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ABSTRACT 

Rab Proteins and Alzheimers: A Current Review of Their Involvement in 
Amyloid Beta Generation with Focus on Rab10 Expression 

in N2A-695 Cells 

Ivan Arano Rodriguez 
Department of Biology, BYU 

Master of Science 

This thesis work describes the role of Rab proteins in amyloid processing and clearance 
in different cell pathways. It also describes an experimental approach used to analyze the 
expression effects of Rab10 in amyloid beta production. Since the main theory behind 
neurodegeneration in Alzheimer’s disease claims that high levels of amyloid beta 42 (Aβ42) 
molecules trigger widespread neuronal death, control of Aβ42 has been a main target in 
Alzheimer’s disease research. In addition, several studies show increased levels of particular Rab 
proteins in Alzheimer’s pathogenesis. However, no review consolidates current findings in 
neurodegeneration of Alzheimer’s with Rab protein dysfunction. The first chapter of this thesis 
aims to address this need by providing a current review of Rab proteins associated with APP and 
neurodegeneration. The second chapter constitutes an experimental approach used to 
characterize the effects of Rab10 and Sar1A GTPases in APP and amyloid processing. We found 
that Rab10 expression does not affect APP production but significantly changes Aβ generation, 
particularly the toxic Aβ42 and Aβ42:40 ratio. On the other hand, we found no significant effect 
of Sar1A expression on either APP or amyloid beta generation. These findings partially confirm 
the work done by Kauwe et al (2015) and provide preliminary evidence for two potential targets 
for protective effects in neurodegeneration.  

Keywords: Rab proteins, GTPases, Alzheimer’s disease, gene, genetic variants, 3’ UTR, amyloid 
beta, neurodegeneration, endocytosis, anterograde transport, autophagy, amyloid precursor 
protein, transient transfection, overexpression, knockdown 



ACKNOWLEDGMENTS 

This thesis work is the result of many efforts combined. I would not have been able to 

finish this work without the guidance of my committee members, friends and collaborators. 

Specifically, I would like to offer acknowledgement of gratitude towards the contributions of the 

following individuals: 

Dr. John Kauwe for being an excellent mentor end example during these two years and 

for providing a fantastic atmosphere for continuous learning and discovery. It has been a fun, 

challenging and a bounteous ride and this work would never have been accomplished without his 

guidance and vision.   

Dr. Perry Ridge and Dr. Paul Reynolds for kindly providing their experience and 

laboratory resources for my learning and presentation of the results in this thesis. Their insights 

towards writing this thesis and presenting these results have been extremely valuable.  

I am very grateful for the members of both the Kauwe and Ridge labs, since they are 

always willing to explain and help in difficult concepts related to the research they are doing. 

Their input has been a great aid in my learning in these two years.  

Dr. Celeste Karch for her mentorship in teaching me essential concepts and skills in her 

laboratory as well as for her help in completing the experimental part of this thesis. The 

experimental part of this thesis would not have been accomplished without her and her 

laboratory.  

My lovely wife Christianna Arano and my family for their unconditional love and 

support in every step of the way in good and difficult times throughout my time at BYU. 



 iv 

TABLE OF CONTENTS 

TITLE PAGE ....................................................................................................................... i 

ABSTRACT ........................................................................................................................ ii 

ACKNOWLEDGMENTS ................................................................................................. iii 

TABLE OF CONTENTS ................................................................................................... iv 

LIST OF FIGURES ........................................................................................................... vi 

CHAPTER 1: Rab Gtpases in Alzheimer’s Disease: A Review on Main Players that 
Influence Amyloid Production .............................................................................................1 

APP Function and Amyloid Production ....................................................................1 

Endocytosis Pathway in Alzheimer’s Pathogenesis ..................................................3 

Rab GTPases in Alzheimer’s Disease .......................................................................6 

Rab3 .............................................................................................................7 

Rab5 .............................................................................................................9 

Rab6 ...........................................................................................................11 

Rab7 ...........................................................................................................12 

Rab11 .........................................................................................................14 

Rab4 ...........................................................................................................16 

Rab8 ...........................................................................................................17 

Rab10 .........................................................................................................18 

Conclusion ...............................................................................................................20 

References ………………………………………………………………………...22 



 
 

 
 

v 

Chapter 2: Expression Effects of Rab10 and Sar1A GTPases in APP and Aβ Levels in 
N2A-695 Cells ...................................................................................................................36 

Abstract ...................................................................................................................36 

Introduction .............................................................................................................36 

Rab10 .........................................................................................................38 

Sar1A .........................................................................................................39 

Results .....................................................................................................................40 

Rab10 & Sar1A expression does not affect full-length APP .....................40 

Rab10 expression alters Aβ whereas Sar1A does not change Aβ levels. ..41 

Discussion ...............................................................................................................41 

Acknowledgements .................................................................................................43 

Methods ...................................................................................................................44 

Plasmids .....................................................................................................44 

Cell culture .................................................................................................44 

Transfection and reporter gene assays .......................................................44 

RNA isolation and RT-PCR analysis .........................................................45 

Protein analysis ..........................................................................................45 

Enzyme-linked immunosorbent assay .......................................................46 

Statistical analysis ......................................................................................46 

References ...............................................................................................................50 

 



 
 

 
 

vi 

LIST OF FIGURES 

 
Figure 1: Schematic of Rab GTPases involved in APP trafficking in the cell. .................25 
 
Figure 2: Expression of Rab10 and Sar1A does not affect full length APP ......................47 
 
Figure 3: Rab10 expression influences Aβ42 and Aβ42/aβ40 ratio ..................................48 
 
Figure 4:  Rab10 expression influences Aβ42 and Aβ42/Aβ40 ratio ................................49 
 



 
 

 
 1 

CHAPTER 1: Rab Gtpases in Alzheimer’s Disease: A Review on Main Players                       

That Influence Amyloid Production 

Alzheimer’s disease is the most common form of dementia and it is the sixth leading 

cause of death in the United States. In 2014, an estimated 5.2 million Americans developed 

Alzheimer’s disease and the cost for caregiving to be $214 billion (Plassman, Langa et al. 2007). 

Amyloid production resulting by processing of APP is the main hypothesis associated with 

triggering the development of this disease. Rab GTPases are small proteins belonging to the Ras 

superfamily. Due to their major role in intracellular and membrane trafficking, some Rab 

GTPases have been identified as important players in regulating APP transport, processing and 

clearance. Consistent with these roles, AD brains present expression changes of Rab proteins 

involved in these processes. This review aims to provide a framework to understand those Rab 

GTPases associated with APP and neurodegeneration and to propose targets for future 

Alzheimer’s disease research relating to this group of proteins.  

APP Function and Amyloid Production 

The most accepted theory for neurodegeneration in Alzheimer’s disease is the widespread 

neuronal death triggered by high levels of a molecule called amyloid beta 42 (Aβ-42), which is 

produced by the cleaving of trans membrane amyloid precursor protein (APP) (Masters, 

Multhaup et al. 1985, Glenner and Wong 2012). This is commonly known as the amyloid 

cascade hypothesis (Hardy and Higgins 1992). The human APP gene is located in chromosome 

21 and produces a type I protein with a large extracellular N-terminal, transmembrane and short 

C-terminal cytoplasmic domain (Reinhard, Hebert et al. 2005). APP is highly expressed in the 

brain and produces eight isoforms that range from 365 – 770 amino acids. The 695 isoform is the 

most expressed in the central neural system while the other isoforms can be ubiquitously 
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expressed in all tissues (Placido, Pereira et al. 2014). Several studies have proposed a variety of 

functions for APP in the brain; the most supported is the trophic effect on formation and 

regulation of synapses as well as neuritic outgrowth (Turner, O'Connor et al. 2003, Lee, Moussa 

et al. 2010). Additional evidence suggests APP is involved in synaptic plasticity (Hung, Koo et 

al. 1992, Oh, Savonenko et al. 2009), cell adhesion (Yamazaki, Koo et al. 1997, Sosa, Bergman 

et al. 2013), migration (Young-Pearse, Bai et al. 2007), axonal transport (Sisodia 2002), cell 

surface receptor (Selkoe 2001, Hashimoto and Matsuoka 2014) among others.  

After expression, newly formed APP undergoes the constitutive secretory pathway where 

is subsequently internalized to the cell via clathrin mediated endocytosis (here referred as 

endocytosis) for processing. As part of the secretory pathway, APP undergoes several post-

translation modifications in the ER and in the trans-Golgi network (TGN) including N- and O- 

glycosylation, cytoplasmic phosphorylation and sulfation (Selkoe 2001, Bhattacharyya, Barren et 

al. 2013) before being trafficked to the plasma membrane. In neurons, APP is mainly transported 

to the cell membrane of axons and dendrites using the axonal transport system with kinesin-1 as 

the main motor protein (Kins, Lauther et al. 2006). Although APP is mainly processed via 

endocytosis, evidence suggests that nascent APP molecules can be processed by intracellular 

transport from the TGN to the endosome, resulting on increased Aβ-42 production in these 

organelles (Capell, Meyn et al. 2002, Tam, Seah et al. 2014)  

 Different studies estimate that about 10% of APP is present on the plasma membrane at 

all times while the rest is carried into the cell via endocytosis for processing (Thinakaran and 

Koo 2008). APP has three main proteolytic sites (alpha, beta & gamma) and different enzymes 

termed secretases are used to cleave APP on each site. APP is processed in two pathways: the 

non-amyloidogenic pathway and the toxic or amyloidogenic pathway. The non-amyloidogenic 
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pathway is carried in the plasma membrane where APP is first cleaved in the N- terminus by 

alpha-secretase to produce sAPPα. The C- terminal is then cleaved by gamma-secretase to 

produce a short p3 and APP intracellular domain fragments (Reinhard, Hebert et al. 2005, 

Dawkins and Small 2014). In the amyloidogenic pathway, APP molecules not cleaved by alpha-

secretase are internalized and processed by beta- secretase (BACE1) and the gamma- secretase 

complex (PSEN1 or PSEN2, nicastrin, APH1 & PEN-2) to produce sAPPβ and AB fragments 

ranging from 38-42 amino acids (Kamenetz, Tomita et al. 2003, Dawkins and Small 2014). This 

process is carried by the secretory and recycling pathways, where some APP fragments can be 

recycled back to the cell membrane along with sAPP-B and AB fragments. Most of the secreted 

amyloid beta produced contains 40 amino acids (Aβ40), however, the smaller portion of amyloid 

beta that contains 42 amino acids (Aβ42) tends to form extracellular aggregates (Haass, Kaether 

et al. 2012). The processing, aggregation and subsequent neuronal death triggered by Aβ42 

fibrils are the center of the amyloid cascade hypothesis. Extensive reviews of amyloid processing 

and function can be accessed in references (Kamenetz, Tomita et al. 2003, Dawkins and Small 

2014). Since APP is internalized to produce Aβ42, the main steps in this process, which include 

endocytosis and proteolytic processing via recycling and autophagy pathways will be analyzed 

next.  

Endocytosis Pathway in Alzheimer’s Pathogenesis 

Endocytosis is a process by which many molecules enter the cytoplasm via cell 

membrane receptors. Specific cell membrane receptors contain signal domains that trigger the 

recruitment of clathrin molecules and the endocytic response, which engulfs the portion of the 

cell membrane containing the cell receptor along with other molecules around it. The 

intracellular and C- terminal domains of APP contain a YEMPTY motif that has been 
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demonstrated to be involved in the signal for endocytosis (Nordstedt, Caporaso et al. 1993, Ring, 

Weyer et al. 2007). Consistent with this observation, mutations on the YEMPTY domain inhibit 

APP internalization and Aβ42 generation, suggesting that endocytosis is critical for AB 

production (Perez, Soriano et al. 1999). The YEMPTY domain also serves as the binding site for 

other cytosolic adaptors including Mint1, Mint2, Mint3, Fe65, Dab1 and JNK protein members 

(Thinakaran and Koo 2008). Interestingly, Mint and Fe65 proteins also play an important role in 

APP endocytosis and Aβ42 regulation (Haass, Kaether et al. 2012, Perez, Soriano et al. 1999, 

Ring, Weyer et al. 2007). A more detailed review of the YEMPTY region of APP and predicted 

interactions can be accessed in these references (Kerr and Small 2005, Miller, McLoughlin et al. 

2006, Schettini, Govoni et al. 2010).  

In neurons, several regulatory proteins are involved in starting the endocytosis signal of 

APP; the most common are Rab5, Dynamin1 and, most recently, Mint1 and Mint2 proteins 

(Thomas, Lelos et al. 2011, Sullivan, Dillon et al. 2014). Newly formed APP vesicles are 

transported and fused to the first sorting station: the early endosome. Concurrently, BACE-1 is 

also trafficked to the early endosome from the plasma membrane where AB biogenesis occurs. 

Early endosomes are a major site for APP processing and Aβ42 production and gradually mature 

into late endosomes and subsequently into lysosomes (Cataldo, Peterhoff et al. 2000, Chia, Toh 

et al. 2013). Once on the early endosome, APP and AB containing vesicles can undergo different 

pathways: 1) early endosome to plasma membrane 2) early endosome to recycling endosome 3) 

early endosome to TGN or 4) early endosome to late endosome and lysosomes. Many studies 

show evidence of high activity of BACE-1 and gamma-secretases on these sorting pathways 

following endocytosis (Cataldo, Peterhoff et al. 2000, Chia, Toh et al. 2013, Lu and Hong 2014). 

In addition, newly formed APP molecules that are processed in intracellular fashion are also 
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incorporated into the TGN or into the lysosomes where are processed into AB peptides (Tam, 

Seah et al. 2014). Consequently, AB peptides can be measured in higher quantities along these 

pathways, particularly on the TGN and endosomes. Thus, keeping track of AB peptides have 

become a good indicator for APP processing cycle in the cell. Finally, the autophagy mechanism 

in the cell completes the APP processing cycle by recycling and secreting AB peptides to the 

extracellular space.  

Macroautophagy (here referred as autophagy) serves as the main clearance mechanism 

for APP processing and AB clearance. During autophagy, double membrane vesicles that contain 

waste components and hydrolases are fused into large vesicles called autophagosomes. 

Autophagosomes then fuse with late endosomes, which eventually turn into lysosomes to 

degrade the original autophagosome components (Nixon 2007). The resulting products can be 

either recycled back as an amino acid source or secreted via exocytosis. A complete review of 

autophagy and its involvement in amyloidogenesis can be found in reference (Nixon 2007). In 

neurons, autophagosomes and endosomes are formed near the synapses and require retrograde 

transport to the lysosomes for efficient degradation (Nixon 2007). Briefly, as APP is processed in 

the endocytosis and intracellular pathways, the resulting AB peptides are mostly degraded by 

lysosomes. Upon reaching to the lysosomes, large pools of gamma-secretase components and 

other hydrolases complete the degradation process of APP and AB peptides, in which some 

Aβ42 is secreted via exocytosis (LeBlanc and Goodyer 1999, Rajendran, Honsho et al. 2006) 

Additional experiments show that Aβ42 was reduced when autophagy was suppressed, 

highlighting the role of autophagy on Aβ clearance (Lee, Yu et al. 2010). 

Although endocytosis and autophagy are vital processes in APP turnover cycle, their 

disruption can also facilitate intracellular Aβ aggregation and apoptosis in the brain. In a model 
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by Yu et al. (2005), autophagy vacuoles containing full length APP and Aβ peptides accumulated 

in significant numbers in axons and neurites in Alzheimer’s disease brains. These vacuoles were 

enriched in gamma-secretase activity inducing intracellular Aβ accumulation (Yu, Cuervo et al. 

2005). A different study by Lee et al (2010)) showed that PSEN1 mutations in Familiar AD 

cases affected the autophagy turnover of proteins (Lee, Yu et al. 2010). In familiar AD, 

mutations along APP & gamma-secretase complex (PSEN1 & PSEN2) increase the ratio of 

Aβ40 to Aβ42 (Lee, Yu et al. 2010). In late-onset AD, multiple genes that regulate endocytosis 

or Aβ clearance have been, unsurprisingly associated with AD (Wu and Yao 2009, Ridge, Ebbert 

et al. 2013). Examples of these genes involve BIN1, PICALM, CR1, CDAP2, and some Rab 

GTPases. This paper will focus solely on the role of Rab GTPases involved in APP trafficking, 

processing and clearance. 

Rab GTPases in Alzheimer’s Disease   

Rab GTPases are small proteins member of the Ras superfamily of monomeric proteins. 

They are involved in every step of the intracellular vesicle transport in the cell. Approximately 

60 human Rab GTPases have been identified, being this family the largest and more 

heterogeneous of the Ras superfamily (Stenmark and Olkkonen 2001, Zerial and McBride 2001). 

Rab proteins are present in all eukaryotic cells, ranging from the most evolutionary conserved 

which are ubiquitously expressed for normal vesicle transport to the most specialized types that 

are only found on certain mammalian cell types (Seabra, Mules et al. 2002, Kaddai, Le 

Marchand-Brustel et al. 2008). Rab proteins switch between an inactive (GDP-bound) cytosol 

state and active (GTP-bound) membrane bound state. To switch from the GDP to GTP state, 

Rabs require activator proteins called GEFs (Guanine nucleotide exchange factors). Once in their 

active state, Rab-GTP recruits effector proteins that enable them to control different steps in 
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vesicle trafficking including cargo selection, tethering, movement and docking (Stenmark and 

Olkkonen 2001, Seabra, Mules et al. 2002, Grosshans, Ortiz et al. 2006, Kaddai, Le Marchand-

Brustel et al. 2008). Once vesicle transport is complete, Rab-GTP is hydrolyzed by GAPs 

(GTPase activating proteins) and return to its inactive GDP-bound state. At this point, Rab-GDP 

is recycled back to the membrane of origin by binding to RabGDIs (GDP disassociation 

inhibitors), which determine the proper localization and activity of Rab proteins (Alory and 

Balch 2001, Markgraf, Peplowska et al. 2007).  

The high number of components of the Rab family reflects the complexity of the 

intracellular transport system, thus Rab proteins can be assigned to a single or multiple sites. For 

instance, Rab5 plays a substantial role in endocytosis by transporting cargoes to multiple 

organelles (Markgraf, Peplowska et al. 2007, Ishikura, Koshkina et al. 2008), whereas Rab23 is a 

negative regulator in the Sonic hedgehog-signaling pathway (Eggenschwiler, Bulgakov et al. 

2006). Because of their key role in vesicle transport, endocytosis and autophagy, Rab proteins 

have also been studied as part of the amyloid hypothesis of AB deposition. Disruptions of these 

pathways have been extensively documented in Alzheimer’s disease (Perez, Squazzo et al. 1996, 

Nixon 2007, Wu and Yao 2009, Ridge, Ebbert et al. 2013, Tam, Seah et al. 2014). Specifically, 

this review will cover the main Rab proteins associated with APP and AB production: Rab3, 

Rab5, Rab6, Rab7, Rab11, Rab4 & Rab8.  

Rab3 

Rab3 is a small GTPase that is localized in synaptic vesicles in neural cells and thought to 

be highly associated with regulating vesicle fusion in exocytosis. Rab3 has four isoforms 

(Rab3A, Rab3B, Rab3C & Rab3D) that contain a 77-85% amino acid homology (Baldini, Hohl 

et al. 1992). Although deletion of Rab3 causes a lethal phenotype in mice, experiments suggest 
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that the role of the four isoforms might be redundant in synaptic vesicle transport (Li, Jahn et al. 

1996). Rab3A is the most common of the four and localizes on the surface of synaptic vesicles of 

various type of neurons in the rat brain including motor, sensory, adrenelergic and cholinergic 

neurons61. More specifically Rab3A has a key role in vesicle docking in the Ca2+- dependent 

exocytosis of neurotransmitters in synapses (Komuro, Sasaki et al. 1996, Coleman, Bill et al. 

2007). In neurons, Rab3 protein associates with motor protein Kinesin-1 in anterograde transport 

of synaptic vesicles to the neuritic axons (Schluter, Schmitz et al. 2004, Coleman, Bill et al. 

2007, Kimura, Okabayashi et al. 2012). Another role of Rab3A is the association with actively 

recycling vesicles carried to synapse terminals. Star et al (2007) demonstrated that vesicles that 

are actively recycling contain higher Rab3A than vesicles that are stationary (Star, Newton et al. 

2005). Taken together, these studies suggest that Rab3 is involved in anterograde transport and 

exocytosis of synaptic vesicles in neurons.  

Rab3A is required for anterograde transport of APP and is associated with regulating 

APP and AB peptide levels via the secretory pathway. A study by Szodorai et al (2009) showed 

that the complex required for anterograde transport of APP vesicles contained Rab3A and 

Kinesin-1C. Szodorai argues that Rab3A is more important for initial recruitment of APP and 

kinesin-1C rather than for the actual vesicle fusion to the axons (Szodorai, Kuan et al. 2009). A 

separate study showed that a disruption of the anterograde transport increases levels of Rab3 and 

it is correlated with age-dependent impartment of cognitive function (Kimura, Okabayashi et al. 

2012). Rab3A was found to be significantly downregulated, among other presynaptic proteins in 

the frontal and parietal cortex of AD brains (Reddy, Mani et al. 2005). Consistent with these 

findings, a recent study by recent study by Tan et al (2014) showed that a Rab3A effector 

Rabphilin3A (RBP3A) is also reduced in AD post-mortem brains; this reduction was correlated 
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with dementia progression, cholinergic deaferrentiation and high Aβ42 aggregation (Tan, Lee et 

al. 2014). In a different study, a Western Blot screening of lysosomal network proteins identified 

Rab3 and Rab7 as significantly increased in CSF of AD patients and was validated using a 

second cohort. This study suggested that both Rab3 and Rab7 are upregulated in the endosomal 

and autophagy pathways early in disease progression (Armstrong, Mattsson et al. 2014). These 

studies support the observation that Rab3 expression might be reduced in the brain and 

upregulated in the CSF of Azheimer’s disease patients. Finally, a high-throughput RNAi 

screening of all human Rab GTPAses confirmed the role of Rab3 in the trafficking and 

maintenance of APP levels in neurons. In this same study, knockdown of all isoforms of Rab3, 

except for Rab3C, decreased both Aβ42 and sAPP-β levels (Udayar, Buggia-Prevot et al. 2013). 

Rab5 

Rab5 is by far the most characterized member of the Rab GTPase proteins and the most 

associated with AD progression. Rab5 has three known isoforms (Rab5A, Rab5B & Rab5C), 

similar to Rab3; all isoforms have a similar function. Although Rab5 is widely expressed in the 

cell, it is mainly localized in the early endosome, cell membrane, clathrin-coated vesicles and in 

recycling endosomes (Gorvel, Chavrier et al. 1991, Bucci, Parton et al. 1992, Li and Stahl 1993, 

Somsel Rodman and Wandinger-Ness 2000). The most established functions for Rab5 are the 

fusion of endocytic vesicles to the early endosomes and the vesicle docking events in recycling 

and endocytosis. Reviews can be accessed in references (Gorvel, Chavrier et al. 1991, Somsel 

Rodman and Wandinger-Ness 2000, Woodman 2000). Additional functions for Rab5 include 

promoting cell migration and integrin signaling pathways (Mendoza, Diaz et al. 2014). 

Overexpression of Rab5 causes an increase of endocytosis as well as a formation of large early 

endosomes whereas the opposite effects applied upon down regulation of Rab5 (Stenmark, 
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Parton et al. 1994, Horiuchi, Lippe et al. 1997). Due to the critical role of Rab5 in endocytosis 

and recycling pathways, there is much evidence that links Rab5 and its effectors with neuronal 

degeneration and Alzheimer’s disease.  

Characterization of Rab5 and its effectors in endocytosis and recycling have provided 

important insights towards APP processing and AD pathogenesis. Disruptions of the afore 

mentioned pathways are one of the earliest changes observed in AD and could be one of the 

main mechanisms involved in the progression of this disease. Increased endocytosis markers and 

endosome enlargement are one of the first responses in AD, independently of Aβ42 

accumulation (Cataldo, Rebeck et al. 2001, Grbovic, Mathews et al. 2003, Nixon 2005, 

Ginsberg, Mufson et al. 2011). Rab5 overexpression replicates many of these observations in 

early endosomes and dramatically increases secreted Aβ40 & Aβ42 (Cataldo, Peterhoff et al. 

2000, Grbovic, Mathews et al. 2003, Nixon 2005, Ginsberg, Mufson et al. 2011). A possible 

mechanism is that APP functions as an endocytosis receptor for Rab5, which could trigger 

overexpression of Rab5 and its correspondent downstream effects in endosomal dysfunction.  A 

study by Laifenfeld et al (2007) showed that Rab5 binds to APP-B1 and initiates a signaling 

pathway that leads to apoptosis in a FAD model (Laifenfeld, Patzek et al. 2007). In addition, 

microarray analyses show that Rab5 and Rab7 are selectively up regulated in cholinergic and 

hippocampal neurons of MCI and AD individuals (Ginsberg, Mufson et al. 2010, Ginsberg, 

Mufson et al. 2011). Along with these observations, the majority of Aβ production occurs in in 

Rab5-endocytic vesicles in the early endosome and lysosomes. Overexpression of Rab5 and 

Rab7 showed to increase Aβ42 trafficking and processing in lysosomes. This effect is further 

increased in APOEe4 when compared to APOEe3 carriers (Li, Kanekiyo et al. 2012).  

Interestingly, Rab5B isoform is associated with neuroprotection by providing neuronal resistance 
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to exocytosis injury and synaptic plasticity (Baskys, Bayazitov et al. 2007). Similarly, silencing 

of only Rab5C isoform increased significantly APP, sAPPβ and Aβ42 cellular levels (Li and 

Stahl 1993). Together, these reports highlight the role of Rab5 in neurodegeneration and as a 

therapeutic candidate for AD progression.   

Rab6 

Rab6 is another well-characterized GTPase, which is involved in anterograde and 

retrograde transport of APP and Aβ peptides. Rab6 has four different isoforms: Rab6A, Rab6A’, 

Rab6B and Rab6C. Rab6A’ is a splice variant generated by alternative splicing on the Rab6A 

gene and only differs from Rab6A by three amino acids (Opdam, Echard et al. 2000). Rab6 GTP 

is commonly found in the TGN and regulates retrograde and anterograde intra-Golgi pathways 

(Martinez, Schmidt et al. 1994, Darchen and Goud 2000). In contrast to the previous Rab 

GTPases, Rab6 isoforms have differential tissue expressions and functions. RabA is a dynamic 

GTPase that regulates retrograde transport from the TGN to the ER in a COP-I independent 

mechanism and from endosomes (early endosomes and recycling endosomes) to the TGN or vice 

versa (Martinez, Schmidt et al. 1994, Young, Stauber et al. 2005). On the other hand, Rab6A’ 

regulates anterograde transport from the TGN to the plasma membrane(Siniossoglou and Pelham 

2001, Mallard, Tang et al. 2002). Rab6B is also involved in retrograde transport in the TGN and 

ER but it is expressed specifically in brain cells such as neurons, microglia and Purkinje cells 

(Opdam, Echard et al. 2000, Wanschers, van de Vorstenbosch et al. 2007). Finally, Rab6C is the 

least characterized of the four isoforms and it has been associated with the cell cycle progression 

and drug resistance to particular cancer types (Shan, Mason et al. 2000, Young, Menetrey et al. 

2010). 



 
 

 
 12 

In neurons, Rab6B GTP requires Mint effector proteins to bind to APP. As described 

earlier, Mint proteins bind to the YENPTY motif of APP, facilitating anterograde transport. 

Studies show that Rab6 can bind to Mint1, Mint2 and Mint3 to form a complex with APP 

(Teber, Nagano et al. 2005, Thyrock, Ossendorf et al. 2013). Evidence suggests that Rab6 is 

involved in retrograde trafficking of APP from the endosomes to the TGN and from the TGN to 

the ER. However, there is not a consensus of the actual role of Rab6 in APP processing and AD. 

A study by Elfrink et al (2011) showed that Rab6 is increased in non-tangle bearing neurons. 

This increase might occur as a protective response to reduce ER stress neurotoxicity (Elfrink, 

Zwart et al. 2012). Failure to recover from ER stress also contributes to intracellular Aβ42 

accumulation and neurodegeneration in early AD pathology (Soejima, Ohyagi et al. 2013). Rab6 

can also promote sAPPa production and decrease intracellular Aβ42 accumulation. A recent 

study suggests that Rab6 selectively facilitates anterograde transport of APP to the plasma 

membrane to be processed by alpha-secretase (McConlogue, Castellano et al. 1996). Moreover, a 

recent RNAi screen showed that silencing of Rab6 decreased Aβ42 production; the authors 

concluded that this effect could be a result of an alteration of the Gamma-secretase cleavage or 

the secretion of Aβ (Udayar, Buggia-Prevot et al. 2013). This conclusion is in line with previous 

results in fibroblasts where Rab6 is dependent on PSEN1 and protein kinase C for membrane 

association (Scheper, Zwart et al. 2004). These observations suggest of a protective role of Rab6 

for neurodegeneration, however, further experiments are needed to assess this specific 

connection.   

Rab7 

Rab7 is a GPTase required in the late stages of the recycling and autophagy pathways. 

Rab7 is ubiquitously expressed and it comes in one isoform. However, a new Rab GTPase that 
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contains 65% identity with Rab7 has been named Rab7b. This GTPase is not coded by the same 

gene and seems to have different functions than Rab7 (Progida, Cogli et al. 2010). Rab7 has a 

critical role in regulating the recycling pathway, specifically in late steps in endocytosis and the 

maturation of endosomes and autophagosomes (Feng, Press et al. 1995, Gutierrez, Munafo et al. 

2004, Jager, Bucci et al. 2004, Rink, Ghigo et al. 2005, Hyttinen, Niittykoski et al. 2013). In late 

endocytic trafficking, Rab7 acts downstream of Rab5 in transporting cargoes from early to late 

endosomes (Feng, Press et al. 1995). In the process of maturation of early endosomes to late 

endosomes, a crucial step is the replacement of Rab5 compartments with Rab7 via GEF effectors 

and other vesicle fusion events (Rink, Ghigo et al. 2005, Hyttinen, Niittykoski et al. 2013). After 

late-endosome maturation, cytoplasmic vesicles or other late-endosomes containing Rab7 are 

fused together and aid to the formation of lysosomes according to the “kiss and run model” 

(Storrie and Desjardins 1996, Bucci, Thomsen et al. 2000). Lastly, Rab7 is also required for the 

final maturation of autophagic vacuoles and their final step in fusing with lysosomes. Rab7 

deficient cells experience mayor failures on lysosome function and autophagy (Gutierrez, 

Munafo et al. 2004, Jager, Bucci et al. 2004). The role of Rab7 in recycling and autophagy 

makes it an attractive target in connection to the AB aggregation hypothesis in Alzheimer’s 

disease. 

As explained earlier, changes in the endocytosis and recycling pathways are one of the 

earliest clinical changes in Alzheimer’s. In these pathways, Rab5 and Rab7 are critical in 

maintaining normal cellular functioning. Alzheimer’s disease brains exhibit increased 

endocytosis and vesicle fusion to produce enlarged early endosomes, which will later turn into 

enlarged late endosomes and lysosomes with impaired functions. Rab5 and Rab7 are common 

markers used to visualize each step on these events (Cataldo, Mathews et al. 2008, Ginsberg, 
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Alldred et al. 2010) and consequently, these seem to be upregulated in mild cognitive impaired 

and Alzheimer’s disease patients (Yuyama and Yanagisawa 2009, Ginsberg, Mufson et al. 2010, 

Ginsberg, Mufson et al. 2011). A recent study by Armstrong et al (2014) identified Rab7 as one 

of six lysosomal proteins that could be used for potential Alzheimer’s disease biomarkers in 

cerebrospinal fluid (Armstrong, Mattsson et al. 2014). Indeed, in Alzheimer’s disease brains, an 

excessive number of autophagic vacuoles accumulate in neurites and synaptic terminals as a 

result of disruption of autophagy and lysosome pathways (Nixon, Wegiel et al. 2005). Moreover, 

autophagic vacuoles in axons fuse with Rab7 vesicles to form lysosomes via retrograde transport 

to the cell for degradation. Lee et al (2011) demonstrated that disruption of this pathway in 

mouse cortical neurons produced AD-like axonal dystrophy (Lee, Sato et al. 2011). An 

interesting study concluded that amyloid fibrils are formed as a result of Rab7 suppression, 

whereas Rab5 knockdown did not seem to affect amyloid aggregation. The authors concluded 

that dysfunction of the late endocytosis pathway; controlled by Rab7, contribute to amyloid 

aggregation in neuronal cells (Yuyama and Yanagisawa 2009). A follow-up study showed that 

inhibiting Aβ42 endocytosis reversed the increased levels of Rab7 and Rab5 and prevented 

neurodegeneration in mice neurons treated with Aβ42 (Song, Baker et al. 2011). Overall, the role 

Rab7 in the late endocytosis pathway provides important insights into Aβ42 production and 

could be a useful therapeutic target in Alzheimer’s disease.  

Rab11 

Rab11 is a very dynamic player in different cell functions ranging from cell adhesion to 

endocytosis. Rab11 comes in three isoforms: Rab11A is ubiquitously expressed in mammalian 

cells, Rab11B which is mainly expressed in brain cells and Rab11C, which is known as Rab25 

(Goldenring, Shen et al. 1993, Lai, Stubbs et al. 1994, Hales, Griner et al. 2001). Rab11 has a 



 
 

 
 15 

fundamental role in the recycling endosome by controlling trafficking of proteins to and from the 

recycling endosome to other organelles in the recycling pathway (Urbe, Huber et al. 1993, 

Ullrich, Reinsch et al. 1996). Rab11 is also localized in compartments of the TGN, post-TGN 

vesicles and in vesicles for exocytosis, suggesting Rab11 as an important link between 

endocytosis and exocytosis (Urbe, Huber et al. 1993, Chen, Feng et al. 1998, Wilcke, Johannes et 

al. 2000). Recent studies also show that Rab11 promotes ciliogenesis, cell adhesion and 

cytokinesis functions by binding to several cell receptors and adhesion proteins (Knodler, Feng 

et al. 2010, Kelly, Horgan et al. 2012). Finally, Rab11 and its effector proteins associate with 

motor proteins such as myosin VA and dynein-1 in regulating transport along microtubule tracks 

(Welz, Wellbourne-Wood et al. 2014). Due to its importance in cell adhesion, Rab11C (Rab25) 

has been more characterized in Cancer biology; however, several new studies provide important 

insights towards the relation of Rab11 with neurodegeneration in AD.  

Rab11 regulates Aβ42 production by associating with the beta- and gamma- secretases 

but not directly to APP. Ubayar et al (2013) performed RNAi screenning of all human Rab 

GTPases and identified Rab11 as a key regulator of sAPP-B and Aβ42 production by controlling 

trafficking of BACE-1 in endocytic compartments (Udayar, Buggia-Prevot et al. 2013). This 

observation is supported by other studies that confirm the trafficking of BACE-1 from axons and 

dendrites to the early endosomes in a Rab11-dependent manner (Chia, Toh et al. 2013, Buggia-

Prevot, Fernandez et al. 2014). After internalized in endocytosis, APP and BACE-1 converge in 

the early endosome where Aβ42 production is initiated. Rab11 impairment decreases BACE-1 

endocytosis and has the same effect in sAPP-β and secreted Aβ42 (Udayar, Buggia-Prevot et al. 

2013, Buggia-Prevot, Fernandez et al. 2014). However, other studies used HEK293 cells 

expressing the Swedish mutation to show that sAPP-β and Aβ42 are not affected by Rab11 
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expression (Lopez-Perez, Dumanchin et al. 2000, Bulloj, Leal et al. 2010). Whether these 

contrasting observations are obtained because of the different cell type used remains to be 

elucidated. In the gamma-secretase complex, hydrophilic loops in PSEN1 and PSEN2 proteins 

interact with Rab11; however, this association did not seem to influence APP transport or 

processing in a negative way (Dumanchin, Czech et al. 1999, Lopez-Perez, Dumanchin et al. 

2000). Altogether, Rab11 is a newly identified target that is associated with increased LOAD risk 

likely by the regulation of BACE-1 and Aβ42. Further studies of Rab11 regulation could provide 

important insights into therapeutic mechanisms in neurodegeneration.  

The Rab GTPases reviewed above are the most associated with amyloid processing and 

neurodegeneration in AD. However, there are other Rab proteins which association with 

neurodegeneration is less documented. These Rab proteins are often associated with some of the 

Rabs reviewed here either by localizing to the same organelle or by regulating the same 

pathways. A quick overview of such less documented Rab proteins follows: 

Rab4 

Rab4 is localized to the early endosome along with Rab5 and Rab11 (Sonnichsen, De 

Renzis et al. 2000). However, Rab4 only affects trafficking to recycling and autophagy pathways 

and facilitates the formation of late endosomes and recycling endosomes (Vandersluijs, Hull et 

al. 1991, Vandersluijs, Hull et al. 1992, McCaffrey, Bielli et al. 2001). Rab4 initiates a small 

cascade of adaptor proteins that direct trafficking to other organelles and that also triggers the 

formation of endosomes (D’Souza, Semus et al. 2014). Rab4 overexpression does not influence 

endocytosis but changes the accumulation of recycling markers (TfRs) that could have an effect 

on the recycling pathway (Vandersluijs, Hull et al. 1992). Due to its involvement in the 
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endocytic and recycling pathways, Rab4 has also been associated with APP processing in 

neurons.  

Rab4 is upregulated in forebrain neurons from mild cognitive impairment and AD 

patients, which suggests a role with AB accumulation (Ginsberg, Mufson et al. 2011, Soejima, 

Ohyagi et al. 2013). Indeed, independent studies found accumulation of exogenous Aβ42 in 

Rab4 compartments in the early endosome (Arriagada, Astorga et al. 2007, Arriagada, 

Bustamante et al. 2010). Enlargement of early endosomes, which is a hallmark of Rab5 

overexpression, was also associated with increase of Rab4; suggesting that Rab4 and Rab5 might 

have similar functions in early endosomes and endocytosis. Finally, Udayar et al (2013) reports 

that silencing of Rab4 decreased production of Aβ42 and sAPP-B (Udayar, Buggia-Prevot et al. 

2013). These studies agree that Rab4 and Rab5 are affected in early AD pathology and that Rab4 

and Aβ42 accumulation in the early endosome leads to endocytosis and recycling dysfunction. 

However, further studies are needed to confirm this association.  

Rab8 

Rab8 is ubiquitously expressed in most cells and localizes to the TGN, vesicular 

structures and basolateral plasma membrane. In trafficking mechanisms, Rab8 regulates 

retrograde and anterograde transport between these structures (Huber, Pimplikar et al. 1993). 

Interestingly, Rab8 has a key role in regulating cell shape by the interaction of actin and 

microtubules with membrane trafficking. Rab8 also plays an important role in other cell 

processes such as ciliogenesis, cell migration, exocytosis and receptor exchange in the basal 

body (Peranen, Auvinen et al. 1996, Sato, Mushiake et al. 2007, Knodler, Feng et al. 2010, 

Peränen 2011).   
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In neurons, Rab8 regulates anterograde trafficking to the dendrites but not to the axons 

and it is required for neurite outgrowth (Huber, Dupree et al. 1995). This is supported by the 

observation that Rab8 depletion inhibits neuritic growth and mediates polarized membrane 

transport (Hattula and Peranen 2005). It is possible that Rab8 serves a similar function as Rab6 

and Rab3 in anterograde transport of APP to the dendrites. This is supported by the observation 

that mutations in PSEN1 disturb APP transport and down regulates Rab8 levels in PC12 cells 

(Kametani, Usami et al. 2004). Analysis of small G proteins (Ras, Ral & Rab) from AD brains 

identified a significant increase of Rab8 only in the cell membrane whereas other Ras and Rab 

GTPases decreased in the cytoplasmic region (Shimohama, Kamiya et al. 1999). A similar 

observation showed that a PSEN1 mutation increased Aβ42 levels in vesicles containing Rab8. 

These vesicles accumulated in the late stages of the secretory pathway between the TGN and cell 

membrane (Petanceska, Seeger et al. 2000). Interestingly, previous studies presented here do not 

show the same observation in upregulated Rab GTPases in AD brains (Ginsberg, Alldred et al. 

2010, Ginsberg, Mufson et al. 2010). Finally, RNAi screening for GTPases showed that silencing 

of Rab8 increased intracellular Aβ42 levels, indicating a possible neuroprotective effect of Rab8 

(Udayar, Buggia-Prevot et al. 2013). These reports suggest a likely interaction of Rab8 with 

PSEN1 and APP via the secretory pathway as well as a possible protective effect on Alzheimer’s 

disease pathogenesis. Further studies need to confirm this association and establish a more 

relevant role of Rab8 in neurodegeneration.  

Rab10 

Rab10 is another dynamic GTPase involved mainly in anterograde transport and in the 

recycling pathway. Rab10 belongs to a Rab subfamily that includes Rab8 and Rab13 and shares 

about 66% homology with Rab8; however, both localize to different organelles in the cell (Chen, 
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Holcomb et al. 1993). Similar to Rab8, Rab10 is involved in numerous cell processes and 

functions including endocytosis (Babbey, Ahktar et al. 2006), ciliary transport (Babbey, Bacallao 

et al. 2010), phagosome maturation (Cardoso, Jordao et al. 2010), cell polarization (Schuck, Gerl 

et al. 2007) and insulin GLUT4 transport (Sano, Eguez et al. 2007, Chen, Wang et al. 2012). 

Even though Rab10 shares similar homology and functions to Rab8, most literature suggests a 

complimentary role to Rab11 in the recycling pathway. In C elegans, Rab10 is required for 

proper recycling function and trafficking from the early endosome to the recycling endosome 

and from there to the basolateral membrane (Chen, Schweinsberg et al. 2006, Schuck, Gerl et al. 

2007). Finally, Rab10 seems to be a main regulator of organelle shape and morphology by 

associating with microtubules. A recent study shows that Rab10 has given a key role in the 

regulation of ER dynamic growth and morphology by associating with microtubules (Chang and 

Blackstone 2013, English and Voeltz 2013). A separate study shows that Rab10 is necessary for 

microtubule network growth in the basolateral recycling pathway in endosomes (Chen, Li et al. 

2014). 

In neurons, Rab10 is associated with anterograde transport of receptors that promote axon 

development and neuronal polarization. Rab10 binds to a specific number of effectors including 

Myosyn Vb, Lgl1, JIP1 and MARCKS in post-TGN vesicles that carry axonal receptors 

responsive to axonal growth factors (Wang, Liu et al. 2011, Liu, Xu et al. 2013, Deng, Lei et al. 

2014, Xu, Deng et al. 2014). Despite its involvement in anterograde and recycling mechanisms, 

only one study links Rab10 with APP and amyloid processing. In the previously mentioned 

RNAi expression screen, silencing of Rab10 decreased Aβ42 production without affecting sAPP-

B levels. This study also suggested of an interaction of Rab10, Rab23 & Rab25 in regulating the 

same trafficking pathways (Udayar, Buggia-Prevot et al. 2013). In adipocytes, Rab10 
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knockdown resulted in an attenuation of Glut4 redistribution to the plasma membrane and a two-

fold decrease of Glut4 exocytosis rate (Sano, Eguez et al. 2007). Together, these studies 

underscore a role of Rab10 in anterograde transport of important cell receptors and exocytosis of 

recycled peptides. It is possible that Rab10 regulates transport of APP molecules and Aβ42 to the 

cell membrane via the constitutive secretory and recycling pathways. However, further studies 

are needed to confirm this association, making Rab10 a promising marker in AD pathogenesis.  

 

Conclusion 

Rab GTPases are involved in most intracellular trafficking, endocytosis, recycling and 

exocytosis in the cell. They are also involved in numerous processes such as organelle formation, 

response to stimuli, cell migration, etc. Due to their important role in these processes, Rab 

GTPases provide important insight into mechanisms involved in disease progression and 

signaling such as Cancer, diabetes, anemia and neurological diseases. In this review, we focused 

on Rab GTPases that have been mainly associated with Alzheimer’s pathogenesis in endocytosis, 

recycling and degradation pathways of APP and Aβ42. In addition, we presented Rab proteins 

with limited association with neurodegeneration and how these could provide future insights in 

this process. Future directions could be finding mechanisms mediated by Rab proteins that offer 

protective effects towards neurotoxicity. In addition, therapeutic approaches that could rescue 

processes such as endocytosis and recycling pathways in early stages of neurodegeneration could 

prove to be effective in controlling cascade of events that lead to AD pathology. 
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Figure 1 – Schematic of Rab GTPases involved in APP trafficking in the cell. This figure 
represents a likely model for the role of specific Rab proteins in APP and AB transport in the 
cell. Retrieved from (Udayar, Buggia-Prevot et al. 2013). 
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Chapter 2: Expression Effects of Rab10 and Sar1A GTPases in APP and                                    

Aβ Levels in N2A-695 Cells 

Abstract  

Rab proteins are members of a large family of monomeric GTP binding proteins that are 

key players in numerous steps of cellular transport ranging from intracellular transport to 

endocytosis and autophagy. Several studies show increased levels of particular Rab proteins in 

Alzheimer’s pathogenesis. Previous experiments indicate an association with Rab10 with 

amyloid generation and Alzheimer’s disease risk. Here we show an experimental approach used 

to characterize the effects of Rab10 and Sar1A GTPases in APP and amyloid processing. N2A 

cells were transient transfected with overexpression and shRNA plasmids and their effects in 

APP expression and Aβ40 and Aβ42 were measured using sandwich ELISA. We found that 

Rab10 expression does not affect APP production but significantly changes AB generation, 

particularly the toxic Aβ42. On the other hand, we found no significant effect of Sar1A 

expression on either APP or amyloid beta generation. These findings partially confirm the work 

done by Kauwe et al (2015) and provide preliminary evidence for two potential targets for 

protective effects in neurodegeneration. 

Introduction 
 

Alzheimer’s disease is the 6th most prevalent cause of death in US with an estimated 

500,000 fatalities each year due to the disease (Alz.org retrieved 2014). A major neurological 

hallmark of the disease is the accumulation of senile plaques composed of amyloid beta 

molecules. The most accepted theory behind the pathogenesis of Alzheimer’s is known as the 

amyloid cascade hypothesis (Hardy and Higgins 1992, Ridge, Ebbert et al. 2013). Briefly, 

amyloid beta molecules are produced by cleavage of APP by beta and gamma secretases 
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producing fragments ranging from 39-43 amino acids. Aβ42 is the peptide most susceptible to 

aggregation and it is the main component of the senile plaques (Thinakaran and Koo 2008, Tam, 

Seah et al. 2014). Accumulation of senile plaques in the brain disrupts neuronal connections and 

synapses, causing oxidative stress on neurons that form neurofibrillary tangles and apoptosis that 

lead to widespread neurodegeneration (Masters, Multhaup et al. 1985, Hung, Koo et al. 1992, 

Selkoe 2001, Ring, Weyer et al. 2007, Oh, Savonenko et al. 2009, Hashimoto and Matsuoka 

2014). Interestingly, Aβ40 is by far the most common product from APP cleavage but does not 

aggregate into senile plaques. The change in Αβ40:42 ratio is generally considered to contribute 

to Aβ42 deposition and neurotoxicity. 

Transmembrane APP undergoes the constitutive secretory pathway in the cell where it is 

post-translationally modified in the ER and TGN to be transported via anterograde transport to 

the cell membrane. APP is then internalized via endocytosis to the cell where it is processed by 

the recycling and autophagy machineries (Kins, Lauther et al. 2006, Nixon 2007, Thinakaran and 

Koo 2008, Thomas, Lelos et al. 2011, Haass, Kaether et al. 2012). Aβ production occurs mainly 

on the endosomal – lysosomal systems and has also been detected in compartments of the TGN 

(LeBlanc and Goodyer 1999, Haass, Kaether et al. 2012, Lu and Hong 2014). The majority of 

AB fragments are then secreted via exocytosis where Aβ42 aggregates in the extracellular space 

(Yu, Cuervo et al. 2005, Nixon 2007). However, small quantities of Aβ42 stay in the cell where 

they contribute in disrupting cellular pathways. Polymorphisms in proteins involved in the 

transporting and processing of APP have been associated with differential Aβ-42 deposition and 

a change in the Αβ40:42 ratio (Citron, Westaway et al. 1997, Cataldo, Peterhoff et al. 2000, 

Jankowsky, Fadale et al. 2004, Lee, Yu et al. 2010, Ridge, Ebbert et al. 2013). In this context, 

GTPases are small proteins involved in processes such as vesicle formation, transport, signal 
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transduction, translocation and processing of membrane proteins (Zerial and McBride 2001, 

Seabra, Mules et al. 2002, Grosshans, Ortiz et al. 2006). Expectedly, various studies show that 

APP and Aβ production is influenced by specific GTPases (Cataldo, Peterhoff et al. 2000, 

Reddy, Mani et al. 2005, Baskys, Bayazitov et al. 2007, Udayar, Buggia-Prevot et al. 2013, 

Armstrong, Mattsson et al. 2014, Buggia-Prevot, Fernandez et al. 2014, Tan, Lee et al. 2014). 

This study focused on two small GTPases not previously associated with AB generation: Rab10 

and Sar1A.  

Rab10 

Rab10 is a member of the Ras superfamily of small GTPases. In general, Rab GTPases 

are involved in every step of the intracellular vesicle transport in the cell (Stenmark and 

Olkkonen 2001, Seabra, Mules et al. 2002). In addition to trafficking, some Rab proteins seem to 

play an important role in organelle shape and growth by associating with microtubules (Zerial 

and McBride 2001, Seabra, Mules et al. 2002, Grosshans, Ortiz et al. 2006). Rab proteins switch 

between an inactive (GDP-bound) cytosolic state and active (GTP-bound) membrane bound 

state. Among other cellular processes, Rab10 has two main roles: regulating ER dynamics and 

anterograde transport to the plasma membrane (Schuck, Gerl et al. 2007, English and Voeltz 

2013, Liu, Xu et al. 2013, Deng, Lei et al. 2014). English et al (2013) showed that Rab10 

localizes in the ER and associates with microtubules to direct ER growth. Mutant Rab10 show an 

altered ER morphology and reduced ability to fuse with adjacent ER tubules (English and Voeltz 

2013). Independent studies show that Rab10 has an active role in transporting cell receptors to 

and from the TGN to the plasma membrane (Sano, Eguez et al. 2007, Schuck, Gerl et al. 2007, 

Lerner, McCoy et al. 2013, Deng, Lei et al. 2014). In neurons, Rab10 promotes axon 

development and neuronal polarization by transporting axonal receptors that interact with 
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extracellular growth factors (Wang, Liu et al. 2011, Liu, Xu et al. 2013, Xu, Deng et al. 2014). 

Additional evidence suggests a particular role of Rab10 in the endosome – recycling pathways 

(Babbey, Ahktar et al. 2006, Chen, Schweinsberg et al. 2006, Chen, Li et al. 2014). In a recent 

RNAi screen of all human Rab GTPases, Rab10 was found to decrease Aβ42 production and to 

affect sAPP-B levels in neural cells (Udayar, Buggia-Prevot et al. 2013).  

Sar1A 

Sar1A is another member of the Ras supefamily of small GTPases, involved in vesicle 

transport and membrane rigidity. In mammals, the two Sar1 isoforms (Sar1A and Sar1B) contain 

89% homology. However, Sar1A is commonly referenced as Sar1 (Bi, Corpina et al. 2002, 

Loftus, Hsieh et al. 2012). Unlike Rab10, which localizes to vesicles throughout the secretory 

and recycling pathways, Sar1A is only localized to the ER, particularly in COPII vesicles. COPII 

transport is the first step of the secretory pathway for most secreted proteins starting with the ER 

(Wang and Wu 2012, Zanetti, Pahuja et al. 2012, Cutrona, Beznoussenko et al. 2013). Sar1A is a 

principal component of COPII vesicle formation and transport from the ER to the Golgi 

(Barlowe, d'Enfert et al. 1993, Kuge, Dascher et al. 1994, Long, Yamamoto et al. 2010). In its 

active GTP form, Sar1A triggers vesicle formation by binding with the ER membrane to recruit 

other COPII components. Depletion of Sar1A severely disrupts COPII assembly and transport 

from the ER to Golgi (Cutrona, Beznoussenko et al. 2013). Sar1A also decreases rigidity of the 

membrane that is bound, either by associating with lipid bilayers or with microtubules (Long, 

Yamamoto et al. 2010, Loftus, Hsieh et al. 2012, Riggs, Bergman et al. 2012, Fokin, Brodsky et 

al. 2014). This observation is supported by recent studies that link polymorphisms along Sar1A 

with the development of membrane structure deficiencies such as sickle cell and Anderson 

disease (Pepperkok, Lowe et al. 1998, Kumkhaek, Zhu et al. 2007, Kumkhaek, Taylor et al. 
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2008, Georges, Bonneau et al. 2011). Interestingly, both Rab10 and Sar1A have an important 

role in regulating anterograde transport and ER structure by interacting with microtubules. 

However, a specific link with neurodegenerative diseases has not been previously established.  

Recent unpublished work by Kauwe (2015) and collaborators discovered two rare 

variants in Rab10 (rs1427874) and Sar1A (rs7653) that influence Alzheimer’s disease risk. 

Rab10 and Sar1A have not previously been associated with APP transport or amyloid 

production. We sought to characterize the effects of differential expression of Rab10 and Sar1A 

on APP and Aβ production in murine N2A/APP695 cells. We found that differential expression 

of Rab10 change Αβ42/Αβ40 ratio and influences Aβ42 production.  

Results 

Rab10 & Sar1A expression does not affect full-length APP 

We sought to first test the effects of cellular Rab10 and Sar1A overexpression on full 

length APP. We transfected pCMV6-Rab10 and pCMV6-Sar1A overexpression plasmids in 

N2A/APP695 mouse cells. At 48 h after transfection, cells were harvested and protein expression 

was measured using 6E10 and 9E10 antibodies as described in methods section. Fig 1 shows that 

full-length APP expression is the same in GFP control lanes with Rab10 and Sar1A transfected 

cells. We further tested whether this observation by immunoblotting with three different 

gradients of protein aliquots (25 ug/uL, 37.5 ug/uL and 50 ug/uL). The results were the same as 

before, indicating that APP, Rab10 and Sar1A exposure increase proportionally to the total 

protein immunoblotted (not shown). Similarly, we measured APP expression of transfected 

N2A/APP695 cells with shRNA plasmids that produced a 62% knockdown of Rab10 and a 26% 

knockdown of Sar1A. Fig 1 also shows no visible change in full length APP between the 
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scrambled plasmid and the knockdown plasmids. Together, these results show that full length 

APP is not affected by overexpression of Rab10 and Sar1A.  

Rab10 expression alters Aβ whereas Sar1A does not change Aβ levels.  

Next, we sought to quantify the effect of varying expression of Rab10 and Sar1A on Aβ 

levels. A sandwich ELISA measuring Aβ40 and Aβ42 levels was performed from cell media 

obtained from transient transfected cells with overexpression and shRNA plasmids for Rab10 

and Sar1A. We observed increased levels of Aβ42 levels and an increased Aβ40:42 ratio (Fig 

2A, p = 0.0017) in cells overexpressing Rab10. Conversely, we observed the opposite effect in 

knockdown Rab10 cells, resulting in decreased Αβ42 levels and a decreased Aβ40:42 ratio (Fig 

2B), however, the p-value was verily significant p = 0.048.  On the other hand, no change in 

AB42 levels and AB40:42 ratios were observed in both overexpressed and knockdown Sar1A 

cells (Fig 3, p-value not shown). Together, these results show that Rab10 plays a role in APP 

processing but not on full-length expression whereas the expression effects of Sar1A were did 

not significantly influence APP expression and processing.  

Discussion  

Here we show that Rab10 expression significantly affects amyloid generation while 

maintaining stable levels of APP in N2A-695 cells. This is the first study that presents primary 

evidence linking Rab10 with APP and Aβ production following preliminary results from Udayar 

suggesting this effect on Rab10 knockdown (Udayar, Buggia-Prevot et al. 2013). A possible 

hypothesis surrounding these observations might be that Rab10 does not directly interact in the 

secretory pathway of APP. Even though Rab10 heavily regulates ER dynamics and morphology 

(English and Voeltz 2013), it could be possible that Rab10 does not directly transport APP in 

anterograde fashion to the axons and synapses. APP is prevalent in axonal cones and evidence 
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shows that one of the trophic functions of APP is to promote axon development (Kins, Lauther et 

al. 2006, Sosa, Bergman et al. 2013). Interestingly, Rab10 also promotes axon development and 

elongation by facilitating the transport of membrane receptors such as GLUT4 (Liu, Xu et al. 

2013, Sano and Eguez 2007). Nascent APP molecules could be a specific cargo to another Rab 

GTPases such as Rab3 and Rab6, which have been shown to transport APP to axons and neurites 

(McConlogue, Castellano et al. 1996, Szodorai, Kuan et al. 2009).  

The significant observation of Rab10 in amyloid beta generation suggests a downstream 

effect in the APP processing pathway. A second hypothesis explaining the results of this study is 

that Rab10 participates in AB processing following APP endocytosis. Rab10 also localizes to the 

recycling and sorting endosomes and mediates vesicle transport from basolateral endosomes to 

early and late endosomes (Babbey, Ahktar et al. 2006, Chen, Schweinsberg et al. 2006). This 

transport is part of endosomal pathways where proteins are taken to and from the plasma 

membrane to be degraded by authophagy or recycled back to the plasma membrane. Expression 

changes of Rab10 might accelerate or suppress transport between endosomes as part of recycling 

and autopaghy processes of APP. Future experiments specifically tracking endosomal transport 

will prove useful to determine the precise role of Rab10 in amyloid beta transport.  

Conversely, we did not see a significant effect of Sar1A expression in both APP 

expression and amyloid processing. Since Sar1A only localizes to ER compartments and vesicles 

leading to the Golgi, it is possible that similar to Rab10, Sar1A is not directly involved in APP 

anterograde transport (Kuge, Dascher et al. 1994, Cutrona, Beznoussenko et al. 2013). Even 

though a direct role of Sar1A in amyloid beta production seems unlikely due to its localization in 

the cell, it should not be completely discarded. Our preliminary results support the former by not 

showing any interesting effects on Aβ. However, in N2A cells transfected with shRNA plasmids, 



 
 

 
 43 

we only obtained a 26% total knockdown of Sar1A. We considered this knockdown percentage 

to be enough to obtain observable conclusions regarding Sar1A role in amyloid beta generation. 

Another factor that might influence in our results was the number of replicated used. We only 

used three replicates in our sandwich ELISA to evaluate total Aβ42 and Aβ40 production. It is 

possible that by increasing the number of replicates would and knockdown conditions by the use 

of other RNAi methods could influence these results. Further experiments including these 

recommendations and other cell imaging methods could be used to confirm these results.  

In closing, these results support previous observations where silencing of Rab10 

decreases only Αβ (Udayar, Buggia-Prevot et al. 2013) and show that the opposite also applies in 

higher Aβ generation. In addition, these results offer preliminary evidence supporting results by 

Kauwe et al (2015) where polymorphisms on the 3’UTR of Rab10 affect Alzheimer’s disease 

risk. The next step will be to repeat the methods used in this study in N2A-695 cells expressing 

rs14278789 (Rab10) to further confirm the functional effect of this genetic variation in 

Alzheimer’s.   
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Methods 

Plasmids 

The plasmids used for this study were the following: pCMV6-Rab10 (Origene # 

RC201464), pCMV6-Sar1A (Origene # RC201450) for the overexpression experiments. pGFP-

V-RS-Rab10 shRNA (Origene #TG501823) and pGFP-V-RS-Sar1A shRNA (Origene 

#TG501970). Four shRNA versions per gene were tested to obtain greater knockdown levels.   

Cell culture 

Mouse neuroblastoma cells (N2A/APP695) expressing human APP-695 isoform were 

kindly given by Celeste Karch, Ph.D. N2A/APP695 are a mouse neuroblastoma line that express 

human APP695 isoform and is commonly used in functional APP studies (Thinakaran, Teplow et 

al. 1996, Rajendran, Honsho et al. 2006, Wang, Wang et al. 2006). N2A/APP695 cells were 

plated and grown in Dulbecco’s modified eagle medium (DMEM) and Opti-MEM (1:1) 

supplemented with 1% L-glutamine, 5% FBS and 1% anti-mycotic solution. Cells were grown 

between 80% to 90% confluence for posterior analyses. Upon confluency, cells were transiently 

transfected using Lipofectamine 2000 (Invitrogen). Culture media was changed 24 h after 

transfection. Following 48 h after transfection, cell media was collected and centrifuged for 10 

minutes at 4°C and protease inhibitor was added for peptide preservation. Cell pellets were 

collected, lysed and centrifuged with protease inhibitor to collect total protein. Protein 

concentration was measured using a BCA method in preparation for immunoblotting.  

Transfection and reporter gene assays 

Functional assays of reporter gene constructs were performed by transient transfection of 

N2A/APP695 cells using Lipofectamine 2000 reagent (Life Technologies). Cells were allow to 

confluence between 85 to 90% and transfected with  and pCDNA control vector to bring total 
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DNA concentration 1.0 μg. Cells were growth for 48 h; following this time, media was collected 

for ELISA assays. Cells were washed and RNA was isolated from cells for RT-qPCR or lysed to 

assess protein concentration by Western blot analysis. 

RNA isolation and RT-PCR analysis 

In order to assess greatest knockdown, total RNA was isolated from N2A/APP695 cells 

after transfection with four plasmids containing specific shRNA for knockdown of either Rab10 

or Sar1A genes. RNA was extracted from cells 48 h following transfection using RNeasy 

(Qiagen) following manufacturer protocol. RNA was converted to cDA using High-capacity 

cDNA reverse transcription (ABI). Following RT-PCR, Taqman real time PCR assays were used 

to observe the expression of Rab10 (Mm00489481_m1) and Sar1A (Mm01150424_m1) from 

ABI technologies. Total gene expression was quantified in triplicates using an ABI-7900 Real-

Time PCR system. A housekeeping gene GAPDH was used for normalizing expression values 

using the CT method.  

Protein analysis 

N2A/APP695 cell lysates were used to assess Rab10, Sar1A and APP695 protein 

expression by SDS-PAGE and Western blot analysis with primary mouse 9E10 or 6E10 

polyclonal antibody and goat-anti mouse polyclonal as secondary antibody. Briefly, equivalent 

amounts of total protein were evaluated by SDS-PAGE, blocked with 5% nonfat milk, and 

exposed to the primary antibody diluted at 1:5000 at 4°C overnight. Exposure to the secondary 

antibody was carried at 1:2000 for 2 h. Blots were exposed with enhanced chemiluminescence 

(Lumigen TMA-6).  
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Enzyme-linked immunosorbent assay 

The levels of Aβ40 and Aβ42 were measured from collected cell culture media by 

sandwich ELISA as described by the manufacturer (Invitrogen). ELISA values were obtained 

(pg/mL) and corrected for total intracellular protein (ug/mL) based on BCA measurements. 

Statistical analysis 

Values are expressed as mean ± SD obtained from at least three separate experiments in 

each group. Data were assessed by one-way analysis of variance (ANOVA). When ANOVA 

indicated significant differences, the Student's t-test was used with Bonferroni correction for 

multiple comparisons. Results presented are representative and those with P values <0.05 were 

considered significant.   
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Figure 2: Expression of Rab10 and Sar1A does not affect full length APP. This figure shows an 
immunoblot using the following legends: lanes 1- GFP, lane 2 – GFP + Rab10, lane 3- 
GFP+Sar1A, lane 4 – Scrambled shRNA, lane 5 – scrambled + Rab10 shRNA, lane 6 – 
scrambled + Sar1A.   
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Figure 3: Rab10 expression influences Aβ42 and Aβ42/aβ40 ratio. Figure 3A shows the results 
from a sandwich ELISA in N2A-695 cells transfected with overexpression and shRNA plasmids. 
Experiments and their respective controls (GFP for overexpression and Scrambled for shRNA) 
are depicted on Aβ42 (left), Aβ40 (middle) and Aβ42/Aβ40 ratio (right) panels. Each bar 
represents the results from six replicates. Figure 2B shows the effects of Rab10 for Aβ42/Aβ40 
ratio only. Each bar represents the results from 10 replicates. 
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Figure 4: Sar1A expression does not influence Aβ42 and Aβ42/Aβ40 ratio. This figure 

shows the results from the sandwich ELISA in N2A-695 cells transfected with overexpression 
and shRNA plasmids. Experiments and their respective controls (GFP for overexpression and 
Scrambled for shRNA) are depicted on Aβ42 (left), Aβ40 (middle) and Aβ42/Aβ40 ratio (right) 
panels. Each bar represents the results from three replicates.   
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