure 7 (b), we find that in 25 oscillatiothe
particle migrates by distance equal to 0.015R, Wisimrresponds to the transport of a particle of
size R=10mm by a distance is equal to Ol The slower transport at higher frequency can be
explained by a higher viscous damping. Furthermlarger amplitude of particle oscillations at

lower frequency demonstrates the fact that, at tdsyecilia wiggle more intensely.
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Figure 7: Trajectory of particles during 25 periddslow frequency characterized by Sp=3 and
(b) high frequency characterized by Sp=5

We quantify the particle migration inside the d#éid layer by measuring), the period

averaged velocity normal to the channel wall. lesehsimulations, we allow the cilia to oscillate
up to 25 periods to avoid the effect of the initiednsient behavior. We calculate the period

average velocity by measuring differences in disgiaents for successive periods and compute
the average of the differences. The computed uglooiormalized bygp*v/R, is shown in

Figure 8 as a function of particle distance from tthannel wall for differel8p. A positive

velocity indicates that the particle is drifting aywfrom the wall and vice versa.

We find that the drift direction indeed dependstbe magnitude &p. Moreover, for
both Sp=3 and Sp=5, the velocities do not change sign inside therlamd even slightly

above the cilia tips; this behavior indicates taetuated cilia can transport these particles in a
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unidirectional manner all the way from the channall to the outer stream, where the effect of

the beating cilia on the fluid flow eventually dsates.

More specifically whe®p= 3, the actuated cilia can actually trap a partioleéhe fluid
above the layer and bring it into direct contacthvthe channel surfac&laximum normalized

velocity, URV 'Sp' reached by the particle 8p=3 is equal to about 0.1, as shown in Figure 8.

For a particle of sizeR=10mm in water of kinematic viscosifyo°m? /s, the velocity is equal

to 0.0001 md. Negative velocity indicates the fact that, thetipke is migrating towards the

channel wall. Assuming average velocity is haltled maximum velocity, we can estimate that
the actuated cilia will take 0.04s to deposit méetirom outer layer to the channel wall. In this
manner, the cilia can enhance the rate of depastfcsuspended particles onto the underlying

substrate.

Alternatively, cilia oscillating withSp=5 can expel particles from the cilia layer and
propel them into the outer fluid. In this way, ated cilia can prevent particle accumulation on
the surface. Maximum normalized velocityRv 'Sp* reached by the particle 8p=5 is equal
to about 0.1, as shown in Figure 8. For a partaflesize, R=10mnm in water of kinematic
viscosityl0 ®m? / s, the velocityU is equal to 0.00016 rnitsPositive velocity indicates the fact
that, the particle is migrating away from the chelnmall. Assuming average velocity is half of
the maximum velocity, we can estimate that the atetili cilia will take 0.25s to expel particles
from the channel wall to outer layer. In this manrike cilia can enhance the cleaning rate of

suspended particles from the cilia layer.

We note that when the cilia are oscillatingSgg= 4, the velocity fluctuates around zero

and thus, there is little effect of the beatingacdn the net particle displacement relative to the
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channel wall. At this point, it is prudent to ndteat for all Sp=3 and 5 maximum particle
velocity is at y» 0.8L . Also, the particle velocity tends to be zero abaiu&a layer. These
observations can be explained by the existenceeobrglary flows within cilial layer, as

discussed further below.

0.1
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Particle positiony/L

Figure 8: Velocity of particles as a function oktdince from the bottom wall. The lines with
triangles, circles, and squares show the partielecities for Sp=3, Sp=4, and Sp=5, respectively

In the above simulations, we placed the particlesgia Iine[X: 0z= O] in the center of
the simulation box and varied the particle’s initetance from the bottom wall. With the square
arrangement of cilia considered here, these parfidsitions are symmetric relative to the
beating filaments and, for this reason, allow p#tmigration only in the direction normal to the
wall. To probe the generality of the observed b@havt is instructive to break the planer
symmetry and investigate the migration behaviopaitticles that are initially shifted in the
and z directions, i.e., placed along the Iinks: 0,220] an({x:O,z:a]. For bothSp=3 and

5, we plot in Figure 9 (a) and (b) the velocitidsparticles displaced from the center of the
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domain by distances af =c anda = 0.5c, wherec = 0.5(B + b). Note thatad = ¢ are symmetry

lines and, therefore, particles located on thessslcan only migrate normal to the wall, whereas
a = 05c allows for migration both normal to the bottomfage and in-plane of the layer. For

comparison purposes, we also plot in Figure 9 (@ &) the velocity for particles at

[x=0,z=0].

For Sp=3 (see Figure 9 (a)), particles aIm[ogz O,z:0] migrate down to the channel

wall. When particles were shifted b§5c in the z-direction, i.e., normal to the plane of the
cilium oscillation, the velocity of the shifted andn-shifted particles are almost identical. When
we shifted the particles fartherze- c, the oscillating cilia come into contact with pelgs that
are initially located near the cilium height. Tlatér contacts prevent the particles from moving
into the cilial layer. In this case, we cannot meashe velocity since the cilia hit the particles
during the first oscillation and push them to aipas right above the layery » 1.2L . These
situations are indicated by the discontinuity ia trelocity profile in Figure 9 (a). As a resulteth
particles accumulate above the cilia. On the offaerd, those particles that are initially relatively

close to the wall migrate downwards and accumwdaye»> 0.5L , where the velocity is zero. For
particles shifted in thex-direction, i.e. parallel to the plane of cilia dktions, andSp= 3, we
found that forx =c, the particles move downwards only if they ardiafly closer thany = 0.7L

to the bottom wall. Otherwise, particles are regzlio the outer fluid, although with a velocity
that is relatively slow compared to thatxat 0. For particles at = 05c, the velocity is always
downward, similar to the case fo= 0. Interestingly, the velocity ak = 0.5c is approximately
the average between the velocitiesxat 0 and c. (Since the magnitude of the velocityat c

is smaller than that at =0, we expect that particles located between0 and ¢ will mostly
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move downwards.).In Figure 9 (b), we show how thigration velocity changes foBp=5
when particles are displaced either in theor z-direction. For this sperm number, particles in
the middle of the domain migrate upwards from tbédswall. Forad =c, the velocities are
relatively slow and fluctuate around zero. The ipbas that are initially closer to the cilium tips
exhibit positive velocities and migrate out of tlager, whereas particles closer to the channel
wall concentrate near this surface. Again, we fimat particles at? = 0.5c have velocities that
are approximately an average of the veIocitieb(evtO, z=0] anda =c, and always move away
from the bottom wall. Hence, f&p=5, the actuated cilia will propel the particles avwaym the
wall; except for a few cases where the particleslacated between pairs of beating cilia (see

Figure 9 (b)).

0.05
3 B
< 0 g
& S
2 5
z =
8 -0.05 '©
(o) o
> (3]

>
-0.1 : :
0 0.5 1 15 0 0.5 1 15
Particle positiony/L Particle positiony/L
(a) (b)

Figure 9: Velocity of particles as a function o$w@ince from the bottom wall for (&p=3 and
(b) Sp=5. Particles with positive velocity move away frometwall. The dashed lines with
filled circles indicate the velocity for particlédscated at the middle between oscillating cilia
x=0 and z=0. The lines with the empty and filled squares iatkc particles shifted to
x=05c and x =c, respectively. The lines with the empty and fillsdngles indicate particles
at z=05c andz =c, respectively.
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To gain insight into the effects that contributehie controllable migration of the particle
with changes i8p, we examined the bending patterns for an indivigilaim at both Sp=3
and 5 as shown in Figure 10 (a) and (b). It revéladd indeed the cilium exhibit different
dynamical behavior at these differ&pt In particular, abp=3, the cilium makes extensive
excursions in both the forward and backward motisinthe higheSp, however, the effect of
viscous damping is more pronounced and the ciliuakes smaller deviations in the lateral
direction. Similar dynamic behavior was previouslyserved for cilia that were tilted with
respect to the substrate and were actuated byi@dpeforce. In the latter case, by changi@p
(by altering the driving frequendy), one could switch the direction of the net flouthin the
microchannel [34]. Thus, it is clear that changeSp affect not only the oscillatory behavior of

the cilia, but also the fluid flow within the syste

@) (b)

Figure 10:Cilium deformation duringgne beat cycle for (&p=3 and (b)Sp=5. The blue lines

show ciliawhen the force is directed to the right and theegrénes show cilia when the force is
directed to the left. F@p=>5, the horizontal deflection is magnified tenfold tdarity.

In the current problem of particle deposition, tika are tethered normal to the solid
surface and oscillation is symmetrical w.r.t. tloemal of channel wall, therefore, no net flow is
generated. Our simulations indicate, however, thatundulating filaments induce circulatory
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secondary flows in the liquid and that the directaf these flows is controlled by the mode of
filament deformation. To explore this effect, w&ratduced size-less tracer particles into the fluid
and measured the flow velocities inside the cdiger. As seen in Figure 11, where we plot the
period averaged tracer velocities, the directionflofv circulation indeed depends on the
magnitude of the sperm number. Specifically foioedles in the mid-plane between the actuated
cilia, the flow is directed downwards wh&p=3 and upwards f@p=>5. These flow patterns
agree with the directions of motion for the solattfcles shown in Figures 9 (a) and (b). We note
that the fluid continuity implies that the averadgkdd flow near a cilium surface and in the gap
between cilia have opposite directions. For thetinatly large particles considered here,
however, the spheres remain in the middle betweserllating cilia and thus, follow the fluid
flow arising in this location. This behavior, inrty results in the observed unidirectional

migration of the particles in the ciliated layer.

It is interesting to note that particle migratiomedtion strictly follows secondary flow
field direction. It demonstrates the negligible rired effect on particle motion, typical of an

overdamped highly viscous fluidic system.
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Figure 11: Hydrodynamic flow field in the middletheen the cilia for (apbp=3 and (bSp=>5.

The velocities have been averaged over one pefFioel left and right parts of the plot represent
the flow fields inx- y andz- y planes.

4.3. Validation and Closure

At this point of discussion, it is prudent to estiim the possible effect of gravity on particle
motion and explore validity of our assumption ofitnally buoyant particles considered in our

simulations. Terminal velocity of a particle in eping flow is governed by the following

equation,

ro-r) (35)

For a polymer particle with densitg3kg/ m®, suspended in water of dynamic viscosity

10°Pasand densit§00kg/m*, terminal velocity is on the order ¥ *°m/s_In our
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simulation, maximum velocity of a spherical pagiet Sp=5 , is in the order ol0°m/s. So,

we can safely neglect any effects due to buoyancy.

We can also calculate the terminal velocity of &tde in a typical microfluidic device

based on Equation (35). Typical bubble velocitinithe order c0°m/s_ Again, comparing to

the particle velocity which is of the order B °m/s the bubble motion is significantly slower.
Re .Therefore, we can claim even in the presencairobubble, actuated particle can propel
particles. Since the developed technique is indeégenof the presence of air bubble, the
encapsulation of microfluidic devices utilizing thechnique would not be an essential

consideration. This is advantageous for fabricatimgbust microfluidic device.

To estimate the effectiveness of oscillating sytithellia compared to diffusion velocity
of at low Reynolds number, we calculate the diffasrate for a microscopic particle in

microfluidic devices. To this end we use the Eimstétokes equation

_ KT
6pm’

(36)
Where the Boltzmann constakg,= 138" 10*J/K For a microscopic particle of radius,
r ~10°m at temperatur€ = 300K , the diffusion rate in water is of the order 1 **m?/s.

Clearly, the Brownian diffusion does not have aignsicant effect on the particles considered

in our studies.

To sum up, we have designed a technique for naoms particle control in microfluidic
devices. We have computationally demonstrated Mlyatitilizing the technique, microscopic
particle can be maneuver normal to the microfluichannel wall at the rate much higher than

diffusion that qualify our design to be a potenfgrticle control technique in microfluidic
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device. We have also quantified the effect of preseof air bubble and gravity and from that;
we can safely conclude that the developed technmjuebust to the presence of air bubble and

the bouncy effect.
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CHAPTER 5
PARTICLE TRANSPORT

5.1. Computational Setup

The computational setup we use to examine thegoahsf particles by inclined cilia is shown
in Figure 12. In these studies, the height of theukation box ish=6R and the width
isw=6R_ Periodical boundary condition is imposed in thtedal directions. Each cilium is
driven by an oscillatory force that is applied t® free end with dimensionless amplitusle 5.

The cilia are inclined at an angle =45’ with respect to the substrate. The outer radius of

particle isR=10 and cilium length i& = 4R.

b

W

& »
« »

Figure 12: Schematic showing the three-dimensianmaingement of the cilia and the location of
the spherical particle within the system.
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5.2. Results and Discussions

Figure 13 shows snapshots from our simulations ithedtrate the periodic movement of the
compliant, synthetic cilia and solid particle. Aetonset, we place a particle at a distad&R
from the bottom channel wall and in the center leevtwo rows of inclined cilia. We then
apply the periodic, horizontal force, which driviee cilia to bend back and forth in the y
plane and thereby induce the movement of the flliide viscous fluid, in turn, imposes a

periodic drag on the suspended particle. As a tiethd particle follows the oscillatory motion of

the beating cilia.

@) (b)

()
(d)

Figure 13: Snapshots from our simulations illugtigafperiodic oscillations of beating cilia and
movement of solid particle f@p=5. The colors on the cilium surface show the magietof

material strain. The arrows indicate the directimmd magnitude of fluid velocity at the
planez =0. Panels (a), (b), (c), and (d) correspond to tithes025 ,050.75]1, respectively.
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Specific trajectories for the particle’s centernodss motion over 25 oscillation periods
are shown forSp=5 and Sp=3 in Figures 14 (a) and (b), respectively. While tteticle
follows oscillatory trajectories, it shows prefetiahdrift direction. We find that at the distance
45R the particle exhibits maximum velocity along thkated layer. For both Sp, the particle
migrates from left to right, along the cilia laydrpwever, for higher frequency the particle is
transported by larger distance, equal8i(B+b) compared toSp=3 where displacement is
marginal.

(@)

Final Position

] Initial Position
=
Initial Position
x/(B+h)
(b) Final Position
_1 x/d
=
x/(B+b)

Figure 14: Trajectory of particles for 25 osciltats for particular frequencies characterized by
(a) Sp=5 and (b) Sp=3
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We quantify larger transport rate 8p= by computing period-averaged velocity along
the ciliated layer. To this end, we average theocigl per period of the ciliated layer and
normalize the particle velocity as folloW&v 'Sp*. The normalized velocity is plotted in Figure
15 as a function of non-dimensional particle positix/(B +b) . The particle velocity is positive

everywhere, which indicates that actuated ciliagpert particle in unidirectional manner along
the ciliated layer and the transport directionraf left to right. We can associate this direction

with the inclination direction of the quiescentail

Velocity, URv'Sp

Position x/(B+b)

Figure 15: Velocity of particles as a function @ftdnce along the ciliated layer for actuation
frequency characterized HByp=5

From Figure 15, we can estimate average veloditRv'Sp' , which is equal to

approximately 4.7. For a particle of sizeR=10min water of kinematic viscosity,

v=10°m?/s, the transport velocity) is about 0.002 ms With this velocity, transport time for

a particle to traverse inter-cilia gap is aboutl84)
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5.3.  Efficiency and Closure

To characterize the particle transport performaachieved by actuated cilia, we estimate
mechanical efficiencye by calculating the ratio between work requiredremsport particle in
the viscous fluid during one oscillation period andrk input required for driving oscillating
cilia. We find in our simulation that the resultiedficiency is about0.1% .which is consistent

with previously published results for pumping tilteilia [45].

To sum up, we have designed a technique for taatisg microscopic particles parallel

to microfluidic channel wall.
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CONCLUSIONS

We find that actuated cilia can control the deposibf solid particles in microfluidic devices.
For low frequency oscillations characterized byparsr number ofSp= 3, the cilia effectively
draw particles from outside the layer and depaaitiges to the underlying surface. For larger
frequencies characterized I8p=>5, the cilia expel particles and therefore, can $eduo clean

the ciliated surface from foreign entities and usobns.

In addition, we also find that actuated inclineliaccan regulate the transport velocity of
solid particles along the ciliated layer. For higfrequency oscillations characterized 8p=>5,
the particle velocity along the ciliated layer &ster compared to lower frequency oscillation
characterized bysp=3.Thus, we can use actuated cilia for transportingigl@s in microfluidic

devices used for example in biomedical analysis.

It is noteworthy that on a very general level, cesults show qualitative agreement with
observations that the capture of food particlesdryain suspension feeders is most effective for
a finite range of ciliary beat frequencies. Furthere, it is worth noting that behavior similar to

what we find forSp=5 has been observed experimentally in a microfludieice that utilizes

actuated synthetic cilia. In particular, the resbars detected an upward migration of suspended

microscopic particles when the cilia are driveéat at frequency of 65 Hz.

In addition to revealing new methods for manipugtiparticles for lab-on-a-chip
applications, our studies can also provide somiglihsnto factors that control the interactions
between cilia in the respiratory tract and parates such as dust or mucous. In particular, it has
been reported that certain chemicals can incréeseiliary beat frequency and consequently, the
cilia-driven particle transport within the trache& mice. The physical mechanism for this
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behavior is not completely understood. Ultimatelymnputational studies such as those described
herein could reveal fundamental principles thattcbuate to the effective removal of unwanted

particulates from the respiratory system.

49



REFERENCES

[1] A. Manz, D.J. Harrison, E.M.J. Verpoorte, JE&ttinger, A. Paulus, H. Ludi, H.M. Widmer,
Planar Chips Technology for Miniaturization andelgation of Separation Techniques into
Monitoring Systems - Capillary Electrophoresis o@tap, J Chromatogr, 593 (1992) 253-258.

[2] B. Bozic, V. Kralj-Iglic, S. Svetina, Couplingetween vesicle shape and lateral distribution
of mobile membrane inclusions, Phys. Rev. E, 73§2@41915.

[3] D. Harrison, A. Van Den Berg, Micro total ansiy systems' 98, Kluwer Academic, 1998.

[4] R. Anderson, H. Becker, A. Manz, Microsystenchteology in chemistry and life science,
Springer Berlin, 1998.

[5] J. Ramsey, S. Jacobson, M. Knapp, Microfabedathemical measurement systems, Nature
Medicine, 1 (1995) 1093-1095.

[6] L. Kricka, P. Wilding, Micromechanics and naaohnology, Handbook of Clinical
Automation, Robotics, and Optimization; Kost, GJelgh, J., Eds.; John Wiley and Sons: New
York, (1996).

[7] H. Becker, A. Manz, R. Anderson, Microsystenchrology in chemistry and life science,
Springer Verlag, 1998.

[8] R. Zengerie, S. Kluge, R. Richter, A bidirectad silicon micropump.

[9] S. Shoji, M. Esashi, Microflow devices and g, J Micromech Microeng, 4 (1994) 157-
171.

[10] F. Van de Pol, A Tbermopneumatic Micropump &hsn Micro-ering Techniques, Sensors
and Actuators, 21 (1990) 198-202.

[11] J. Folta, N. Raley, E. Hee, Design, fabricatiand testing of a miniature peristaltic
membranepump, in, 1992, pp. 186-189.

[12] J. Smits, Piezoelectric micropump with thresdves working peristaltically, Sensors and
Actuators, 21 (1990) 203-206.

[13] S. Bart, L. Tavrow, M. Mehregany, J. Lang, kifabricated electrohydrodynamic pumps,
Sens. Actuators A, 21 (1990) 193-197.

[14] G. Kovacs, Micromachined transducers sourckpbBoston, 1998.
[15] M. Madou, Fundamentals of microfabricatiore #tience of miniaturization, CRC, 2002.

[16] C. Effenhauser, G. Bruin, A. Paulus, M. Ehrhttegrated capillary electrophoresis on
flexible silicone microdevices: analysis of DNA téstion fragments and detection of single
DNA molecules on microchips, Anal. Chem, 69 (1994%1-3457.

[17] J. Jang, S. Lee, Theoretical and experimestatly of MHD (magnetohydrodynamic)
micropump, Sensors & Actuators: A. Physical, 800(2084-89.

[18] N. Pamme, Magnetism and microfluidics, Lab 18 (2006) 24-38.

50



[19] Y. Xiang, H. Bau, Complex magnetohydrodynanoev-Reynolds-number flows, Phys.
Rev. E, 68 (2003) 16312.

[20] M. Madou, J. Zoval, G. Jia, H. Kido, J. Kim, Kim, Lab on a CD, (2006).

[21] D. Duffy, H. Gillis, J. Lin, N. Sheppard Jr,.Xellogg, Microfabricated centrifugal
microfluidic systems: characterization and multiglezymatic assays, Anal. Chem, 71 (1999)
4669-4678.

[22] K. Sritharan, C. Strobl, M. Schneider, A. Wixth, Z. Guttenberg, Acoustic mixing at low
Reynold’s numbers, Applied Physics Letters, 88 @@b4102.

[23] P. Marmottant, J. Raven, H. Gardeniers, J. 8gns. Hilgenfeldt, Microfluidics with
ultrasound-driven bubbles, J. Fluid Mech., 568 @0ID9-118.

[24] N. Riley, S TEADY S TREAMING, Annu. Rev. Fluidlech., 33 (2001) 43-65.
[25] W. Lyne, Unsteady viscous flow over a wavy Wwal Fluid Mech., 50 (2006) 33-48.

[26] D. Gaver, J. Grotberg, An experimental invgstion of oscillating flow in a tapered
channel, J. Fluid Mech., 172 (2006) 47-61.

[27] P. Hall, The linear development of Gortler tvoes in growing boundary layers, J. Fluid
Mech., 130 (2006) 41-58.

[28] N. Gilula, P. Satir, The ciliary necklace: giaxy membrane specialization, Journal of Cell
Biology, 53 (1972) 494.

[29] Y. Kim, R. Netz, Pumping fluids with periodita beating grafted elastic filaments, Phys.
Rev. Lett., 96 (2006) 158101.

[30] S. Tamm, Ciliary motion in Paramecium: a saagrelectron microscope study, Journal of
Cell Biology, 55 (1972) 250.

[31] H. Riisgard, P. Larsen, Minireview: Ciliary lt&r Feeding and Bio-Fluid Mechanics--
Present Understanding and Unsolved Problems, Liogyohnd Oceanography, (2001) 882-891.

[32] D. Grunbaum, D. Eyre, A. Fogelson, Functiogabmetry of ciliated tentacular arrays in
active suspension feeders, Journal of Experim@&itdbgy, 201 (1998) 2575.

[33] M. Sleigh, Adaptations of ciliary systems feine propulsion of water and mucus,
Comparative biochemistry and physiology. A, Compaeaphysiology, 94 (1989) 359.

[34] S. Mayer, Numerical simulation of flow fieldd particle trajectories in ciliary suspension
feeding, Bulletin of Mathematical Biology, 62 (20Q035-1059.

[35] B. Evans, A. Shields, R. Carroll, S. Washbukh, Falvo, R. Superfine, Magnetically
actuated nanorod arrays as biomimetic cilia, Nagi, [Z (2007) 1428-1434.

[36] J. den Toonder, F. Bos, D. Broer, L. FilippiM. Gillies, J. de Goede, T. Mol, M. Reijme,
W. Talen, H. Wilderbeek, Artificial cilia for actev micro-fluidic mixing, Lab Chip, 8 (2008)
533-541.

[37] M. Baltussen, P. Anderson, F. Bos, J. Toontrertial flow effects in a micro-mixer based
on artificial cilia, Lab Chip, 9 (2009) 2326-2331.

51



[38] K. Oh, J. Chung, S. Devasia, J. Riley, Bio-ratma silicone cilia for microfluidic
manipulation, Lab Chip, 9 (2009) 1561-1566.

[39] E. Purcell, Life at low Reynolds number, AmPhys, 45 (1977) 11.

[40] C. Wiggins, D. Riveline, A. Ott, R. Goldsteifitapping and wiggling: Elastohydrodynamics
of driven microfilaments, Biophys. J., 74 (1998%361060.

[41] S. Gueron, N. Liron, Ciliary motion modelinggnd dynamic multicilia interactions,
Biophys. J., 63 (1992) 1045-1058.

[42] A. Alexeev, R. Verberg, A. Balazs, Modelingetimotion of microcapsules on compliant
polymeric surfaces, Macromolecules, 38 (2005) 1623260.

[43] A. Alexeev, R. Verberg, A. Balazs, Patternedfaces segregate compliant microcapsules,
Langmuir, 23 (2007) 983-987.

[44] O. Usta, A. Alexeev, A. Balazs, Fork in theado patterned surfaces direct microcapsules to
make a decision, Langmuir, 23 (2007) 10887-10890.

[45] A. Alexeev, J. Yeomans, A. Balazs, DesigninghtBetic, Pumping Cilia That Switch the
Flow Direction in Microchannels, Langmuir, 24 (2002102-12106.

[46] A. Alexeev, R. Verberg, A.C. Balazs, Patternexirfaces segregate compliant
microcapsules, Langmuir, 23 (2007) 983-987.

[47] S. Succi, The lattice Boltzmann equation faid dynamics and beyond, Oxford University
Press, USA, 2001.

[48] A. Ladd, J. Kinney, T. Breunig, Deformationdafailure in cellular materials, Phys. Rev. E,
55 (1997) 3271-3275.

[49] G. Buxton, C. Care, D. Cleaver, A lattice sigrimodel of heterogeneous materials with
plasticity, Model. Simul. Mater. Sc., 9 (2001) 4897.

[50] B. Delaunay, Sur la sph re vide, Bull. Acadi.&RSS, VII. Ser., 1934 (1934) 793-800.

[51] M. Bouzidi, M. Firdaouss, P. Lallemand, Momemt transfer of a lattice Boltzmann fluid
with boundaries, Phys. Fluids, 13 (2001) 3452—-3459.

[52] A. Koponen, D. Kandhai, E. Hellen, M. Alava, Moekstra, M. Kataja, K. Niskanen, P.
Sloot, J. Timonen, Permeability of three-dimensiaaadom fiber webs, Phys. Rev. Lett., 80
(1998) 716-719.

[53] C. Lowe, Dynamics of filaments: modelling tlidynamics of driven microfilaments,
Philosophical Transactions of the Royal Society®iogical Sciences, 358 (2003) 1543.

[54] S. Gueron, K. Levit-Gurevich, Computation bietinternal forces in cilia: application to
ciliary motion, the effects of viscosity, and ciligeractions, Biophys. J., 74 (1998) 1658-1676.

52



